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Abstract

Partitioning free-form surfaces into sub-patches and finding optimal representative normal

for each patch to maximize a global objective function is an important two-level operation in

diverse industrial applications. In this paper, by solving a maximum hemispherical partition-

ing problem raised from a weighted Gaussian image, an optimization algorithm is proposed to

partition a free-form surface into two sub-patches and simultaneously report the optimal rep-

resentative normals. By discretizing the free-form surface with W sample points and clustering

normals on the surface with m distinct sample normals, the proposed algorithm is designed, in

general, with O(m2W2) time complexity and O(W2) space complexity, and in particular, if the

surface is convex, in O(m2 logm) time complexity. Case studies with four representative exam-

ples are presented and a real world application is exploited to demonstrate the effectiveness

and usefulness of the proposed algorithm.
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1. Introduction

Partitioning complex free-form surfaces into simple, ‘‘meaningful’’ sub-patches is

a fundamental problem in various disciplines. The justification for ‘‘meaningful’’

patches is obviously application-dependent. One such industrial application is in
the context of reverse engineering [28]: after point data captured from the surface

of a physical object, the first challenging step is to segment the data into disjoint sub-

sets which are internally smooth. Afterwards each segmented data is fit locally with a

simple analytic surface. It is expected to determining an optimal representative nor-

mal N for each segmented data: the direction N can offer a good guess (or initializa-

tion) to the normal of a projection plane or to the axis of a surface of revolution for

subsequently simple analytic surface fitting.

Other industrial applications concern the workpiece setups (or orientations). In
these applications such as 3-axis surface machining, coordinate measuring machine

(CMM) inspection and laser range scanning in data acquisition, usually two levels of

planning for free-form surface partitioning are involved. At the first level, a number

of ‘‘setups’’ for the free-form object are determined such that the entire free-form

surface of the object is accessible to the machining tool (or probing head in CMM

inspection, or laser beam in laser scanning). At the second level, the free-form sur-

face is sampled by points which are either in the form of section lines on the surface

(for 3-axis machining) or an ordered array of points (for laser range scanning); in
either way the sample points can be considered as the projection of a uniform planar

grid system onto the surface along the normal direction of the plane of the projection

grid system. In Fig. 1, a schematic example of laser range scanning is shown to illus-

trate this two-level planning process.
Fig. 1. Multi-orientations in laser range scanning.
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Each setup thus is represented by a direction vector N that determines the plane of

the projection grid system for that setup (cf. Fig. 1). When determining a setup, one

critical criterion is that the normal vectors of the object�s surface patch must be as

close as possible to the vector N. This is best validated by the notion of cusp height.

As shown in Fig. 2, the extraneous material left on a machined surface between two
neighbouring tool passes is called a cusp which can be measured by its height. This

height is a strict monotone-decreasing function of the angle between the local surface

normal n and the tool axis T [4,23], which is N in this context. The same observation

can also be made about laser scanning, where experiments show that the accuracy of

data acquisition is greatly enhanced if the laser beam is perpendicular to the surface.

Therefore, to achieve better quality of the machined surface or higher accuracy of

data acquisition, the normal vectors n and N should be as close as possible.

There is however an apparent paradox between the two levels. On one hand, the
number of setups should be minimized due to concerns of potential errors incurred

during the system calibration, non-production time spent in mounting and dis-

mounting the workpiece, data incorporation, and others. On the other hand, it is

obvious that more setups means more partitionings on the free-form surface which

in turn leads to better matching pairs of n and N for each constituting sub-region.

Noting that the problem of minimizing the number of setups has been exhaus-

tively investigated [3,8,26] and is known to be NP-hard [7], a more plausible and real-

istic solution to the two-level free-form surface partitioning problem should be
explored with the number K of setups fixed as a priori. To the authors� best knowl-
edge, although it is of significance in many industrial applications, there are no pub-

lished reports on this two-level K-partitioning problem, even for the case K = 2. In

this paper we propose a novel algorithmic solution to a 2-partitioning problem with

the following contributions:
Fig. 2. Cusp height.
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1. The proposed algorithm solves a special case K = 2 of the general K-partitioning

problem which is considered as a very complex geometric problem and up to now

no any solution (including the special case K = 2) is known to exist.

2. The direct application of the proposed algorithm to real-world scenarios is also

exploited. In Section 6 we show that for objects bounded by smooth patches with
low curvature variation, by recursively applying the 2-partitioning algorithm,

these smooth patches are well recovered one by one. The underlying reason for

this good performance is also explained in Section 6.

This paper is organized as follows. The related work is presented in Section 2. In

Section 3, a formal mathematical formulation of the 2-partitioning problem solved

in this paper is established. In Section 4 our proposed algorithmic solution to the for-

mulated 2-partitioning problem is presented in details and we can show that, by dis-
cretizing the free-form surface with W sample points and clustering normals on the

surface with m distinct sample normals, the proposed algorithm is designed, in gen-

eral, with O(m2W2) time complexity and O(W2) space complexity, and in particular,

if the surface is convex, in O(m2 logm) time complexity. Case studies with four rep-

resentative examples are presented in Section 5 and one real world application is pre-

sented in Section 6, respectively, to demonstrate the effectiveness and usefulness of

the proposed algorithm. Finally, our concluding remark is presented in Section 7.
2. Related work

2.1. Free-form surface partitioning

Decomposition of a complex free-form surface into simpler sub-patches is a fun-

damental problem in various disciplines. In image process, image segmentation

based on coherence of brightness, color, texture or motion, is a necessary pre-pro-
cessing step for perceptual grouping and organization in a higher level computer

vision system [24]. In computer graphics polygonal meshes are decomposed into

sub-meshes with the applications of metamorphosis, compression, collision detec-

tion, parameterization, texture mapping, and mesh simplification; see [13] for an

overview and the references therein. In computational geometry, the problem of

decomposing a complex polyhedral surface into a smallest number of convex patches

is proved to be NP-complete [1] and thus heuristics are inevitable.

For convex surface decomposition, an experimental study for good heuristics is
conducted with three classes of heuristics [1]: space partitioning, space sweep, and

flooding. In computer graphics applications, heuristics with fuzzy clustering [13],

watersheds [18], and flooding [33] have been proposed.

In this paper, we propose an algorithmic solution to a special case of a two-level free-

form surface partitioning problem that can find rich applications in computer graphics

and computer-aided design. Our proposed solution partitions a free-form surface into

two optimal sub-patches by maximizing a global objective function. The proposed

solution can also offer a heuristic to the solution of a general two-level (arbitrary)
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K-partitioning problem. Our solution uses a concept of weighted Gaussian image,

which can be viewed as a discretized version of extended Gaussian image [9].

2.2. Extended Gaussian image

Given a free-form surface F with an orientation N 0 (i.e., a differentiable field of

unit normal vectors), the extended Gaussian image (EGI) associated with F is a unit

normal data set N 0(x) with weights w(x) being the inverse of Gaussian curvature K(x)
for any point x 2 F [9]. EGI has many nice properties, e.g., it is insensitive to position

of the object and it is determined uniquely by a convex object. Comprehensive study

on EGI with various geometric operations can be found in [9,15,32].

Owing to these desired properties, EGI is among the best known methods for 2D

and 3D shape representation and analysis. It has been used as a fundamental tool in
diverse applications, such as 3D (not necessarily convex) object recognition and

reconstruction [30], measure of shape similarity [32], pose determination [12], 3D

symmetry detection [25]. In this paper, we propose a variant of EGI and its applica-

tion in free-form surface partitioning is exploited.

Similar to us, a recent work [22] also uses the concept of Gaussian image in the

context of finding an optimal workpiece orientation in 3-axis machining. Their meth-

odology takes into account a tool�s shape as well. Nevertheless, the solution given in

[22] only applies to a single setup. Moreover, no visibility maps are considered and
thus limiting their analysis to a convex part with a hemispherical Gaussian image.
3. Problem formulation

As stated in Section 1, we consider the problem of partitioning the free-form sur-

face into two sub-patches and simultaneously report an optimal representative nor-

mal N for each sub-patch F, such that the normal vectors on F and N are as close as
possible. To study the properties associated with normal vectors, we investigate the

feasibility of utilizing the Gaussian image [5]: the Gaussian image of a free-form sur-

face F is some area X on a unit sphere S such that the vector from the origin to any

point n 2 X1 represents a normal vector at a point on F and vice versa. Since more

than one point in F may contribute to a point on S, in the continuous sense, area-

weighted mean normal is preferred. One natural and intuitive area-based weight is

the inverse of the absolute value of Gaussian curvature which can be defined as

K ¼ lim
DðAÞ!0

AK

A
; ð1Þ

where K is the Gaussian curvature at a point p on F, A is an infinitesimal area around

p,D(A) is the diameter of A, and AK is the area of the Gaussian image of A.
1 For simplicity of representation, from now on, we indistinguish the terms of ‘‘a vector from the origin

to a point n on a unit sphere S’’ and ‘‘a point n on a unit sphere S.’’
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Associating this weight to normals on F (i.e., points on S) actually leads to the ex-

tended Gaussian image (EGI) [9].

For numerical process with a computer, we discretize both the free-form (contin-

uous) surface and its associated (differentiable) normal field, i.e., both the free-form

surface F and the Gaussian image X � S are represented by a set of points.

3.1. Point based free-form surface representation and weighted Gaussian image

We study the free form surfaces in a broad context—they may be represented by

measured scientific data (e.g., depth maps from binocular stereo), triangle meshes,

implicit surfaces and parametric surfaces—and describe them with a universal repre-

sentation [16]: the free-form surface is represented by a set of points and each point is

associated with a quantized normal vector. Generating points on the surface of a
shape can be regarded as a sampling process. The density of resulting point cloud

can be either uniform [27] (cf. Fig. 10A) or curvature-dependent [11] (cf. Fig. 9B).

Normals can be quantized by tessellating the unit sphere using cells with a regular

pattern [10]; each cell then has the same shape and area. All the normals falling into

a cell will be quantized into a representative normal that is usually centered at that

cell. We are now ready to present our weighted Gaussian image that can be viewed as

a discretized version of extended Gaussian image [9]:

Definition 1. Given a point sampled free-form surface F ¼ ððp1; n01Þ; ðp2; n02Þ; . . . ;
ðpW ; n0W ÞÞ, its associated weighted Gaussian image (WGI) is a unit normal data set

N = ((n1,w1), (n2,w2), . . . ,(nm,wm)) with a weight function w, where ni 2 X2 is a

representative normal of a distinct cell ci on S and wi = w(ni) is the number of normals

in fn0ij16 i6W g that falls into ci.

There is a clear link between our defined WGI and the original Horn�s EGI [9]; we

show this link in Appendix A.

3.2. The Maximum Hemispherical Partitioning problem

To establish a rigorous mathematical formulation of the 2-partitioning problem,

the following notions are needed. Let F be a free form surface and n(p) the quantized
unit normal vector at a point p on F. The visibility map of a point p on F, denoted as

V(p), is defined as a connected region on the unit sphere S, such that every point

n 2 V(p) represents a direction from which the point p is globally visible, and vice
versa;3 a 2D example is shown in Fig. 3, where S degenerates to a unit circle and

V(p) an arc. Comprehensive studies on characterizing and computing a visible

map V(p) for an arbitrary point p on F can be found in [2,6,29]. Among them, the
2 Without the risk of ambiguity, from now on, the region X is represented by the union of cluster cells

containing quantized normals on the Gaussian sphere.
3 In case of machining and CMM inspection, the size of the tool or probing head need also be

considered.



Fig. 4. The dual of a point n 2 X.

Fig. 3. Visibility map.
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most feasible one, in our case, is to approximate the surface F by a set of structured

points and compute V(p) using a 2D configuration space (C-space4 for brevity), cf.
the work in [19,20], see also [14]. Note that there may be more than one point on

F having the same quantized normal vector n. The dual of a point n 2 X, denoted
as V*n, is defined as

T
p2X�1ðnÞV ðpÞ;

5 see Fig. 4 as an illustration. A general region

r (i.e., it may have holes, or even not connected) in F is said to be hemispherical if

the intersection
T

p2rV ðpÞ is not empty.6

By utilizing the WGI, the problem of partitioning the free form surface into two

optimal sub-patches can be formulated as partitioning the normals in X into two
4 The underlying idea of C-space is to represent a moving object as a point in an appropriate space

(usually specified by the degrees of freedom of the moving object) in which the obstacles are also mapped.

Interested readers are referred to [14] for an overview.
5 The notation X�(n) here is not mathematically strict; however without the risk of confusion, we use it

to denote the set of all the points on F that have the same quantized normals n.
6 The word hemispherical is borrowed here, albeit some abusing. It conforms to the original definition

only when all the visibility maps V(p) are hemispheres, which corresponds to a convex F.
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sets. It is important to note that both the constituting regions A1 and A2 in a valid

partitioning of X (i.e., X = A1[A2 and A1\A2 = ;) must be hemispherical; otherwise

one of
T

n2A1
V �ðnÞ and

T
n2A2

V �ðnÞ would be empty. In other words, A1 and A2 must

be two mutually complemented hemispheres separated by a great circle. All together,

our two-level free-form surface partitioning problem can be formally stated as
follows.

3.3. The maximum hemispherical partitioning (MHP) problem

Givenm points {n1,n2, . . . ,nm} on the unit sphere S, the associated weightsw(ni) and
the dualsV*(ni),(i = 1, . . . ,m), find twomutually complementary hemispheresH andH
on S and two unit length vectors N 1 2

T
ni2HV

�ðniÞ and N 2 2
T

ni2HV
�ðniÞ such that the

total weighted projection function EðN1;N2Þ ¼
P

ni2HwðniÞðN1 � niÞ þ
P

ni2HwðniÞ
ðN2 � niÞ is maximized.

Note that in above formulation, a total weighted projection function is defined as

a measure of surface partitioning quality. Note also that each sub-patch resulted

from partitioning normal vectors on S is guaranteed to be connected only if the sur-

face F is convex. Given a concave F, some sub-patch may be disjoint; however, it is

not a serious constraint in some industrial applications such as machining and laser

scanning; e.g., a finished patch under each machining operation needs not to be con-

nected. In the next section, an algorithmic solution is proposed to solve the formu-
lated MHP problem.
4. The maximum hemispherical partitioning (MHP) algorithm

The development of the proposed algorithm is composed of three major steps.

In the first step, efforts are made to discretize the space of mutually complemen-

tary hemispheres so that a deterministic characterization of the search space can
be achieved. In the second step, efficient algorithm is sought to calculate an opti-

mal vector N for a specific hemispherical partitioning—when all the visibility

maps are hemispheres. Finally in step 3, the first two steps are combined to-

gether to form an overall algorithm that finds an optimal solution to the

MHP problem.

4.1. Discretizing the space of hemispheres

Theoretically, there could be O(2m) ways to divide a set of m points into two

groups. The requirement that such a division must be made in the form of two com-

plementary hemispheres tremendously reduces the search space. On the other hand,

the involvement of hemispheres changes the search space from discrete domain to

continuous domain. In order to devise a deterministic algorithm, it is imperative

to discretize this continuous space. Given a great circle g on S, let H(g) and HðgÞ
denote the two mutually complementary hemispheres on S divided by g. The lemma

given below serves this need. Assume
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(1) the points {n1,n2, . . . ,nm} on a unit sphere S are in general positions, i.e., no any

three points lie on a same great circle,

(2) the membership (to which of the two hemispheres) of the points (at most two) on

the partitioning great circle is arbitrary.

In practice, our proposed algorithm takes care of the assumption (2) and the algo-

rithm implementation presented in Section 5.1 guarantees the assumption (1).

Lemma 1. Let g be a great circle on S that divides m points ni into two groups such that,
with out loss of generality, {n1,n2, . . .,nk} 2 H(g) and fnkþ1; nkþ2; . . . ; nmg 2 HðgÞ.Then
there exists another great circle g0 that passes through some two points ni and nj such that
{n1,n2, . . . ,nk} 2 H(g0) and fnkþ1; nkþ2; . . . ; nmg 2 Hðg0Þ.

Proof. Without loss of generality, suppose g is in the x � y plane andH(g) is the upper

hemisphere. As illustrated in Fig. 5, g can be rotated about the x-axis until it touches

some point ni. We then continue to rotate g, but this time about the vector ni, until it
encounters another point nj. The final great circle gprime after these two rotations obvi-

ously imposes the same partitioning on {n1,n2, . . . ,nm}, i.e., {n1,n2, . . .,nk} in one hemi-
spherical group, and {nk+1,nk+2, . . .,nm} in another. h

Consider an arbitrary point n: up to permutation and rotation, assume it is n1 and
situates at (0,0,1). Let g(n1, nj) refer to the unique great circle through the two points
n1 and nj. Under the orthogonal projection Pxy to the plane z = 0, that is, Pxy(x,

y,z,) = (x,y), there is a one-to-one correspondence between the lines through (0,0)
Fig. 5. Proof of Lemma 1.



26 K. Tang, Y.-J. Liu / Graphical Models 67 (2005) 17–42
in the projection plane and the great circles through (0,0,1) on S. As demonstrated

in Fig. 6, it is observed that any two points ni and nj lie in a same hemisphere of a

great circle g if and only if Pxy(ni) and Pxy(nj) lie in a same side (half-space) of the

line Pxy(g).

Without loss of generality, suppose no point ni other than n1 lies in the x � z

plane. We define in the plane a vector function R(ni), called the representative ray

of point ni, as: R(ni) is just the vector Pxy(ni) if Pxy(ni) has positive y-coordinate;

otherwise it is—Pxy(ni). The inverse R�1() is defined as a 3D vector function such

that R�1(R(ni)) = ni. An algorithm is outlined next that finds all the distinct hemi-

spherical partitionings of the points {n1,n2, . . . ,nm} with the restriction that any par-

titioning great circle gmust pass through point n1. Due to Lemma 1, by applying this

algorithm to each point in {n1,n2, . . . ,nm}, one readily obtains all the distinct hemi-

spherical partitionings of {n1,n2, . . . ,nm}.
Algorithm Hemi_partition (n1, {n2, . . . ,nm})// * Find all the distinct hemispherical

partitionings of {n1, n2, . . . ,nm} with the constraint that the partitioning great circles

must pass though point n1. *//

Step 1. Transform the Cartesian coordinate system so that n1 becomes (0,0,1) and

no any point in {n2, . . . ,nm} is in the x � z plane;

Step 2. Calculate the m � 1 xy projections xy(ni), i = 2,3, . . . ,m;

Step 3. Constructs rays R(ni), i = 2,3, . . . ,m;
Step 4. Sort the m � 1 rays R(ni) counter-clockwise into {R2,R3, . . . ,Rm};

Step 5. S1 ‹ {ni |ni is y-positive}[{n1}; S2 ‹ {ni |ni is y-negative};
Step 6. Output (S1,S2);

Step 7. for i = 2 to m do begin

if R�1(Ri) 2 S1 then

Remove R�1(Ri) from S1 and append R�1(Ri) to S2

else
Fig. 6. Inclusion equivalence on the sphere and in the plane z = 0.
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Remove R�1(Ri) from S2 and append R�1(Ri) to S1

Output (S1,S2);

end;

Step 8. S1 ‹ {ni |ni is y-positive};
S2 ‹ {ni |ni is y-negative}[{n1};

Step 9. Repeat Step 6 and Step 7;

End.

Since we assume no any three points lie on a same great circle, the correctness of

the above algorithm can be readily proven. We leave its complexity analysis to the

last part of this section, when a final optimal algorithm is delineated. A clarification

is however needed on the membership of a point pi that lies on the partitioning great
circle. When a great circle g passes through n1 and another point ni, there can be four

different partitionings depending on to which side of g we assign the point n1 and ni.
Step 5 and Step 8 take care of this assignment for point n1. As for point ni, since it

changes its assignment when the ray R(ni) is processed (Step 7), both sides of g are

already accounted for.

4.2. Optimal normal for a hemispherical set

Given a set of spherical points {n1,n2, . . .,nk} that are hemispherical to each other,

it is straightforward to identify a unit length vector N that realizes the constrained

maximization problem: argmaxNf
Pk

i¼1wðniÞðN � niÞjN 2
Tk

i¼1V
�ðniÞg, where V*(ni)

is the dual of point ni, defined as the intersection of the visibility maps of all the

points in P that contribute to the normal vector ni, i.e., \p 2 X�1(ni)V(p). Let

nw ¼
Pk

i¼1
wðniÞniPk

i¼1
wðniÞni

�� �� and C ¼
Tk

i¼1V
�ðniÞ. Let d(n,n0) denote the spherical distance be-

tween two points n and n0 on S, which is the angle between the two vectors n and
n0. It can be shown in the Appendix B that if nw2C, N must be equal to nw; otherwise,
N must be a point n on the boundary oC such that the distance d(nw,n) is shortest
among all the boundary points.

The boundary of a dual V*(ni) can be nevertheless quite complicated. Recall that

m is the number of the distinct points ni in the weighted Gaussian map and

W ¼
Pm

i¼1wðniÞ is the total weight. In general, when the surface F is represented

by W sample points, the visibility map V(ni) is a non-convex spherical polygon that

can theoretically have up to W arc edges (cf. [19,20]). As a result, V*(ni) and hence C
can be disjointed and non-simple (i.e., possibly with holes), and consequently there is

no any other way than a linear traversal of all the edges constituting oC in order to

find the shortest distance between it and nw. It is worth noting that, from all practical

points of view, V(ni) is usually approximated by a convex spherical polygon with less

than W edges, and, for analysis purpose, this will be the assumption taken in this

paper. Since the intersection of two convex spherical polygons with e1 and e2 edges

is another convex spherical polygon with at most e1 + e2 edges and can be efficiently

constructed in O(e1 + e2) time [3,21], C has at most W2 edges and can be obtained
in O(W2) time, given V(ni). In particular, if all the V(ni) are hemispheres, which
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corresponds to a convex surface F, V*(ni) then is in the form of a single great circle

and C is a convex spherical polygon with at most k6m edges, independent of the W,

which can be computed in O(k logk) time (cf. [3]).

To see how to efficiently compute N, let < v1,v2, . . .,vn > (n6W2) be the vertices

on the boundary oC. Each vi has a pair of spherical coordinates (ai,bi). As C is con-

vex, both ai and bi are ordered. By extending the algorithm of point inclusion test for

a planar convex polygon (cf. [3]) to the sphere, one can check in O(logn) time

whether point nw is inside C or not. If not, again, due to the convexity of C, one
can in O(logn) time locate the two supporting great circles from nw to C; then, by
means of a binary search (noticing that ai and bi are ordered), one is able in O(logn)

time to identify either the edge (cf. Fig. 7A) or the vertex (cf. Fig. 7B) that is closest

to nw. Let us use Optimal_Normal(n, < v1,v2,. . .,vn > ) to represent this just prescribed

O(logn) procedure that either reports nw if it is inside C or returns a point on oC that

is closest to nw. We summarize the above analysis into a lemma.

Lemma 2. Given k hemispherical points {n1,n2, . . . ,nk}, their weights w(ni) and their duals
V*(ni), the unit length vector N that is the solution to argmaxNf

Pk
i¼1wðniÞðN � niÞj

N 2
Tk

i¼1V
�ðniÞg can be found in O(W2) time. In particular, if the surface P is convex,

such an N can be found in (k logk) time, independent of W.
4.3. The constrained MHP algorithm

In the spirit of both algorithmHemi_partition and procedure Optimal_Normal, we
are now ready to present the final algorithm that solves the Maximum Hemispherical
Partitioning problem. The algorithm given next solves the constrained MHP prob-

lem; that is, the partitioning great circle is required to pass through a point, p1.
By applying this algorithm m times each for one of the m points {n1,n2, . . . ,nm},
the MHP problem is readily solved. Note that the algorithm Hemi_partition takes

time O(m logm) to report 2m distinct constrained partitionings and, considering

the convex case, for each constrained partitioning Lemma 2 tells that a pair of

optimal normals can be found in O(m logm) time; thus totally O(m2 logm)) time
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complexity is needed for the constrained MHP problem. The algorithm MHP_Point
proposed below efficiently incorporates the algorithm Hemi_partition and the proce-

dure Optimal_Normal such that the time complexity is improved to O(m logm).

Algorithm MHP_Point (n1,n2, . . . ,nm)
//* Find two unit length vectors N1 and N2 that are the solution to the Maximum

Hemispherical Partitioning problem of {n1,n2, . . . ,nm}, with the constraint that the

corresponding partitioning great circle g pass through point n1. *//

Step 1. Transform the Cartesian coordinate system so that n1 becomes (0,0,1)

and no any of {n2, . . . ,nm} is in the x � z plane;

Step 2. Calculate the m � 1 projection points xy(ni), i = 2,3, . . . ,m;

Step 3. Construct rays R(ni), i = 2,3, . . . ,m;

Step 4. Sort the m � 1 rays R(ni) counter-clockwise into {R2,R3, . . . ,Rm};

Step 5. S1 ‹ {ni |ni is y-positive}[{n1};
S2 ‹ {ni |ni is y-negative};

Step 6. nw1  
P

ni2S1wðniÞni;
nw2  

P
mi2S2wðniÞni;

Step 7. V 1  vertices of
T

ni2S1V
�ðniÞ;

V 2  vertices of
T

ni2S2V
�ðniÞ;

Step 8. N1  Optimal Normal nw1
knw1k

; V 1

� �
;

N2  Optimal Normal nw2
knw2k

; V 2

� �
;

Step 9. E = N1 Æ nw1 + N2 Æ nw2;
Step 10. for i = 2 to m do begin

if R�1(Ri)2S1 then

Step 10.1. Update V1 by removing V*(R�1(Ri)) from
T

ni2S1V
�ðniÞ;

Step 10.2. Update V2 by inserting V*(R�1(Ri))into
T

ni2S2V
�ðniÞ;

Step 10.3. Remove R�1(Ri) from S1 and append R�1(Ri) to S2

Step 10.4. nw1‹nw1�w(R�1(Ri))R
�1(Ri);

nw2‹nw2+w(R
�1(Ri))R

�1(Ri);

else

Step 10.5. Update V1 by inserting V*(R�1(Ri)) into
T

ni2S1V
�ðniÞ;

Step 10.6. Update V2 by removing V*(R�1(Ri)) from
T

ni2S2V
�ðniÞ;

Step 10.7. Remove R�1(Ri) from S2 and append R�1(Ri) to S1;

Step 10.8. nw1 ‹ nw1 + w(R�1(Ri))R
�1(Ri);

nw2‹nw2�w(R�1(Ri))R
�1(Ri);

Step 10.9. N 01  Optimal Normal nw1
knw1k

; V 1

� �
;

N 02  Optimal Normalð nw2
knw2k

; V 2Þ;
E0 ¼ N 01 � nw1 þN 02 � nw2;

Step 10.10. if E < E0 then

N1  N 01;
N2  N 02;
E ‹ E0

end;
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Step 11. {E1,N11,N12,S11,S12} ‹ {E,N1,N2,S1,S2};

Step 12. S1 ‹ {ni |ni is y-positive};
S2 ‹ {ni |ni is y-negative}[{n1};

Step 13. Repeat Step 6 through Step 10;
Step 14. if E1 > E then

Return {N11,N12,S11,S12};

else

Return {N1,N2,S1,S2};

End.

4.4. Complexity analysis on algorithm MHP_Point

Step 1 takes linear O(m) time, so do Steps 2 and 3.The sorting at Step 4 takes

O(m logm) time. At Step 5, an initial hemispherical partitioning is built with the par-

titioning great circle in the x�z plane and point p1 included in the hemisphere of yP
0, taking O(m) time. The weighted normal vectors of these initial two partitionings
are then calculated at Step 6, in O(m) time.

The calculation of the two duals
T

ni2S1V
�ðniÞ and

T
ni2S2V

�ðniÞ at Step 7 depends

heavily on the underlying representation of the visibility map V(ni). Assuming V(ni)
is convex, according to Lemma 2, in the worst case Step 7 requires O(W2) time; in the

best scenario of surface F being convex, Step 7 takes only O(m logm) time.

Step 8 calculates the two corresponding optimal normals N1 and N2 for the con-

vex spherical polygons V1 and V2, respectively, using O(logn) time, where

(n = Max{iV1i, iV2i}), with iV1i (or iV2i) standing for the number of boundary
edges on V1 (or iV2i). Note that n6W2 and thus Step 8 takes O(logW) time. This

bound improves to O(mlogm) if the surface F is convex.

The bulk of actions and time are spent at the for-loop at Step 10. As already

discussed earlier, when the representative ray of a point ni is processed, the mem-

bership of ni in S1 and S2 is switched; this is done at Steps 10.3 and 10.7. At the

same time, this switch of membership should affect the two intersections V1 and V2

of the corresponding visibility maps (Steps 10.1 and 10.2 and Steps 10.5 and 10.6),

as well as the two weighted normal vectors nw1 and nw2 (Steps 10.4 and 10.8). The
updating of V1 and V2 in general involves deleting (Steps 10.1 and 10.5) or adding

(Steps 10.2 and 10.6) some arc edges to a convex spherical polygon, which is a lin-

ear time process, taking O(W2) time in the worst case. Again, if the surface F is

convex or even though F is concave but we let all the visibility maps V(ni) be hemi-

spheres as an approximation, then the computation would be greatly simplified. In

this case, removing an edge from V1 and V2 (Steps 10.1 and 10.5) obviously takes

constant time only (cf. Fig. 8A). The insertion operation (Steps 10.2 and 10.6)

should require only O(logm) time: this is because one can in O(logm) time, again
due to the convexity of V1 (or V2), identify the two vertices v and v0 in V1(or V2)

that support the inserting great circle g, e.g., g1 and g2 shown in Fig. 8B. By means

of binary search on the two sub-chains between v and v0, the two intersection

points q1 and q2 can be located in O(logm) time. The last two actions in the loop



Fig. 8. Updating a convex spherical polygon.
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are Steps 10.9 and 10.10 that update the best solution with the current one if it

achieves a higher total weighted projection value; their time complexity is exactly

the same as that of Step 8.

Finally, owing to the fact that the point n1 can be taken belonging to either the

hemisphere y P 0 or y 6 0, the entire sequence from Steps 6 to 10 is repeated

one more time, accounting for the situation of n1 belonging to the hemisphere

y 6 0. The two results are then compared and the better one is returned (Step

14). All together, the algorithm MHP_Point takes O(mW2) time in the most general
case and O(m logm) in particular if the surface F is convex. By applyingMHP_Point
m times, each time with a different constraint point ni, the MHP problem is readily

solved. The theorem given below concludes the discussion.

Theorem 1. The Maximum Hemispherical Partitioning problem for a set of m points
{n1,n2, . . . ,nm} discretized from a free-form surface F can be solved by a simple

algorithm requiring O(m2W2) time and O(W2) space. In particular, if the surface F is

convex, then the time bound of the algorithm improves to O(m 2logm).
5. Algorithm implementation and case studies

The proposed algorithm has been fully implemented on the Visual C++ platform.

Three cases with four examples are presented to demonstrate the effectiveness of the
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proposed algorithm. In the first two examples, exact analytic forms of the free-form

surfaces are known. To apply the algorithm, these surfaces are discretized into

meshes, i.e., sets of points with structures. In the last two examples, no analytic form

of the surfaces is known in advance; only their mesh discretization is known. In these

two examples, the mesh structure is used to estimate normal vector at each mesh
point. Continued with the third case, in the next section, we present an application

to rebuild the analytic form of a free-form surface from a given rough mesh with the

aid of our proposed algorithm.

5.1. Some implementation issues

When applying the MHP algorithm to a free-form surface, the first important task

is to discretize the surface and obtain an appropriate representative set
{n1,n2, . . . ,nm} of normal vector samples on the Gaussian image of the surface. Other

than tessellating the unit sphere with regular patterned cells and finding a represen-

tative sample for each cell, the K-means method [10] is adopted in our current algo-

rithm implementation for finding m such samples.

Starting with a given number m of the clusters and an initial mean for each

cluster (the sole normal vector in the cluster), the K-means algorithm works in

two steps:

(1) assigns the normal vector of each sample point on the discretized surface to a

cluster, where the distance between the normal vector and the cluster mean is

the smallest among all the clusters, and

(2) updates cluster mean values by merging the new data until the cluster means

become stable.

The output from the K-means algorithm are the m cluster means {n1,n2, . . .,nm}
and their weights {w(n1),w(n2), . . . ,w(nm)}, where w(ni) is the number of normal vec-
tors falling into the cluster with mean ni (i = 1,2, . . . ,m).

In the proposed MHP algorithm, we also need to guarantee the assumption

that no any three points lie on a same great circle. In the algorithmic representa-

tion, this assumption means that the m � 1 rays R(ni) can be sorted counter-clock-

wise with no overlapped keys and the inverse map R�1() is one-to-one. When any

two rays R(ni) have the same sort keys, degenerate cases appear. To handle all

degeneracies, we can perturb the given R(ni) slightly, which amounts to changing

the coordinates in R(ni). It is important to note that the perturbation must be sym-

bolical such that it does not change the nondegenerate positions in the set while all

degeneracies disappear. For full details of choosing the form of symbolic pertur-

bation, the reader is referred to [31]. In our implementation, we find the following

simple strategy work well on all examples presented in this paper. We use an array

to store all rays R(ni). Whenever two rays have the same sort keys, we pretend

that the ray with the smaller index is smaller; then doubly linked list is used to

maintain the one-to-one correspondence between the map R() and the inverse

map R�1().
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5.2. Case 1: a closed, convex B-spline surface partitioning

In this case, the free-form object (cf. Fig. 9A) is known as a closed C2 B-spline sur-

face. Its discretization is illustrated in Fig. 9B. Since the surface is closed, its weighted

Gaussian map occupies the entire unit sphere, as shown in Fig. 9C with pseudo-color
mapping.Also shown inFig. 9,N1 andN2 are the solution to theMHPproblem, i.e., the

normal pair maximizes EðN1;N2Þ ¼
P

ni2HwðniÞðN1 � niÞ þ
P

ni2HwðniÞðN2 � niÞ. Since
the surface is also convex, the maximum hemispherical partitioning decomposes the

surface into two connected segments. Fig. 9D shows this partitioning (with two differ-

ent material properties) on the surface induced by the two optimal vectorsN1 andN2.

5.3. Case 2: concave free-form surface patch partitioning

In this case, two examples with different surface representations are presented.

The surface shown in Fig. 10A is a bicubic B-spline surface and the surface shown

in Fig. 11 is a piecewise linear surface recovered from the dense range data of a

real-world object. Both surfaces are visible to the z-axis, i.e., whose Gaussian map

lies within the upper hemisphere. The optimal normal pair {N1,N 2} found by apply-

ing the proposed algorithm is shown in the Figures, together with the partitioning of

the surface induced by the two vectors N1 and N2. An interesting observation is

drawn from Fig. 11: the right door part of the car body is completely separated from
the whole object. This observation will be studied in depth in Section 6.

5.4. Case 3: a complex, genus-1, closed free-form surface partitioning

In this case, the free-form sculpture object shown in Fig. 12A is of genus-1 with a

complex geometric shape. It is conceivable that any two vectors N1 and N2 are not

sufficient to cover the entire surface. To utilize the proposed algorithm, we first par-

tition it into two symmetric parts through a user-friendly interface. The algorithm is
then applied to each part to find totally two pairs of optimal normals {N1,N2} with

which the whole genus-1 object is partitioned into four sub-patches. It is observed

that in Fig. 12B the sub-patch corresponding to the normal N2 is disjointed.
6. A real world application

A simple real world application is presented to demonstrate the usefulness of the
proposed algorithm. Recall that the model shown in Fig. 11 is a rough mesh model

recovered from the dense range data of a real-world object. In engineering design, we

are more interested in obtaining analytic forms of the model with a high level struc-

ture. We have presented an interesting observation in Section 5.3 that by applying

the MHP algorithm, the right door part of the car body is completely separated from

the whole object. If we keep partitioning the surface by recursively performing the

MHP algorithm, more and more planar regions or smooth regions with low curva-

ture variation are recovered. See Fig. 13 for an illustration.



Fig. 9. A closed, convex C2 B-spline surface partitioning.
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Fig. 10. A concave bicubic B-spline surface patch partitioning.

Fig. 11. A real car body object example.

K. Tang, Y.-J. Liu / Graphical Models 67 (2005) 17–42 35



Fig. 13. Free form surface partitioning by recursively applying the proposed MHP algorithm to the

golden-shaded regions; this example follows the one in Fig. 11.

Fig. 12. A complex, genus-1, closed free-form surface partitioning.
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This phenomenon is not an accident. Actually if the object is bounded by smooth

regions with low curvature variation, the proposed MHP algorithm is most likely to

recover them one by one. It can be well interpreted since that the normals on these

smooth regions will be clustered into narrow regions at different locations on the

Guassian sphere, e.g., normals on a planar region and normals on a portion of a cyl-
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inder (or a cone) will be mapped into a single point and a circular arc on the Guas-

sian sphere, respectively.

Given this well-conducted segmentation, we can perform a region-based mesh

reduction operation to the model. In [18] a similar application has been presented.

Note that traditional mesh simplication algorithms work on the whole model and
prioritize the mesh elements, i.e., vertices, edges and faces, with respect to their

immediate neighbors.

In our current implementation of region-based mesh reduction, an edge collapse

operator is recursively performed. First, we put all edges into a prior queue key on

an edge cost based on the potential error metric proposed in [17]. To count the region

factor, those edges across two regions (i.e., any edge with its two vertices having two

different colors as shown in Fig. 13) are strongly penalized. We then iteratively extract

the edge with vertices (vi,vj) from the top of the queue, perform collapse (vi,vj) fi v0 and
locally update the collapse information for all the edges involving vi and vj. The itera-

tion process is terminated when the top edge in the queue has a cost larger than a pre-

specified tolerance that should be determined by the application at hand. The resulting

simplified mesh of the model shown in Fig. 13 is illustrated in Fig. 14A.
Fig. 14. Patch-based mesh re-structure and high order model generation.
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To fit a higher order model to the original rough mesh that is only C0-continuous,

the simplified mesh can serve as a base parametric domain. With this base domain,

we re-structure the original polygonal mesh by iteratively performing a displaced

loop subdivision scheme [16]. This re-structuring process is illustrated in Fig. 14B.

Finally, as a direct result from the loop scheme, we can achieve a C2 quartic trian-
gular B-spline surface model as a generalization of the original rough mesh data;

the result is shown in Fig. 14C.
7. Conclusion and future research

In this paper, we propose to use a weighted Gaussian image to characterize an

important two-level geometric problem, i.e., how to partition a free-form surface
into a given number K of sub-patches and find an optimal representative normal vec-

tor for each patch towards maximizing a global objective function. By augmenting

the Gaussian image with weights and incorporating visibility maps for global inter-

ference avoidance, we present a simple and practical algorithmic solution that solves

the case K = 2 of the outlined optimization problem. Case studies are presented to

demonstrate the effectiveness of the proposed algorithm and a direct application

using the proposed algorithm is also presented.

There are several potential extensions for future research. The first and an obvious
task is to find a deterministic optimal algorithmic solution to the general case of a

fixed arbitrary K; it is then interesting to compare the upper-bound of the difference

between the heuristic approach by recursively applying K = 2 solution and the (un-

known) optimum.

The other interesting directions are motivated by the observations drawn in the

case study section. One possibility is to utilize the proposed algorithm in the appli-

cations of pattern recognition and feature based sculpture object modeling, inspired

by the observations drawn from Figs. 11 and 13. The other possibility is to include
the connectivity constraints on the surface partitioning induced by the normal vec-

tors. As revealed by the example in Fig. 12, the sub-region associated with the vector

N2 (in either half) consists of two disjoint areas. While this disconnectivity may not

be of much concern to certain applications (such as finishing surface machining and

laser range scanning), it is worthy to see how the proposed MHP algorithm could be

modified to accommodate this connectivity requirement.
Appendix A

The original Horn�s EGI [9] weights the normal of a point p on the free form sur-

face F with the inverse of Gaussian curvature at p. The Gaussian curvature can be

defined as

K ¼ lim
dA!0

dAK

dA
¼ dAK

dA
;
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where K is the Gaussian curvature at point p, dA is a small area around p on F and

dAK is the area of the Gaussian image of dA. Now consider the integral of 1/K over a

small patch AK on the Gaussian sphere

Z Z
AK

1

K
dAK ¼

Z Z
A
dA ¼ A;

where A is the area of the corresponding patch on F. Since we discretize/quantize

both free form surface F and the Gaussian sphere, we can assume that the quantized

normal n over a small area A (tends to be infinitesimal) centered at p on F is a con-

stant. Thus

Z Z
AK

n

K
dAK ¼ An:

In our defined WGI, the normal n is weighted with the number of normals that fall

into the cell containing the representative normal n. Consider the case of uniform

sampling the free form surface F. Denote the sampling density as q. Then the number

m of points to be sampled over a region with area A is

m ¼ A
q
:

Then we have

Z Z
AK

n

K
dAK ¼ An ¼ mqn:

Due to uniform sampling, q is a constant and thus we can always set the weight

w = mq. That completes the establishment of link between the original Horn�s
EGI and our defined WGI.
Appendix B

Given a set of spherical points {n1,n2, . . . , nk} and a non-constant objective func-

tion JðNÞ ¼
Pk

i¼1wðniÞN � ni : S ! R defined over the domain S of a unit sphere, the

following are true:

(1) there are only two relative extrema of J over S;

(2) these two relative extrema are a global minimum and a global maximum of J,

respectively, with respect to the entire domain S;
(3) given a closed subset V ¼ \

k

i¼1
V �ðniÞ � S not containing the point q at which the

global maximum of J over S is reached, the global maximum of J restricted to V

is reached at the point n on the boundary oV of V, where the geodesic distance

from the q to oV is shortest.



Fig. 15. A curvilinear coordinate system.
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Proof.

(1) A curvilinear coordinate system (cf. Fig. 15) is used to describe the position

N(h,/) on a unit sphere, where h is the azimuthal angle in the xy plane from

the x-axis with 0 6 h < 2p, and / is the polar angle from the z-axis with

0 6 / < p. Then the objective function is

Jðh;/Þ ¼
Xk

i¼1
wðniÞðsin/ cos h � nix þ sin/ sin h � niy þ cos/ � nizÞ:

The relative extrema of J can be achieved from the Euler�s equation

oJ
oh ¼ 0)

Pk
i¼1

wðniÞð� sin/ sin h � nix þ sin/ cos h � niyÞ ¼ 0

oJ
o/ ¼ 0)

Pk
i¼1

wðniÞðcos/ cos h � nix þ cos/ sin h � niy � sin/ � nizÞ ¼ 0

8>>><
>>>:

Let a ¼
Pk

i¼1wðniÞnix; b ¼
Pk

i¼1wðniÞniy ; c ¼
Pk

i¼1wðniÞniz. Then the solutions to the

Euler�s equation are

N x ¼ sin/ cos h ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

N y ¼ sin/ sin h ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

N z ¼ cos/ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

8>>>>><
>>>>>:

or

N x ¼ sin/ cos h ¼ �affiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

N y ¼ sin/ sin h ¼ �bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

N z ¼ cos/ ¼ �cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2
p

8>>><
>>>:

Thus, there are only two relative extrema of J over S, i.e., N ¼ �
Pk

i¼1
wðniÞnPk

i¼1wðniÞn
�� ��.

(2) Since the values of J over S is bounded and there are only two relative extrema of

J over S, given J is not a constant function, these two relative extrema must be a

global minimum and a global maximum of J, respectively, with respect to the
entire domain S.
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(3) Up to rotation, we can set the north pole of the sphere to be

N1 ¼
Pk

i¼1
wðniÞnPk

i¼1

Pk

j¼1
wðniÞ2ni�nj

and the south pole be N2 = �N1. Then the objective func-

tion becomes J = ccos/. On one hand, for all geodesic curves c from N1 to N2,

i.e., h = const. and 0 6 / < p, the function J restricted to c is monotone-decreas-

ing. On the other hand, given / = const., the function J is constant. Therefore,
given a closed subset V � S not containing the north pole N1, the maximum of

J over V is reached at the point p on the boundary oV of V, where the geodesic

distance from the N1 to oV is the shortest.
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