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Variational Discrete Developable
Surface Interpolation
Modeling using developable surfaces plays an important role in computer graphics and
computer aided design. In this paper, we investigate a new problem called variational
developable surface interpolation (VDSI). For a polyline boundary P, different from pre-
vious work on interpolation or approximation of discrete developable surfaces from P,
the VDSI interpolates a subset of the vertices of P and approximates the rest. Exactly
speaking, the VDSI allows to modify a subset of vertices within a prescribed bound such
that a better discrete developable surface interpolates the modified polyline boundary.
Therefore, VDSI could be viewed as a hybrid of interpolation and approximation. Gener-
ally, obtaining discrete developable surfaces for given polyline boundaries are always a
time-consuming task. In this paper, we introduce a dynamic programming method to
quickly construct a developable surface for any boundary curves. Based on the complex-
ity of VDSI, we also propose an efficient optimization scheme to solve the variational
problem inherent in VDSI. Finally, we present an adding point condition, and construct a
G1 continuous quasi-Coons surface to approximate a quadrilateral strip which is con-
verted from a triangle strip of maximum developability. Diverse examples given in this
paper demonstrate the efficiency and practicability of the proposed methods.
[DOI: 10.1115/1.4026291]

1 Introduction

Developable surfaces can be unfolded into a plane without any
stretching and distortions [1]. Many researchers have paid much
attention to the design of developable surfaces [2–7]. Even before
the modern time, developable surfaces already played an impor-
tant role in human’s life. For example, a popular way of making
the hull of a boat in those days was to bend wood or bamboo strips
and piece them together, which literally restricted the final hull
shape to be developable. Today developable surfaces have exten-
sive applications in many fields of engineering and manufacturing
such as architecture [8], garment industry [9,10], sheet metal
industry, and so on. In computer aided design (CAD) and com-
puter graphics (CG), developable surfaces are also ubiquitous,
including architecture and industrial surface design [5].

Discrete developable surfaces are developable triangular or
quadrilateral patches that maximize a discrete developability mea-
sure m(tp) [6]. The research on discrete developable surfaces,
as far as practical computer aided manufacturing (CAD/CAM)
is concerned, deals with how to design a quadrilateral or
triangular mesh surface that meets the given geometric constraints
while at the same time is exactly (m(tp)¼ 0) or quasi
ðm� ¼ arg minfmðtpÞg > 0Þ developable. Parametric surfaces are
not considered a viable choice for the task of complex free-form
developable shape design, due to their stringent and inflexible
requirements on the geometric constraints. Depending on specific
applications, this task can be further categorized into two groups:
approximation and interpolation. Although both seek as much
developability as possible on the final shape, in the former the sat-
isfaction of the geometric constraints is desired but not strictly
enforced, whereas in the latter meeting the interpolation con-
straints is strictly required (at least theoretically). For example,
clothing simulation falls into the first group since it is mainly used
for the purpose of rough estimate or examination. On the other

hand, when designing the shape of a blank holder surface, the geo-
metric constraints (interpolation of the given punch lines/curves)
must be met as strictly as possible, since a punch line usually has
a matching part and, if the final blank holder surface does not con-
tain this punch line, a mismatch would occur.

Sometimes a given geometric constraint is not completely rigid
but allowed to vary within certain bound. In such a case, the task,
which is more challenging, is to modify the constraint within the
bound such that a better (in terms of developability) interpolating
surface can be obtained. For example, when designing the shape
of an architectural structure, the design intended could be the
boundary curve and maybe some key interior points; this bound-
ary curve, however, is allowed to vary within a small bound.
Without being too rigorous on terminology, we will refer this task
as the variational developable surface interpolation (VDSI).

The VDSI, at least in the prescribed setting, to the best of our
knowledge has not been studied before. Existing approaches of
interpolating or approximating developable surfaces are not suita-
ble for VDSI. In this paper, we formulate the VDSI into an opti-
mization problem with constraints and develop an optimization
algorithm to solve it. The presented method can generate a better
developable surface to interpolate a boundary curve which could
be varied within a bound.

2 Background

In this section, we mainly give preliminaries of discrete devel-
opable surfaces, and then review some related works.

2.1 Fundamentals. Developable surfaces are a subset of
ruled surfaces. A ruled surface S is a family of straight lines. The
surface is formed by a straight line sweeping out along a space
curve. Thus, for every point p 2 S, there exists a straight line
which passes through p and also lies in S. The straight line is
called a ruling. Let aðuÞ and bðuÞ be two space curves, mathemati-
cally a ruled surface has the following parameterization
representation:
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Sðu; vÞ ¼ aðuÞ þ vbðuÞ;

where aðuÞ is called the base curve and bðuÞ the director curve. If
we fix u, a straight line or a ruling is formed. As u continuously
varying, we could imagine the generation process of ruled
surfaces.

A surface is flat or developable if it has vanishing Gaussian cur-
vature everywhere. Since Gaussian curvature measures how much
a surface deviates from a Euclidean plane, the developable surface
can be unfolded into a plane without any distortions and tearing
[1]. As ruled surfaces have the above parameterization representa-
tion, they are said to be developable if detða0ðuÞbðuÞb0ðuÞÞ ¼ 0.
Actually developable surfaces also have intuitive geometric
description. A ruled surface is developable if and only if all points
of a ruling have common tangent plane. Thus the normal map of a
developable surface is one-dimensional [11] (see Fig. 1 for an
illustration).

For a discrete developable surface (i.e., a triangular mesh) inter-
polating a closed polyline, an edge in the mesh is called a bank or
boundary edge if its two ending points are neighboring vertices on
the polyline, otherwise it is called a bridge. In the following, we
formally describe two special triangulations of a closed polyline:
boundary bridge triangulation (BT) and boundary triangulation
[6,10]. If the vertices of the triangulation belong to that of the
polyline only, and any triangle in the triangulation has at least one
bank edge, then the triangulation is called a boundary bridge trian-
gulation. While a boundary triangulation is still required to have
only vertices on the polyline, its triangles, however, are allowed
to comprise bridge edges only. By construction, a (discrete)
boundary bridge triangulation or boundary triangulation is always
developable, since both can be flatten onto a plane without any
area or length distortions. In Fig. 2, a boundary bridge triangula-
tion and a boundary triangulation are generated for a same closed
polyline and flattened into the plane. A triangulation, however,
may not approximate a smooth developable surface in the limit,
unless the majority of its interior edges are locally convex [12].
An interior edge is said to be locally convex if it lies on a convex
hull of itself and its four neighboring vertices on the polyline.

2.2 Related Work. Since developable surfaces have Gaus-
sian curvature K¼ 0 at every point, they are isometric to a plane
in R3. This important property is desired by CAD and CG. Hence
various methods of modeling developable surfaces are proposed
by researchers.

Many researchers pay attention to developing new algorithms
to design developable surfaces. The work [13,14] is the first to
construct developable surfaces using computer from different con-
siderations. The former constructs developable surfaces for a
given directrix and a given generator direction, and the latter
interpolates two boundary curves to construct developable surfa-
ces. As it is well known, B�ezier or B-Spline surfaces are widely
used in surface modeling and industry product design. Thus many
algorithms are proposed to represent developable surfaces using
Bezier or B-Spline form [15,16]. The original work of using the
dual space transformation to design developable surfaces was pro-
posed in Ref. [17]. Some related works were also presented in
Refs. [16] and [18]. On the other hand, Aumann [19] took advant-
age of the de Casteljau algorithm to model developable B�ezier
surfaces. Despite their mathematically rigor and elegance, the
analytic or parametric form is not suitable for practical develop-
able surface design due to the non-linear characteristics.

In 3D computer graphics, triangular mesh surfaces are a com-
monly used means to represent 3D models. They have many
advantages such as discrete representation, easy to compute and
store, and so on. Recently there has been a flux of research work
in the modeling and design of developable triangular meshes that
exactly interpolate one or two boundary curves.

Frey’s work [12] not only explicitly discussed the problem of
interpolating a closed 3D curve by quasi-developable mesh sur-
face but also provided a practical solution to the problem. In his
work, he assumed that the final mesh surface must be monotone
with respect to a known plane-the XY plane, and thus there is a
one-to-one mapping between the interpolating mesh and its pro-
jection in the XY plane. Since a developable surface must be one
or an assembly of ruled surfaces which are made of (infinite) line
segments, he proposed the plausible idea of boundary triangula-
tion (i.e., triangulations whose vertices can only fall on the given
curves). Since the computation is fairly time-consuming, it cannot
deal with developable surface design task with sufficiently large
number of sample points. Wang and Tang [6] proposed a method
to generate developable surfaces interpolating boundary curves
using a weighted graph. For the special structure of the weighted
graph, their method can achieve a global optimal solution in linear
time. Observing that a ruling of a developable surface lies on a
local convex hull of the surface, Rose et al. [5] presented an
approach to the discrete developable surface interpolation task.
But their work has several disadvantages. First, the convex hull
computation is time-consuming and numerically unstable. Sec-
ond, the final solution needs to be chosen by users. Recently, Liu
et al. [4] proposed a global optimal solution to the optimal trian-
gulation (OT) of a closed boundary using a dynamic programming

Fig. 1 (a) Discrete developable surface. (b) Normal map

Fig. 2 Boundary bridge triangulation (a) and boundary trian-
gulation (b) generated by the same closed polyline
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method. Their method is fairly fast and can support more than one
closed polyline.

On the other hand, there exist many algorithms as well for the
task of approximating a surface, smooth, or discrete, by a discrete
or smooth developable surface. In the work [20], Robson et al.
minimize the Gaussian curvature of a surface to reach an approxi-
mation surface with maximal developability, and they simulate
garment design based on sketch. Observing the sum of angles
incident with an interior point of 2D meshes is equal to 2p, Wang
[21,22] presented to approximate developable surfaces with flat-
tenable meshes. In general, however, approximation methods
have not been very successful in practice due to two main reasons.
The first is that they require the Gaussian curvature of input mesh
to be small enough, otherwise these methods may fail. Another
reason is that the approximation result usually is not able to satisfy
the geometric constraints precisely.

As a balance of interpolation and approximation, the proposed
VDSI formulation and our solution strive to fulfill the gap
between the two. Our main contribution lies in that we are the first
to formulate this problem, and then develop an optimization
method to solve it. Furthermore, we present an adding point con-
dition, and the condition can be used to guide and construct a G1

continuous quasi-Coons surface to approximate a quadrilateral
strip, which is converted from a maximal developable triangle
strip.

The rest of this paper is organized as follows. In Sec. 3, a
dynamic programming-based solution for the discrete developable
surface interpolation problem is described in detail. Subsequently,
we formulate the VDSI as an optimization problem, and develop
an optimization method to solve it. In Sec. 5, we present an adding
point condition, and construct a G1 continuous quasi-Coons sur-
face to approximate a quadrilateral strip, which is converted from
a maximal developable triangle strip. Extensive examples and
applications are also presented in Sec. 6. At last we conclude the
whole paper.

3 Preliminary

In this section, we review a method proposed in Refs. [4] and
[23] by describing their key ingredients of generating developable
surfaces for interpolating polyline boundaries by using the
dynamic programming idea. Since a developable surface must be
a ruled surface, boundary triangulations are a natural way of
developable interpolation. However, the number of different
boundary triangulations could be exponentially large [5] in terms
of the sample points on the boundaries, which makes an exhaus-
tive search impractical. According to the recursive nature of
dynamic programming, we could realize the global optimization,
which then is able to tremendously reduce the search time and
make it practically useful.

Assuming P is a closed polyline approximating a simple closed
boundary curve in 3D, and its vertex set which is also denoted as
P consist of Piði ¼ 1;…;mÞ with counter-clockwise order. A line
segment PiPj, to be denoted as hi; ji, is called a rung if it is entirely
inside P except its two ending points (see Figs. 3(a) and 3(b)). A
rung is free-twist if every point in the rung has a common tangent

plane. A (discrete) surface is developable if all rungs are twist-
free. For better lucidity of description, when a rung hi; ji is
referred, it is assumed that i < j. For any rung l ¼ hi; ji, we use
w(l) to measure its twist

wðlÞ ¼ 1� ti � ðPj � PiÞ
kPj � Pik

� tj � ðPi � PjÞ
kPi � Pjk

(1)

where ti and tj represent the unit tangent vectors at Pi and Pj,
respectively. For any triangulation T of P, let WðTÞ ¼

P
wðeÞ

denote the total twist of T, with the summation over all the edges
in T. In particular, let D(P) represent the minimum of all the total
twists of P over all the possible triangulations of P, and the partic-
ular T* that realizes D(P) will be called an OT of P.

As P is simple, P is divided into two halves by any rung
l ¼ hi; ji; let P(lþ) (shaded area in Figs. 3(a) and 3(b)) denote the
half that has the vertex Piþ1, and P(l–) the other half. (Follow the
C convention, we use”iþ” and”i–” to denote” iþ 1” and” i – 1”,
respectively.) Now, suppose a rung l is an edge in an OT of P, to
be referred to as an optimal rung. Then it is obvious that the equa-
tion below is true,

DðPÞ ¼ DðlþÞ þ Dðl�Þ þ wðlÞ (2)

The above equation holds for any valid OT of P. Now we define
a particular type of triangulation called bridge triangulation: in a
BT, every triangle has at most two rungs. Every triangle in a BT
calls a bridge triangle (see Fig. 3(a) for an illustration). For any
optimal BT of DðPðlþÞÞ, it must have either rung hi; j�i or hiþ; ji
as an edge. The following recursive propagation rule for a optimal
rung l ¼ hi; ji can be easily verified:

DðPðhi; jiþÞÞ ¼ MinfDðPðhiþ; jiÞþÞ þ wðhiþ; jiÞ;DðPðhi; j�iÞþÞ
þ wðhi; j�iÞg (3)

Accordingly, the recursive rule for DðPðhi; ji�ÞÞ can be similarly
defined and is omitted here for brevity. Note that this recursion
terminates when j¼ iþ 2 (mod m).

Now, consider an arbitrary vertex Pi. Let L set L(i) represent
the set of rungs emanating from Pi (there are less than m� 3 of
them and in most cases much less). Any valid triangulation of P
must contain either a rung in L(i) or the rung hi�; iþi. Therefore,
by applying Eq. (2) to every rung in L(i) and also hi�; iþi, and
picking the minimal D(P) of the results, the corresponding trian-
gulation is an optimal BT.

In order to avoid the exponential running time, dynamic pro-
gramming algorithm is adopted to implement the rule (3).

The optimal triangulation obtained through the application of
rules (2) and (3) is limited to bridge triangulation only every trian-
gle must have an edge of P. Although most practical surfaces do
not have or even try to avoid large flat regions due to various rea-
sons (e.g., aesthetics), some do, at least in the initial design stage.
Now we want to develop a similar recursive algorithm for the gen-
eral optimal triangulation problem allowing triangles to have
bridge edges only. Toward this goal, we make the following
assumption: for the polyline P, there is a plane B such that any tri-
angulation of P is monotone with respect to B (which also implies
that the projection of the triangulation in B is inside the projection
of P in B, B(P)). This assumption is in general valid in practice,
e.g., for automobile parts or architectural designs. Let l ¼ hi; ji be
a rung, a vertex Pk is said to be visible from l if both hi; ki and
hk; ji are rungs. Because C is simple, if pk is visible, then the trian-
gle PiPjPk lies entirely inside B(P) except the three vertices. Let
V(i) denote the set of indices of the vertices visible from Pi, the
following recursion rule then is naturally established:

DðPðhi; jiþÞÞ ¼ MinfDðPðhi; kiþÞÞ þ wðhi; kiÞ þ DðPðhk; jiþÞÞ
þ wðhk; jiÞ : k 2 VðiÞ \ VðjÞg (4)

Fig. 3 Two halves PðlþÞ and Pðl�Þ by a rung hi; ji. (a) Two
bridge triangles from hi; ji. (b) Visibility vertex Pk of rung hi; ji.
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It is obvious that the idea of using the L set of an arbitrary ver-
tex still holds. Thus, by applying Eq. (2) to all the rungs in an L
set and using rule (4) instead of rule (3) in the recursion, an opti-
mal triangulation can be found.

Finally, for a multiple connected region formed by more than
one polyline (see Fig. 4(a)), we propose to insert some artificial
“cuts” to convert the region into a simple one to which the just
prescribed optimal triangulation method can be applied. The main
difficulty is how to determine a proper cut. Fortunately, since any
ruling of a developable surface lies on a local convex hull of the
surface [5], we could seek the cuts according to this property. For
any vertex V on the boundaries, let L(V) be the L set of V, and we
choose as the cut a rung l from L(V) which lies on its local convex
hull, e.g., the red line segment in Fig. 4.

4 Variational Developable Surface Interpolation

In this section, we describe the formulation and optimization
method of VDSI in detail.

4.1 Catmull–Rom Splines. Catmull–Rom splines [24] are
cubic space interpolating curves passing through given control
points. The tangent at each point Pi of a Catmull–Rom spline
is related to its previous and next point on the spline, and it is cal-
culated by sðPiþ1 � Pi�1Þ. Note that the beginning point P1 and
ending point Pm is not well defined. Let sðP2 � P1Þ and
sðPm � Pm�1Þ be their tangent, respectively.

The parameter s describes the bending when the spline interpo-
lates a point. The larger the parameter s, the more bending the
Catmull–Rom spline at a point (see Fig. 5 for an illustration).

Suppose there are four control points Pi–2, Pi–1, Pi, and Piþ1,
they determine a Catmull–Rom spline R(u). In Figs. 5(a) and 5(b),
four points define two Catmull–Rom splines with different s.
Since Catmull–Rom spline is a cubic space curve, the curve is
determined by four equations: Rð0Þ ¼ Pi�1; Rð1Þ ¼ Pi;
R0ð0Þ ¼ sðPi � Pi�2Þ, and R0ð1Þ ¼ sðPiþ1 � Pi�1Þ. Consequently,
we could formulate the Catmull–Rom spline by the following ma-
trix form:

RðuÞ ¼ UTMP;

where U and P are two column vectors U ¼ ð1; u; u2; u3ÞT ;
P ¼ ðPi�2;Pi�1;Pi;Piþ1ÞT , while M is a 4� 4 matrix,

M ¼

0 1 0 0

�s 0 s 0

2s s� 3 3� 2s �s

�s 2� s s� 2 s

0
BBBBBB@

1
CCCCCCA

Catmull–Rom spline has many useful properties. The spline
passes through all control points. The spline is C1 continuous. It
means that the tangent direction and magnitude has no
discontinuities.

The tangent at a point is calculated by the previous and next
point, which, as we will see in the following context, can
make our optimization function be just associated with points on
boundary curves and facilitate our calculations. Furthermore the
C1 continuity is enough for our applications. Thus we adopt the
Catmull–Rom spline to interpolate the boundary points and calcu-
late tangent vectors.

In addition, there are two considerations for us to favor the
Catmull–Rom spline rather than other types of splines such as B-
spline. The first one is the computational complexity. Since the
Catmull–Rom spline passes through its control points, and the tan-
gent at each control point is easily calculated, thus using this
spline can reduce the computation and make the optimization
function (Sec. 4.2) more compact. On the contrast, B-splines do
not pass through their control points, and we have to rely on
inverse calculation to find them, which is not convenient in this
work. Crossing phenomenon (see Fig. 6) also stops us from using
the B-spline. In Ref. [4], they utilize the B-spline to interpolate
boundary points and resample the spline, but crossing is caused.
Our method does not cause crossing.

4.2 Variational Developable Surface Interpolation. Inter-
polation and approximation of curves and surfaces always play a
central role in computer aided geometric design. Generally inter-
polation requires that curves or surfaces pass through all given
points strictly, while in the latter this is not strictly required. The
VDSI, however, is different from either—we allow some points to
vary within a bound while the rest must be strictly interpolated; it
is a hybrid of the two.

Let C be a smooth closed boundary curve which is approxi-
mated by a closed polygon P. In Fig. 7, the red dashed line is a
smooth boundary curve, while its approximation polygon
P ¼ fP1;P2;…;Pmg is represented by the blue vertices. Some of
the vertices (specified by user) in P are allowed to move within a
certain bound in space, e.g., point Pi in Fig. 7. Our objective is to
seek a better (in terms of developability) developable surface
interpolating a given boundary curve. Accordingly, the twist

Fig. 4 A multiple connected region (a) and a cut (b)

Fig. 5 Two Catmull–Rom splines with s 5 0.5 in (a) and s 5 1.0
in (b)
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measurement w(l) of a rung l could be viewed as the function of
some points.

Without loss of generality, suppose the varied points of P1, P2,
� � �, Pn (n�m) are moved and their respective new positions are
points P01;P

0
2;…;P0n. For a prescribed bound e, the optimization

function can be formulated as

WðT�Þ ¼ Min
X
l2T

wðlÞ s:t:

Xn

i¼1

kPi � P0ik � e

Pj ¼ P0j j ¼ nþ 1; � � � ;m

where T is any triangulation of variable point set.
We have given the specific formulation of w(l) in Eq. (1);

nevertheless calculations of unit tangents are not dealt with so far.
For calculating the unit tangent, many methods take advantage of
quadric or cubic polynomials or splines to fit a curve and estimate
the tangent. In order to compute the tangent ti at Pi, for example, a
quadric curve f ðtÞ ¼ a0 þ a1tþ a2t2 is used to interpolate three
points Pi–1, Pi and Piþ1 such that f ð0Þ ¼ Pi�1; f ð1=2Þ ¼ Pi and
f ð1Þ ¼ Piþ1, where ai is a 3� 1 vector. Then the tangent can be
easily computed as ti ¼ f 0ð1=2Þ=kf 0ð1=2Þk. Considering the high
non-linearity of the optimization function, if we make use of the
above method to compute the tangent, the optimization function
will become more complex. It is desirable that the optimization
function is just related to points and does not involve other
complex computations. According to the early discussion of
Catmull–Rom splines, the tangent ti of a point Pi can be computed
by its next point Piþ1 and previous point Pi–1. In light of the defi-
nition of Catmull–Rom splines, ti can thus be formulated as
follows:

ti ¼
Piþ1 � Pi�1

kPiþ1 � Pi�1k

Note that there is no relationship between ti and s.
For the rung l ¼ hi; ji, the following formulation holds if we

substitute ti and tj in (1):

wðlÞ ¼ 1� ðPiþ1 � Pi�1Þ � ðPj � PiÞ
kPiþ1 � Pi�1kkPj � Pik

� ðPjþ1 � Pj�1Þ � ðPi � PjÞ
kPjþ1 � Pj�1kkPi � Pjk

where� represents the cross product. Therefore, the optimization
function can be represented as follows:

WðT�Þ ¼ Min
X
l2T

 
1�
ðP0iþ1 � P0i�1Þ � ðP0j � P0iÞ
kP0iþ1 � P0i�1kkP0j � P0ik

�

ðP0jþ1 � P0j�1Þ � ðP0i � P0jÞ
kP0jþ1 � P0j�1kkP0i � P0jk

!
s:t:

Xn

i¼1

kPi � P0ik � e

Pj ¼ P0j j ¼ nþ 1;…;m

Obviously the optimization function just relies on points lying
on a boundary curve, thus it can be viewed as a function of P1,
P2, …, Pm. Next we will discuss how to solve the complex optimi-
zation problem in detail.

4.3 Optimization Method. In this subsection, we propose an
iterative scheme to find the optimal solution of VDSI. For a given
triangulation T of P, the equality constraints of the optimization
problem can be ignored as long as the points P0j is substituted by
Pjðj ¼ nþ 1;…;mÞ. Thus we consider the following optimization
problem:

Min
X
l2T

 
1�
ðP0iþ1 � P0i�1Þ � ðP0j � P0iÞ
kP0iþ1 � P0i�1kkP0j � P0ik

�

ðP0jþ1 � P0j�1Þ � ðP0i � P0jÞ
kP0jþ1 � P0j�1kkP0i � P0jk

!

s:t:
Xn

i¼1

kPi � P0ik � e � 0

Let Pj ¼ ðxj; yj; zjÞ;P0j ¼ ðx0j; y0j; z0jÞ, and also assuming
x ¼ ðx01; y01; z01;…; x0n; y

0
n; z
0
nÞ, thus the above objective function

and inequality constraint can be viewed as two multivariate func-
tions f(x) and gðxÞ � e. Then we can solve the problem by using
the Zoutendijk’s feasible direction method [25]. Given an initial

feasible point xð1Þ ¼ ðx1; y1; z1;…; xn; yn; znÞ, the iterative proce-
dure can be formulated as follows:

Step 1: Solve the linear programming problem

Min z

s:t: rTf ðxðkÞÞ � d� z � 0;

rTgðxðkÞÞ � d� z � 0;

�1 � di � 1; i ¼ 1;…; 3n

Label the solution d
(k) and z(k). If zðkÞ � 0, the iteration termi-

nates, since no further improvement is possible.
Step 2: Find a amax > 0, s.t.

amax ¼ Maxfa : gðxðkÞ þ a � dðkÞÞ � e � 0g

If amax � 0, set amax ¼ 1.

Fig. 6 A tent model is generated by different methods. (a) Wang and Tang’s result [6]. (b) The
result of Liu et al. [4]. (c) Our result.

Fig. 7 Modify a polygon boundary by moving its vertices
within a bound. Adjusting the vertex Pi finally obtains P 0i .
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Step 3: Solve the 1-D search problem

Min f ðxðkÞ þ adðkÞÞ
s:t: 0 � a � amax

Label the solution aðkÞ.
Step 4: Set xðkþ1Þ ¼ xðkÞ þ aðkÞdðkÞ, and then go to Step 1.

In the above algorithm, f(x) is dependent on the triangulation T,
thus the x0i component of rf ðxÞ can be written as ð@f=@x0iÞ
¼
P

l2T

P
P0i2lðdf=dx0iÞ, where P0i 2 l means P0i is an endpoint of l.

The y0i and z0i component of rf ðxÞ has a similar representation. In

this implementation, we take gðxÞ ¼
Pn

i¼1 kPi � Pi0k2
. Assuming

P is a point set with counter-clockwise order, and assuming T(1)

be a triangulation of P constructed by the dynamic programming
method introduced in Sec. 3, we give the algorithm of solving
VDSI in Table 1. In fact, the algorithm uses a two-step iteration.
First by fixing a triangulation, a new point set is obtained by solv-
ing an optimization problem; then the new point set is triangulated
by dynamic programming. The procedure proceeds until the pre-
scribed accuracy is satisfied.

5 Quasi-Coons Surface Approximation With

G1 Continuity

In this section, we present a fairly simple and significant adding
point rule which can guarantee the G1 continuity when we approx-
imate a quadrilateral strip by using a quasi-Coons surface. Notic-
ing we use the algorithm proposed by Liu et al. [4] to convert a
triangle strip into a quadrilateral strip.

Taking a quadrilateral strip in Fig. 8 for example, black points
represent the added points, and the red points are the original
points. Two boundary polylines are approximated by two (blue)
curves L1(t), L2(t). Exactly, L1(t) (L2(t)) consists of four B�ezier
curves L1j(t) (L2j(t)) (j¼ 1, 2, 3, 4).

In this paper, we approximate each quadrilateral by a quasi-
Coons patch, and all quasi-Coons patches form a quasi-Coons sur-
face which approximates the quadrilateral strip with G1 continu-
ity. Assuming t; u 2 ½0; 1�, we now give the definition of the
quasi-Coons patch as follows:

Sjðt; uÞ ¼ ð1� uÞL1jðtÞ þ uL2jðtÞ; j ¼ 1; 2; 3; 4

Along the common curve S1ð1; uÞ ¼ S2ð0; uÞ, two quasi-Coons
patches S1ðt; uÞ; S2ðt; uÞ is G1 if the following condition holds:

@S2

@t
ð0; uÞ ¼ kðuÞ @S1

@t
ð1; uÞ (5)

According to L1(t) and L2(t), S1(t, u) and S2(t, u) are reformulated,
then

ð1� uÞL012ð0Þ þ uL022ð0Þ ¼ kðuÞ½ð1� uÞL011ð1Þ þ uL021ð1Þ�

Table 1 Algorithm of Solving VDSI

Input: T(1), e0 2 R
Output: A triangulation T* of P

1. For a triangulation T(k), solve the optimization problem through Step 1
to Step 4, and obtain a new point set P0

2. Triangulate P0 using the Dynamic programming method, and denote the
new triangulation Tðkþ1Þ

3. If jWðTkþ1Þ �WðTkÞj � �0, the iteration is terminated, and otherwise go
to 1

Fig. 8 The diagram of adding point rule

Fig. 9 (a) An umbrella model. (b) Wire umbrella model. (c)
Unfolded planar mesh of an optimal triangulation.

Fig. 10 (a) A tower model is made up of five optimal triangula-
tion strips. (b) The solid model of the tower. Right column:
unfolded planar meshes of several optimal triangulation strips.
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Furthermore, we have

ð1� uÞðP4 � P3Þ þ uðQ4 � Q3Þ
¼ kðuÞ½ð1� uÞðP3 � P2Þ þ uðQ3 � Q2Þ� (6)

Let u¼ 0 and u¼ 1, respectively, and denote k1 ¼ kð0Þ and
k2 ¼ kð1Þ, then

P4 � P3 ¼ k1ðP3 � P2Þ; Q4 � Q3 ¼ k2ðQ3 � Q2Þ

Equation (6) is reformulated and arranged according to above two
equalities, then

ð1� uÞ½k1 � kðuÞ�ðP3 � P2Þ ¼ u½kðuÞ � k2�ðQ3 � Q2Þ

Obviously P3–P2 is proportional to Q3–Q2, and denote
Q3 � Q2 ¼ aðP3 � P2Þ. When P3 � P2 6¼ 0 and Q3 � Q2 6¼ 0,
kðuÞ can be easily computed.

kðuÞ ¼ ð1� uÞk1 þ auk2

ða� 1Þuþ 1

According to the definition of the quasi-Coons patch and the
derivation above, we achieve an important result to guarantee the
G1 continuity.

Property 1. The quasi-Coons surface, which approximates a
quadrilateral strip and is formed by an array of quasi-Coons
patches, is G1 if the added points (black points in Fig. 8) satisfy
one of the following two rules of adding points:

Piþ1 � Pi ¼ kðPi � Pi�1Þ Qiþ1 � Qi ¼ kði�Qi�1Þ

or

Piþ1 � Pi ¼ k1ðPi � Pi�1Þ

Qiþ1 � Qi ¼ k2ðQi � Qi�1Þ

Qi � Qi�1 ¼ aðPi � Pi�1Þ

where k1; k2 > 0.

Fig. 11 (a) The top surface of a mouse is made up of five opti-
mal triangulation strips. (b) The variational developable surface
interpolation, and the black points represent the varying points.
Right column: unfolded planar meshes.

Fig. 12 (a) A hat model consists of three optimal triangulation
strips (except the feather model and top surface). (b) The varia-
tional developable surface interpolation, and the black points
represent the varying points. Right column: unfolded planar
meshes.

Fig. 13 (a) A flower model. (b) The flower model after varying
several points. (c)–(j) Unfolded planar meshes corresponding
to the optimal triangulation strips in (b). (k) The solid flower
model.
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6 Experiments and Applications

We have implemented the algorithms proposed in this paper
using Cþþ. In all the test examples, we take the terminating accu-
racy of e0 ¼ 10�6. In this section, we first model two 3D geomet-
ric objects using several optimal triangulation strips constructed
by the dynamic programming method. Then the VDSI is verified
on some models, and the results show that our optimization
method is valid.

For a given set of boundary polylines, different methods would
generate different results. In Fig. 6, we compare three results gen-
erated by two methods in [4,6], respectively, and our method.
Obviously on the top part of the tent model, the method by Liu
et al. (Fig. 6(b)) appears crossing but Wang and Tang (Fig. 6(a))
and ours (Fig. 6(c)) does not.

As shown in Fig. 9, we construct an umbrella model (except the
handle) using the proposed dynamic programming algorithm. The
umbrella consists of 16 optimal triangulation strips. Figures 9(a)
and 9(b) are the solid and wire models, respectively, and Fig. 9(c)
is the unfolded planar mesh of an optimal triangulation strip. We
do not display all unfolded planar meshes of strips since all strips
have similar triangulations.

We also generate a tower model using several optimal triangu-
lation strips as shown in Fig. 10. The tower model consists of five
parts, and especially the semi-sphere on the top of the tower has
16 optimal triangulation strips. In the right column of Fig. 10,
some unfolded planar meshes corresponding to optimal triangula-
tion strips are illustrated.

To obtain a better developability of a geometric object, we
apply the VDSI model. Notice that the varying points in VDSI
should not be shared by two or more triangular strips, since other-
wise the final model may have some gaps.

We model a top surface of a mouse by using five optimal trian-
gulation strips (Fig. 11(a)). In order to obtain a better developabil-
ity, we prescribe some varying points (black points in Fig. 11(b))
and take advantage of the optimization method in Sec. 4, and
finally the top surface with better developability is achieved
(Fig. 11(b)). Notice that we take e ¼ 10:5 in this case. The right
column of Fig. 11 shows unfolded planar meshes corresponding
to the optimal triangulation strips in Fig. 11(b).

In Fig. 12, a hat model is made up of five triangular strips, and
three of the strips are optimal triangulation strips (except the
feather and top surface). In Fig. 12(b), the black points indicate
the varying points of VDSI, and the optimal triangulation in
Fig. 12(b) has a better developability and an excellent appearance
compared with those in Fig. 12(a). The right column in this figure
illustrates the corresponding unfolded planar meshes. In addition,
we take the varying bound e ¼ 16:5 in the optimization method.

We construct a flower shown in Fig. 13 which has two parts:
rachis and petals. Each petal of the flower model is an optimal tri-
angulation. The yellow petals in Fig. 13(a) are performed with the
VDSI optimization method for the indicated black points, and we
take e ¼ 10 (for the front yellow petal) and e ¼ 5 (for the back
yellow petal). Figures 13(c)–13(j) are unfolded planar meshes

corresponding to strips in Fig. 13(b). A solid model of the flower
is presented in Fig. 13(k).

In Fig. 14, two optimal triangulation strips (Fig. 14(a)) are con-
verted into corresponding quadrilateral strips (Fig. 14(b)), then we
construct two G1 continuous quasi-Coons surfaces to approximate
the quad strips according to our adding point rule in Sec. 5. Note
that two B�ezier boundary curves are sampled (original vertices are
preserved) with the same parameter setting. And we connect
the samples with the same parameter. The final result is shown in
Fig. 14(c).

Finally, the statistic data of models in Figs. 11–13 are summar-
ized in Table 2. In the table ]tri and ]str represent the number of
triangles and strips, respectively. D(Ti) means the initial total twist
of the triangulation generated by our dynamic programming-
based optimization solution, and D(T*) means the total twist after
performing the VDSI. Once the boundary polylines are specified,
the models in all the examples are generated in a few seconds, on
a Core2Duo 1.8 GHz laptop computer with 2GB memory.

These examples demonstrate the feasibility and practicability of
our optimization method combining dynamic programming for
VDSI. Furthermore, they show the vast applications of develop-
able surfaces.

7 Conclusions

In this paper, we investigate the construction problem on VDSI
which so far has no literatures to address this problem. Observing
the recursive property of boundary triangulation, the dynamic
programming method is applied to triangulate boundaries. In this
paper, an improved dynamic programming method is designed to
guarantee the global optimization and has a low complexity of
running time. With the usage of dynamic programming, a global
optimization solution to VDSI using an iterative scheme is pro-
posed. We do not prove the convergence of our method, but all
calculations in this paper are convergent. At last, we present a
method to approximate a discrete quadrilateral strip with G1 con-
tinuous quasi-Coons surface. Diverse examples are presented to
demonstrate the usefulness of the proposed method.
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