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Abstract—Computing geodesic distances on triangle meshes is a fundamental problem in computational geometry and
computer graphics. To date, two notable classes of algorithms, the Mitchell-Mount-Papadimitriou (MMP) algorithm and the
Chen-Han (CH) algorithm, have been proposed. Although these algorithms can compute exact geodesic distances if numerical
computation is exact, they are computationally expensive, which diminishes their usefulness for large-scale models and/or time-
critical applications. In this paper, we propose the fast wavefront propagation (FWP) framework for improving the performance
of both the MMP and CH algorithms. Unlike the original algorithms that propagate only a single window (a data structure locally
encodes geodesic information) at each iteration, our method organizes windows with a bucket data structure so that it can
process a large number of windows simultaneously without compromising wavefront quality. Thanks to its macro nature, the
FWP method is less sensitive to mesh triangulation than the MMP and CH algorithms. We evaluate our FWP-based MMP and
CH algorithms on a wide range of large-scale real-world models. Computational results show that our method can improve the

speed by a factor of 3-10.

Index Terms—Discrete geodesic, fast wavefront propagation, algorithm complexities

1 INTRODUCTION
I l OW to compute shortest paths on polyhedral

surfaces is a fundamental problem in com-
putational geometry and computer graphics, which
has been studied for almost three decades [1]. To
date, there are two notable classes of algorithms,
namely, the Mitchell-Mount-Papadimitriou (MMP) al-
gorithm [2] and the Chen-Han (CH) algorithm [3],
which can compute exact geodesic distances on tri-
angle meshes if numerical computation is exact. Al-
though they are based on different domain subdivi-
sion strategies, these two algorithms adopt a similar
data structure called window, which locally encodes
the geodesic information.

It is known that both the MMP and CH algorithms
produce O(n?) windows on an n-face triangle mesh
and the upper bound is tight [4]. Therefore, any
window-based discrete geodesic algorithm cannot run
faster than O(n?) theoretically, which is known as
the quadratic time barrier. Interestingly, as shown
in this paper, the correctness of the MMP and CH
algorithm is independent of the order of the windows
being processed. However, propagating windows in
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an arbitrary order results in an extremely poor per-
formance. The MMP algorithm keeps windows in
a priority queue, where the window closest to the
source is taken at each iteration. Since each window
operation (i.e., choosing a window from the priority
queue and propagating it) takes O(logn) time, the
MMP algorithm has an O(n?logn) time complexity.
The CH algorithm, in contrast, maintains windows
in a hierarchical structure and processes them in a
breadth-first-search order, resulting in an O(n?) time
complexity. However, computational results in [5] [6]
show that the MMP algorithm runs much faster than
the CH algorithm.

Xin and Wang [7] observed that the slow perfor-
mance of the CH algorithm is mainly due to the large
amount of useless windows processed. They proposed
a simple yet effective window filter to detect the
useless windows, accompanied by a priority queue for
window organization. The improved CH algorithm,
called ICH, has a speed comparable to the MMP
algorithm, however, its theoretical time complexity
becomes O(n?logn) due to the priority queue. To
date, developing an O(n?) exact discrete geodesic
algorithm with good practical performance is still a
great challenge.

This paper tackles this challenge by proposing a
fast wavefront propagation (FWP) framework, which
bridges the gap between theoretical time complexity
and practical performance of discrete geodesic algo-
rithms. Unlike the MMP and ICH algorithms that
propagate only a single window (the one closest to
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Choose the source vertex at the nose of the 4M-face Dragon model. The existing undiscretized geodesic algorithms

(e.g., MMP and ICH) have poor performance since they propagate the wavefronts very slowly. Our fast wavefront propagation
technique can significantly improve their speed. Each colored curve is a discrete wavefront and the 2-tuple associated with
each wavefront is the iteration number and the corresponding time, which was measured on a PC with an Intel Core i7-2600
CPU (3.40 GHz). We draw only a few representative wavefronts to avoid clutter. The small inset in the middle illustrates the

computed geodesic distances using iso-distance contours.

the source) at each iteration, our method organizes
windows in a bucket data structure so that it is able
to process a large number of windows simultaneously
without compromising wavefront quality. Although
a window may enter and leave the bucket multi-
ple times, our method guarantees that the window
complexity is still O(n?). Since the practical overhead
required for each iteration is very small, our FWP-
based MMP and CH algorithms run faster than the
original algorithms. Computational results on real-
world models show that our method improves the
performance by a factor of 3-10. See Figure 1 for
an example. Intuitively speaking, the performance
improvement by our method is due to its efficient
data organization on a macro scale (i.e., focusing on
wavefronts consisting of many windows), whereas the
existing algorithms are on a micro scale (i.e., focusing
on an individual window). Thanks to its macro na-
ture, the FWP-based methods are also less sensitive
to mesh resolution than the MMP and CH algorithms,
i.e., increasing the mesh anisotropy may significantly
slow down the existing algorithms, but it affects the
FWP-based methods slightly.

In this paper our contributions are twofold:

First, from a theoretical perspective, the FWP frame-
work unifies the two classes of algorithms from the
macro scale: the FWP-CH and FWP-MMP algorithms
propagate the wavefronts at a similar pace and they
converge in roughly the same number of iterations,
although their window propagation schemes are very
different. The FWP framework has provable time and
space complexity: the FWP-CH and FWP-MMP algo-
rithms have O(n?) and O(n?logn) time complexity,
respectively.

Second, from a practical perspective, the FWP tech-
nique is easy to implement and it can speedup the

MMP and CH algorithms significantly. It is worth
noting that the FWP-MMP algorithm can improve the
performance of the MMP algorithm by an order of
magnitude on large-scale real-world models, making
it comparable to the state-of-the-art GPU-based par-
allel Chen-Han algorithm [8]. As a macro algorithm,
the FWP-CH and FWP-MMP algorithms are also less
sensitive to mesh triangulation than the existing micro
algorithms. We also demonstrate that the FWP-based
algorithm can be applied to the pre-computation
methods, such as Saddle Vertex Graph (SVG) [9] and
Geodesic Triangle Unfolding (GTU) [10].

2 RELATED WORK

Classic techniques for computing discrete geodesics
on triangle meshes include the computational geome-
try approaches and the partial differential equation
(PDE) approaches. The former includes the above-
mentioned MMP /CH algorithms and their many vari-
ants [5] [6] [7] [8] [11] [12]. The latter consists of the
popular fast marching method (FMM) [13], [14] and
the gradient-based approaches [15][16]. See [1] for a
comprehensive survey of classic techniques.

Each type of technique has its own merits and limi-
tations. The undiscretized methods such as MMP and
CH in computational geometry approaches can obtain
the exact geodesics on arbitrary triangle meshes if
numerical operations are exact. As a comparison, the
PDE approaches provide only the approximate solu-
tions (e.g., the first-order approximation by the FMM),
which may be poor on meshes with highly irregular
tessellation. On the other hand, the PDE approaches
are usually faster than the computational geometry
approaches. But they assume that the triangle meshes
are discrete samples of underlying smooth surfaces
and proving the convergence of the discrete geodesic
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Fig. 2. (a) A window w is an interval (drawn in red) on a
mesh edge such that the geodesic paths from the source to
any point in w have the same face sequence (colored in pink).
Propagating a window across an edge produces one or more
child windows. w; has one child and w2 has two children.
Both w; and w, are directly visible from the source s, but ws
is not. Instead, w3 is visible from the pseudo source p. (b)
Parameterizing a window to R? locally encodes the geodesic
distance from the source s to any point on the window.

distance to its smooth counterpart is of important the-
oretical value; e.g., uniform convergence of geodesics
is proved in [17] under the assumption of convergence
of surfaces in Hausdorff distance.

Recently precomputation techniques have been pro-
posed, which aim at balancing quality and per-
formance for computing various types of discrete
geodesics. Xin et al. [10] proposed the Geodesic Tri-
angle Unfolding (GTU) method, which flattens the
curved geodesic triangle onto R? and then uses Eu-
clidean distance to approximate geodesic distance.
The heat method, proposed by Crane et al. [16], is
an elegant gradient based approach, which recovers
the geodesic distance from the normalized gradient of
the heat flow. By pre-factoring the Laplacian matrix,
both the heat flow and the distance computation can
be done in near-linear time. The heat method is easy
to implement. It is also flexible to support a wide
range of geometric domains, including grids, triangle
meshes and point clouds. Such a feature is not avail-
able in the computational geometry approaches that
work only for triangle meshes. However, similar to
the FMM, it provides only a first order approximation.

Observing that the discrete geodesic problem has
a surprisingly strong local structure due to the ex-
istence of the saddle vertices, Ying et al. [9] pro-
posed another precomputation technique called the
saddle vertex graph (SVG), a sparse graph which
encodes the geodesic information on triangle meshes.
With the SVG, computing the polyhedral distance is
equivalent to finding the shortest path on the graph.
Note that the pre-computation of both the GTU and
SVG methods heavily depends on the MMP or ICH
algorithm. As the proposed FWP technique improves
their performance significantly, we show that it can
be adopted in the GTU and SVG methods to reduce
their precomputation time.

3 PRELIMINARY

Let M = (V, E, F) be a triangle mesh, where V, E and
F are the sets of vertices, edges and faces, respectively.
Given a source point s € V, Mitchell et al. [2] showed
that a geodesic path from s to vertex v; passes through
a sequence of mesh faces. A window is an interval
I defined on a mesh edge such that the geodesic
paths from s to any point in I share the same face
sequence. See Figure 2(a). Mitchell et al. also showed
that a geodesic path cannot pass through any spheri-
cal vertex (a vertex at which the sum of surrounding
angles is less than 27) unless it is the destination,
since perturbing the path a bit off the spherical vertex
reduces its length. However, a geodesic path may pass
through one or more saddle vertices (a vertex at which
the sum of surrounding angles is greater than 2m).
The saddle vertex nearest to the destination is called
a pseudo source. A window associated with a half-edge
e is a 6-tuple (0, A, B,0¢,01,¢) [5] where

o o is the distance from the pseudo source p to the

source s;

o A and B are the left and right endpoints of the

interval;

e 0 and o; are the distances from I’s endpoints to

D.

With this window data structure, we can easily po-
sition the source or pseudo source in the unfolded
face/edge sequences and compute the geodesic dis-
tance for any point inside the interval. See Figure 2(b).
Note that the MMP algorithm stores oriented win-
dows so that each side of a non-boundary edge con-
tains windows, whereas the CH algorithm does not
require edge orientation.

The MMP and CH algorithms maintain a vector
(d1,--- ,dp), n = |V|, for the polyhedral distances
defined on mesh vertices, and a set of windows W.
Initially, we have d; = 0 and d; = oo for ¢ # s. Set
W contains the windows covering the edges opposite
to the source vertex s. The algorithms then iteratively
propagate windows across the faces and update the
polyhedral distances when a window covers a vertex
or part of an edge, until the set VW is empty. Upon
termination, label d; is the geodesic distance from the
source s to vertex v;. The computational framework
of the MMP and CH algorithms is as follows:

while W is not empty do
extract a window w = (o, A, B, 090,01, ¢€) from W;
if e is not a boundary edge then
propagate w across e to produce child windows ;
update the distance of vertex/edge covered by w;
add @ to W;
end if
end while

Both the MMP and CH algorithms have O(n?)
window complexity. They are distinguished by the
data structure for organizing the windows and the
order of window processing. The MMP algorithm
maintains a priority queue for the windows and takes
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the window closest to the source in each iteration. As
a result, the MMP algorithm has an O(n?logn) time
complexity. The CH algorithm records the parent-
child relationship of windows in a hierarchical tree
structure and processes the windows in a breadth-
first-search order, which is implemented by a first-in-
first-out (FIFO) queue. Therefore, the CH algorithm
has an O(n?) time complexity. The ICH algorithm
adopts a simple-yet-effective window filter, which
can reduce many useless windows. Furthermore, it
uses the priority queue to organize the windows
according to their distance back to the source. The
ICH algorithm, with a time complexity O(n?logn),
significantly outperforms the CH algorithm in terms
of speed.

4 FAST WAVEFRONT PROPAGATION

A wavefront in a continuous setting is the locus of
points having the same distance to the source. The
MMP/CH/ICH algorithms maintain a discrete wave-
front, which can be formally defined as follows:

Definition 1. The i-th wavefront, denoted by W;, is the
union of windows in W at the i-th iteration.

A wavefront depends on the model, the location of
the source point, as well as
the time, and it may be un-
connected. As the right inset
shows, each color corresponds
to one wavefront. At the be-
ginning, the wavefront is con-
nected and has a circular shape.
Later, it evolves to several con-
nected components. Finally, each
connected component shrinks to
a maximal point (where the
geodesic distance reaches the lo-
cal maximum) and then van-
ishes. For a window w, we define its label as the
shortest distance from the source to w’s associated
mesh edge. The size of W;, denoted by |W;|, is de-
termined by the number of windows it has. The stan-
dard deviation of all window labels in W;, std(W;),
is a good measure of wavefront quality. Intuitively
speaking, the smaller the variance, the higher quality
the wavefront has. Wavefront quality depends on the
order of windows being processed. As shown in Fig-
ure 3, propagating windows in the smallest-label-first
order leads to a high-quality wavefront (i.e., smooth
and with small variance), whereas using the first-in-
first-out order produces a low-quality wavefront (i.e.,
very rough and with large variance).

The MMP and ICH algorithms always take the
window with the minimal label at each iteration,
resulting in a high-quality wavefront. However, the
overhead required for each iteration is expensive.
Computational results show that more than 60% of the
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Fig. 3. The MMP algorithm maintains a priority queue for the
windows, leading to a high-quality wavefront with standard
deviation std = 0.00219. Replacing the priority queue by an
FIFO queue results in a very poor and slow-moving wavefront
with std = 0.02431. The model has been scaled to a unit
cube.
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Fig. 4. Maintaining a priority queue (pq) takes roughly 70%
of the runtime of the MMP algorithm. The ICH algorithm has
a similar percentage.

time is used for maintaining a priority queue in the
MMP and ICH algorithms. See Figure 4. On the other
hand, the CH algorithm organizes the windows in
an FIFO queue, leading to a constant time overhead.
However, as its wavefront is of poor quality, the
CH algorithm produces many useless windows and
converges very slowly.

Our idea is to balance the wavefront quality and
the overhead for updating wavefronts. Unlike the
MMP/ICH algorithms that propagate only the win-
dow with the smallest label in each iteration, our
method propagates at least K smallest-label windows
at the same time. We propose a bucket data structure
to organize windows so that it takes only O(1) time
to process each window. In addition, K is adaptive
to the wavefront size, and it has a constant upper
bound, leading to an O(n?) worst-case window com-
plexity. We call our method fast wavefront propagation,
which distinguishes itself from the existing slow-
propagating algorithms such as MMP and ICH.
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Fig. 5. Atypical iteration of the FWP algorithm. (a) Initialize by creating a window for each edge facing the source vertex and
putting it into some bucket according to its label. (b) At the beginning of each iteration, determine the value of K and find the
first non-empty bucket, labeled as P;. In this example, K = 16. The pointer P; is used to track the to-be-processed bucket. At
this moment, P, = Py. Find the bucket buckets|[P.,.q] so that at least 16 windows will be propagated in this iteration. (c) The
first window in buckets[P.] generates two child windows, both of which are placed before P..,.q. Therefore, increase csmau
by 2. Here comau (resp. ciarge) is the number of windows in the next iteration whose distances are less (resp. greater) than
the distance of the window pointed by P.,.q. The existing windows (born in early iterations) are colored in green and the new
windows (born in the current iteration) are in red. (d) In an intermediate step of the current iteration, another green window
is propagated. The two child windows are placed after P.,q4, SO increase ci.rqe by 2. Move on to the next bucket when all of
the green windows in buckets[P>] have been processed. (e) The current iteration is over when all of the buckets before Pe..q
are done. Observe that ciorge < csmaiz, meaning that the majority of the child windows are not far. As a result, the wavefront
quality is not good. So we decrease K and propagate fewer windows in the next iteration.

4.1

Let s € V be the source vertex and p € M a point (not
necessarily a mesh vertex) on M. Denote by d(p) the
geodesic distance between s and p. Obviously, d(-) is a
continuous function. We partition the polyhedral dis-
tance into equal-length intervals, [0,1), [I,21), [2[,3]),
etc. Each interval is called a bucket, which is used to
organize windows. Observe that the maximum range
of geodesic distances in most real-world models’ is
O(y/nh), where h is the average edge length. There

Algorithm

1. In a few extreme pathological cases, the maximum geodesic
range can reach O(nh). However, our bucket strategy still works
well in practice with I = h/\/n.

are O(n?) windows and each bucket contains roughly
O(n) windows, so we set the bucket size | = h/+/n.

We assign each window w a birth time, that is, the
iteration when w was created. We put w into the i-th
bucket [(i—1)I,4l), denoted by B;, if w’s label is in this
range. Windows in a bucket are organized by an FIFO
queue. The initial wavefront consists of windows on
the edges opposite to the source s. These windows are
put into the corresponding buckets according to their
labels. The FWP algorithm then iteratively propagates
the wavefront. In the i-th iteration, the FWP algo-
rithm selects at least K smallest-label windows on the
wavefront and propagates them across their adjacent
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triangles. The number K is adapted to the size and
quality of the wavefront, and K can be determined
automatically. See Section 4.2.

Three pointers P, P, and P,  are used. The pointer
P, points to the first non-empty bucket and the
pointer P, is used to track the to-be-processed bucket.
For each window w in buckets[P2] who were born in
some iteration earlier than i, we propagate w across
its adjacent triangle, and obtain one or more child
windows. Since a child window always has a larger
distance than its parent, it cannot be placed in a bucket
before its parent. Note that some new windows (who
are born in the current iteration) may be added to
the bottom of the queue in buckets[Ps]. If so, we skip
these windows (colored in red in Figure 5), and move
P, to the next non-empty bucket.

The current iteration is over when it processes at
least K smallest-label windows who were born early
(i.e., reaching the bucket pointed to by P.,q that is
determined at the beginning of current iteration). The
FWP algorithm terminates when all of the buckets are
empty. Figure 5 illustrates a typical iteration of the
FWP algorithm. See Algorithm 1 for the pseudocode.

The proposed FWP algorithm is a general frame-
work for organizing and propagating windows so
that it can be applied to both the MMP and ICH
algorithms. In the following, we refer to the FWP-
based MMP and ICH algorithms as FWP-MMP and
FWP-CH, respectively.

4.2 Adaptive Adjustment of K

Setting K = 1 is too conservative, since only windows
in the first non-empty bucket propagate in each iter-
ation and the overhead required for each iteration is
expensive, akin to the MMP/ICH algorithms. On the
other hand, an extremely large K means that all the
windows on the wavefront are propagated at once,
that is, without taking their distances into account.
As a result, the wavefronts are of low quality and the
FWP algorithm becomes the highly inefficient FIFO-
based algorithm. Thus, an extremely large K is too
aggressive. We do expect a proper K for both high-
speed wavefront propagation and the wavefronts of
high quality. Since the time-dependent wavefronts
may change dramatically throughout the iterative
procedure, the K value should be adaptive to the
wavefront’s size and quality, and are updated at each
iteration.

Consider the i-th wavefront W;. Denote by K; the
windows propagated in i-th iteration. Since K; is
the number of windows in buckets whose pointers
range from P; to P.,q K, is always equal to or
larger than K. Let 7 denote the K;-th smallest label
of the windows in W;. Then we partition W; into
two sets, W} and W?, where W, consists of the
windows with distances less than 7 and W72 = W;\W}
contains the remaining windows. Note that the FWP

Algorithm 1 Fast Wavefront Propagation Algorithm

Input: a mesh M = (V, E, F) and a source point s;
Output: the undiscretized geodesic distance for each vertex;
1: for each edge e facing s do

generate a window w for e with w.birth = —1;
insert_window(w);
end for
: K = P = comau = iter =0, Clarge = wavefront_size;

while wavefront_size # 0 do
K += (Cla'rge - Csmall);
K = min(max(K, 1), wavefront_size, Kmaaz);
9: // find the first non-empty bucket
10: while buckets[ P, ].is_empty() do
11: Py ++;
12: end while
13: // find P.,q so that at least K smallest-label
14: windows will be propagated
15: P.na = P1, we=0;
16: while we < K do

PN AR RN

17: wc += buckets[P.,q].Q.size();

18: Peng ++;

19: end while

20: PQ = Pl,'

21: while P, < P.,,q do

22: / / propagate the windows born in early iterations
23: while buckets[ Pz].top().birth < iter do
24: w = extract_window(P);

25: propagate w across its adjacent triangle;
26: for each child window w do

27: if w.dist() > P.nq x| then

28: // w is in a bucket after P.,q
29: Clarge ++;

30: else

31: Csmall ++;

32: end if

33: w.birth = iter;

34: insert_window(w);

35: end for

36: end while

37: Py ++;

38: end while

39: iter ++;

40: end while

algorithm propagates only the windows in W;' and
the generated child windows are denoted by C;. Let
Clarge (T€SP. Comau) be the number of windows in C;
whose distance is larger (resp. smaller) than 7. We
have the following two observations:

o If Comant < Clarge, the majority of the child
windows have distances more than 7, meaning
that the propagated K; windows in the i-th
iteration have a high possibility to survive in
the next iteration and consequently the quality
of the current wavefront W; is good. Thus, we
can increase K and propagate more windows in
the next iteration. To better understand this, one
could consider the extreme case where K = 1
and cgmqu = 0: the wavefront is very smooth and
such a K is obviously too conservative.

o Otherwise, the wavefront’s quality is not good,
so we should decrease K and propagate fewer
windows in the i + 1-th iteration.
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Inspired by these observations, we adaptively ad-
just K by setting K;11 = K; + (Ciarge — Csmai). This
simple strategy works remarkably well in practice. See
Section 6 for detailed discussions.

4.3 Correctness & Complexity

The correctness of the FWP method relies on the
following proposition.

Proposition 1. Both the MMP and CH algorithms gen-
erate correct solutions regardless of the order in which the
windows are processed in the queue.

Proof. First, note that (1) the useless windows will
be deleted when they are covered by other windows
arrived later that provide shorter distances to the
source and (2) for any windows that provide shortest
distances to the source, their parent windows also
provide shortest distances to the source. So all the
windows in the correct solution will appear in the
queue regardless of the window propagation order.

Second, we show that the algorithm will terminate
in a finite number of steps regardless of the window
propagation order. We assign an integer-valued level
to each candidate window (including both useful and
useless windows) in the queue. The windows facing
the source are at level 1. When a level-; window
is propagated, its child windows have level ¢ + 1.
Note that on an n-face mesh, a window’s level cannot
exceed n. Assume that an algorithm randomly picks
a window w and propagates it. Since the level of w
and all its descendants should be not larger than n,
w has a finite number of descendants. Thus the total
number of windows generated by this algorithm is
finite. O

Note that Surazhsky et al. mentioned the above
property (c.f. Section 3.4 [5]) but did not give a proof.

Our FWP method works well for real-world mesh
models, as indicated in the following property with a
moderate realistic assumption.

Proposition 2. Assume that the degree of each vertex in
M is bounded by a constant D. Both the FWP-MMP and
FWP-CH algorithms produce O(n?) windows, and they
have O(n?logn) and O(n?) time complexity, respectively,
where n is the number of vertices in M.

Proof. Upon the termination of the MMP or CH al-
gorithm to the mesh M, we obtain a set of windows
stored in each edge and vertex. We call these windows
final, since they encode the shortest geodesic distance.
In contrast, the windows, which were created during
window propagation and deleted later, are useless
windows and not final.

In our FWP-based algorithm, K;(> 1) windows of
smallest labels are propagated at the i-th iteration.
First note that the window of smallest label must
be final since no other windows in the queue can
replace it later. Then in the propagated K; windows,

they contain at least one final window. As long as a
window becomes final, its status remains unchanged
throughout the remaining iterations. Second, both the
MMP and CH algorithms have no more than O(n?)
final windows. Since at least one final window is
extracted from the wavefront in each iteration, the
FWP-based algorithm converges in O(n?) iterations
at most.

Note also that K; is bounded by a constant K,z
(Line 8 in Algorithm 1). Therefore, at most MK,
child windows are generated and inserted into the
buckets, where m is the maximum number of children
a parent window can have. Thus, we have m < D due
to the assumption that the degree is no more than D.
Finally, the total number of windows inserted into the
buckets are O(DK,,q.n%) = O(n?).

The FWP-MMP algorithm has an O(logn) overhead
at each iteration, since there are, at most, O(n) win-
dows at each edge, and these windows are sorted
in the same manner as the original MMP algo-
rithm. Therefore, the FWP-MMP algorithm has an
O(n?logn) time complexity. For the FWP-CH algo-
rithm, the overhead per iteration is O(1), resulting in
an O(n?) time complexity. O

5 EXPERIMENTAL RESULTS

Both the MMP and ICH algorithms as well as the FWP
methods are undiscretized algorithms, that is, they
can obtain the exact geodesics if numerical operations
are exact. However, floating-point computation is of-
ten used in implementation of these algorithms due to
its high efficiency. There are two sources of numerical
error. First, floating point computation has truncated
error, which is machine dependent and cannot be
avoided in the algorithm. Second, propagating a small
window is not cost-effective, since a small window
covers only a narrow region on the mesh. In practice,
both the MMP and ICH algorithms discard a window
if its size is smaller than a user-specified threshold ¢
(e.g., [18]).

We observe that the truncated error with floating-
point precision has little affect on these algorithms,
given the robust techniques [18], [19], [20] for
handling geometric degenerate cases. However, the
threshold ¢ for determining tiny windows has a large
impact on the performance. Take the 144K-face Bunny
model (scaled to a unit cube) as an example. A strict
threshold ¢ = 107 results in 6.9M windows for
the MMP algorithm and 6.2M windows for the ICH
algorithm. A loose threshold € = 1075, however, can
reduce the windows by 26% and 10% for the MMP
algorithm and the ICH algorithm, respectively. As the
performance closely depends on window complexity,
we adopt the same threshold ¢ = 107° throughout
our experiments to ensure a fair comparison between
the two classes.

We thoroughly evaluated the performance of the
original ICH and MMP algorithms, as well as our



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, PP. 822-834, 2015 8

500

H—@
400 $ © - MMP ICH
pe
: - 400 Pt >
300 o —%—n=2M —%— n=2M
© —a—n=1M 300 —&—n=1M
(]
g 20| ¢ FWp 4 FWP
[ —a—n=3m| | 2001 —&—=3m
L 4 —e—n=2M —— n=2M
100 —e—n=1M 100 —a—a ——n=1M
0 % E ; : o -

0 H
1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

g g
(a) Happy Buddha
400 pam—
ad MMP 400 & ICH
300 ;Q < ! '
—y—n=2M 300 —¥—n=2M

—a—n=1M —&—n=1M

=
o re
200
£ ¢ Fwp 200 FWP
L —8—n=3M ¢ —8—n-3m
d —e—n=2M ——n=2M
100 [ €
; —e—n=1M 100 g ; ——n=1M

0
1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0

(b) Lucy

Fig. 6. By fixing the resolution, we create a sequence of
meshes with various anisotropy using the method in [21].
Each curve corresponds to the timing of applying some
algorithm to a sequence. We observe that both the MMP and
ICH algorithms are highly sensitive to mesh triangulation, that
is, increasing the mesh anisotropy greatly slows down their
speeds. In contrast, our method is more robust to tessellation
than the MMP and ICH algorithms.

FWP-based improvements, on a wide range of mod-
els. Due to page limit, some test models are illustrated
in Figure S3 in Supplemental Material. Timings were
measured on a PC with an Intel Core i7-2600 CPU 3.40
GHz and 8GB memory. To obtain stable results, we
randomly chose 100 points for each model and then
reported the mean value. For the constant K4, (line
8 in Algorithm 1) that determines the upper bound
of adaptive K in the FWP method, we empirically set
K0z = 20,000 for various real-world models.

We observed the following characteristics via our
experiments:

1) Robustness. The FWP method is less sensitive to
mesh tessellation than the existing algorithms. This
robust feature is due to the fact that our method
propagates K windows per iteration, which can be
considered as taking K samples simultaneously on
the wavefront. With a large K, wavefront propagation
is intrinsic to the geometry, therefore, the performance
is not sensitive to mesh triangulation. We use g(f) =
2{'/'% to measure the quality of triangle f, where
P, H and S are respectively the half-perimeter, the
longest ed%’e length and area of f. Then we define

g = w to measure the anisotropy of the input
mesh M. An isotropic mesh has ¢ = 1 and an

anisotropic mesh has g > 1. In general, the larger the
value of g, the higher the anisotropy the mesh has.
As Figure 6 shows, by fixing the mesh’s resolution,
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Fig. 7. The FWP technique can significantly speed up the
MMP and CH algorithms. The vertical axis is the performance
improvement (i.e., the ratio of the time of the original algo-
rithm to the FWP algorithm) and the horizontal axis is the
mesh resolution. We observe that the higher the resolution
(measured by number of faces) and anisotropy (measured
by g) of the mesh, the higher the speedup.

the speeds of the MMP and ICH algorithms become
slower when the mesh becomes more anisotropic,
whereas the speed of our FWP-based methods are
very stable.

2) High performance. The FWP technique can sig-
nificantly boost the speed of the MMP and ICH algo-
rithms on all test models. As shown in Figure 7, the
FWP-based algorithm is particularly favored for large-
scale real-world models. The higher the resolution
and anisotropy of the mesh, the better performance
improvement it brings. For meshes with fairly regular
triangulation, the FWP-CH algorithm can double the
speed of the ICH algorithm, furthermore, the FWP-
MMP algorithm is 3 times faster than the MMP
algorithm. For large-scale models with anisotropic
triangulations, the FWP-MMP algorithm can improve
the performance of the MMP algorithm by an order
of magnitude, and the FWP-CH algorithm is also 5
times faster than the ICH algorithm. Computational
results show that the FWP-MMP algorithm is the
most efficient exact discrete geodesic algorithm. See
Supplementary Material for more results.

3) Unified framework. From a micro scale, the ICH
and MMP algorithms adopt different window propa-
gation schemes, producing different numbers of win-
dows and requiring different numbers of iterations
for convergence. Our FWP framework unifies the two
classes of algorithms from the macro scale: As Ta-
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Model |F| Ratio of iteration numbers
MMP/ICH | FWP-MMP/FWP-ICH
Fertility 60,000 0.836 468/460 = 1.017
Horse 96,965 0.714 775/772 = 1.004
Bunny 144,036 0.680 865/911 = 0.950
Golfball 245,760 0.509 1478/1553 = 0.952
Sphere 327,680 0.342 1286,/1348 = 0.954
Armadillo 345,944 0.676 1931/1998 = 0.966
Lucy 525,814 0.685 2286,/2299 = 0.994
Gargoyle 700,000 0.695 2395/2446 = 0.979
Blade 1,765,388 0.634 4086/3844 = 1.063
Dragon 4,000,000 0.788 13748/12387 = 1.110
TABLE 1

Mesh complexity (face number |F'|) and the ratios of the
number of iterations the algorithms need to converge for the
pairs {MMP, ICH} and {FWP-MMP, FWP-ICH}.

Time (sec.) Ksye =50 Time (sec.) Ksyg = 1000
300 18,000
16,000
250 14,000
W ICH-SVG B ICH-SVG
200 12,000
B FWP-MMP-SVG 10000 | B FWP-MMP-SVG
150 8,000
100 6,000
4,000
50 A
2,000
0 0

Armadillo Bunny Fertility Gargoyle Lucy Dragon

Fig. 8. The FWP method can improve SVG construction by a
factor of 3 to 10. The parameter Ksyv ¢ controls the accuracy
of the computed geodesic distance. The higher Ksva, the
smaller the error, and the longer the time for constructing the
SVG. Timing was measured on a single CPU core.

ble 1 shows, the FWP-CH and FWP-MMP algorithms
propagate the wavefronts at a similar pace and take
roughly the same number of iterations to converge.
We believe that other window-based algorithms (if
any) can also fit into the FWP framework.

4) Improving the SVG technique. Saddle vertex
graph [9] is a sparse undirected graph that encodes
the geodesic information of a give mesh. With SVG,
the geodesic distance can be computed efficiently
by Dijkstra’s shortest path algorithm. However, con-
structing SVG is expensive, since one has to compute
all direct geodesic paths®. In [9], the geodesic paths
were computed using the ICH algorithm, which is
time consuming. For example, computing the exact
SVG for the 144K-face Bunny model takes half an hour
on a single CPU core. Although SVG construction can
be significantly improved by parallel computing, the
GPU implementation is non-trivial. In this paper, we
show that our CPU-based FWP method can be easily
adapted to compute SVG. Experimental results show
that our method can shorten the pre-computation time
by a factor of 3 to 10. See Figure 8.

2. A geodesic path is direct if it does not pass through any saddle
vertices.

Armadillo Bunny Fertility Gargoyle Lucy Dragon
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Fig. 9. K, the number of smallest-label windows used
in each iteration, is adapted to wavefront size. The ICH
algorithm has a similar performance as the MMP algorithm.

6 DISCUSSIONS

In this section we discuss three features as follows
that make the FWP method significantly improve the
speed of MMP/CH/ICH algorithms.

1) Adaptive K. The geometry of a wavefront is
dependent on the model, the source point, and the
time, all of which may vary significantly during the
iterative procedure. So the number of windows propa-
gated in each iteration should be adapted to the wave-
front size in order to perform well. Figure 9 shows the
relationship between K and the wavefront size for the
Happy Buddha and Fertility models. We observe that
the K-curve’s shape is similar to the wavefront size
curve. As Figure 10 shows, the adaptive K strategy
outperforms the fixed K strategy significantly.

2) Wavefront quality. Unlike the MMP/ICH algo-
rithm that propagates a single window per iteration,
the FWP method processes a large number of win-
dows simultaneously at each iteration. Thanks to our
adaptive K strategy, the FWP method can both move
the wavefronts efficiently and ensure they are of high
quality. Figure 11 shows an example.

3) Bucket size. The selection of bucket size in
the FWP method is heuristic. Figure 12 shows how
the performance changes with the bucket size, from
which we observe that the FWP method is fairly stable
and reaches the highest performance when the bucket
size falls into 1x to 2 x h/y/n. On the other side, the
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Fig. 10. Fixing K has worse performance than the dy-
namic K strategy. We measure the performance of the FWP
method with various fixed K values, ranging from 1% to
40% of Kma-. Each marker corresponds to the timing with
a fixed K value and the optimal timing is highlighted in red.
Clearly, the K values leading to the optimal performance vary
significantly among the test models. The dashed lines below
are the timing of the FWP method with adaptive K strategy.
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Fig. 11. Wavefront quality on the Dragon model. The priority
queue based MMP and ICH algorithms produce high quality
wavefronts, however, the wavefronts are moving slowly due
to the expensive overhead. The FIFO queue based MMP
and ICH algorithms have constant time overhead at each
iteration, however, their performance is very poor due to
the low quality wavefronts. Our FWP-MMP and FWP-CH
algorithm are able to propagate the wavefronts much faster
without compromising their quality. The horizontal axis is the
normalized timing and the vertical axis is the standard devia-
tion of the wavefront. The smaller the standard deviation, the
smoother the wavefront, thus, the higher the quality it has.
The close-up views show that the wavefronts of our method
have similar quality to the wavefronts of the MMP and ICH
algorithms. The PCH algorithm is also macro, however, its
wavefront quality is worse than ours.
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Fig. 12. Performance changes with the bucket size. The z-
axis shows different bucket sizes (by a multiple of 1/+/n) and
the y-axis gives the normalized time (divided by the longest
running time of each model).

curves shown in Figure 12 are U-shaped that means
both too small and too large bucket size will lead to
relatively bad performance.

7 COMPARISON

We compares the FWP method with other representa-
tive geodesic algorithms, including MMP [2], ICH [7],
PCH [8], FMM [13], [14], [22], the heat method [16]
and the label correcting (LC) method [23]. We classify
these algorithms in two groups, i.e., macro and micro.
A micro algorithm processes a single element (e.g.,
a window in MMP/ICH or a triangle in FMM) per
iteration, whereas a macro algorithm processes multi-
ple elements simultaneously. Table 2 summarizes the
features in these algorithms.

7.1 FWP vs. the Fast Marching Method

The Fast Marching Method (FMM) [13] is a popular
technique for solving the boundary value problem of
the Eikonal equation, VI' = F(x,y), where F' > 0
is the front moving speed and T is the travel time.
Solving the Eikonal equation with ' =1 and 7T'(s) = 0
produces the polyhedral distance field at the source s.
The FMM adopts a Dijkstra sweep and uses the fact
that information only flows outward from the seeding
area. The FMM is flexible and can be applied to both
regular grids [13] and triangle meshes [14] with an
O(nlogn) time complexity, where the factor logn is
due to the administration of a priority queue.

To improve the speed of the FMM on regular grids,
Yatziv et al. [22] suggested using a so-called untidy
priority queue within the FMM. Their novel idea
is to use the bucket sort technique together with a
quantization that does not distinguish between the
values of T" within a small range. Therefore, each entry
of the priority queue may contain multiple elements.
Yatziv et al. showed that the number of elements
in each entry is O(1), and finding the element with
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Method Domain Data Structure Overhead = Space Complexity Time Complexity  Type
CH [3] triangle meshes FIFO queue 0(1) O(n?) O(n?) micro
ICH [7] triangle meshes priority queue O(logn) O(n?) O(n?logn) micro
CH PCH [8] triangle meshes FIFO queue O(1) unbounded unbounded macro
LC-CH triangle meshes FIFO queue O(1) Q(n3) Q(n3) micro
FWP-CH | triangle meshes bucket & FIFO queue o(1) O(n?) O(n?) macro
MMP [2] | triangle meshes priority queue O(logn) O(n?) O(n?logn) micro
MMP | LC-MMP | triangle meshes FIFO queue O(1) Q(n?) Q(n?) micro
FWP-MMP | triangle meshes bucket & FIFO queue  O(logn) O(n?) O(nZlogn) macro
FMM [14] 1jegular grids priority queue O(log n) O(n) O(nlogn) micro
MM triangle meshes priority queue O(log n) O(n) O(nlogn) micro
Yatziv’s regular grids untidy priority queue O(1) O(n) O(n) micro
FMM [22] | triangle meshes untidy priority queue O(nlogn) O(n) O(n?logn) micro
TABLE 2
Comparison of Dijkstra-like geodesic algorithms.
the minimal label also takes O(1) time. As a result, Y Amaas A = Ao P
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their algorithm has a linear run-time on regular grids. e Eragonl R Drosen //
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contain the longest side of ¢, meaning that this entry
contains O(n) triangles. Since finding the element Fig. 13. (a) Yatziv et al’s FMM, as a micro algorithm, its

with the minimal label takes O(nlogn) time, the time
complexity becomes O(n? logn), which is much worse
than the original FMM.

Our experimental results also confirm that the per-
formance of Yatziv et al’s FMM is highly depen-
dent on the mesh triangulation. Moreover, the accu-
racy of Yatziv et al’'s method drops significantly on
anisotropic meshes. See Figure 13(b). In terms of data
structure, note that the entry size in Yatziv et al’s
FMM is triangulation dependent, while the bucket
size in the FWP method is fixed. Furthermore, the
overhead per window operation in Yatziv et al’s FMM
is O(nlogn) and in our method is O(1).

7.2 FWP vs. the Heat Method

The heat method [16] computes the geodesic distance
by solving a Poisson equation from the normalized
gradient of the heat flow. Based on standard numer-
ical packages, it is easy to implement and highly
flexible to support a wide range of geometric do-
mains, including grids, triangle meshes and point
clouds. Since the Laplacian matrix can be pre-factored,
solving the Poisson equation takes only near-linear

performance is sensitive to mesh triangulation. (b) Its av-
erage numerical error increases significantly on anisotropic
meshes. (c) shows the FWP result and and (d) shows the
FMM result with an average error 5.53%.

time. Below we compare the heat method and the
FWP method in terms of accuracy and performance.

Accuracy. The accuracy of the heat method closely
depends on the heat diffusion time ¢. Theoretically, the
time approaching zero leads to the accurate solution
of geodesic distance. However, a tiny time ¢ results
in serious numerical issue. Crane et al. [16] observed
that the error-t plot is U-shaped and suggested ¢ = h?
for common models, where h is the average edge
length. Similar to the fast marching method, the
heat method computes a first-order approximation
of geodesic distance. Thus, its results closely depend
on the triangulation quality. Although the suggested
parameter ¢ = h? works fairly well on well-tessellated
meshes, we observe that it leads to large error on
anisotropic meshes. Figure 14 shows the results on the
unit sphere with 200 longitude circles and 500 latitude
circles, which has 199,600 triangles and an anisotropy
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Fig. 14. The heat method controls the accuracy by the
diffusion time t = Ah?, where X is the step value and h
is average edge length. Given the 199, 600-face unit sphere
model with the anisotropy measure g = 2.28, the default
setting A = 1 produces a mean relative error 6.3%. Increas-
ing the step value X is helpful to reduce the mean error.
For example, the mean error drops to 0.18% when \ = 80,
however, the maximum relative error increases significantly.
Given the 20, 000-face torus model with g = 2.36, the default
setting A = 1 produces the best mean relative error 2.3%
and the best maximum relative error 14.97%. Increasing or
decreasing the step value X cannot help to reduce the errors.

measure g = 2.28. Setting ¢ = h? produces a mean
relative error 6.36%, comparing to the ground truth
geodesic distance computed by closed-form formula.
Although taking a longer diffusion time smoothes the
distances and reduces the mean error, the maximal
error increases accordingly. Our method, in contrast,
computes an accurate result with mean relative error
0.00063% and maximal error 0.0044%. Figure 14 also
shows the results on a 20, 000-face torus model with
g = 2.36. The heat method obtains the best mean rel-
ative error 2.3% and the best maximum relative error
14.97% at A = 1, while our method computes a more
accurate result with mean relative error 0.00976% and
maximal error 0.1061%. In fact, as observed in [16]
and [9], the discrete geodesic distances computed by
the MMP and CH algorithms converge to the smooth
geodesic distances at a quadratic speed, while the
FMM and the heat method have only linear conver-

gence rate.

Performance. As a pre-computation method, the
heat method has two steps: pre-computation (factor-
ing the Laplacian matrix) and solving (recovering the
distances by solving a Poisson equation). Our FWP
method is a direct approach, which is much slower
than the heat method. However, as mentioned in
Section 5, the FWP method complements the SVG
method, since it reduces its pre-computation time. It
is noted that the SVG method has similar solving
performance as the heat method and its accuracy is
much higher. See Table 3.

7.3 FWP vs. the Parallel CH Algorithm

The PCH algorithm [8] is a GPU-based parallel im-
provement of the classic CH algorithm. Both the PCH
and FWP algorithms propagate a large number of
windows at each iteration and thus both are macro.
However, they differ in two ways. First, the number K
of windows to be propagated in each iteration in FWP
is time-dependent and adaptive to the wavefronts. As
Figure 11 shows, the wavefront quality of the FWP
method is better than the PCH algorithm. Second,
although the PCH algorithm performs well with real-
world models, it is not possible to bind its space as
well as time complexities, which could be theoretically
exponential. Our method, however, is theoretically
sound and produces at most O(n?) windows, leading
to provable time complexity of the FWP-MMP and
FWP-CH algorithms. Computational results show that
our CPU-based FWP-MMP algorithm has a speed
comparable to PCH [8] (Table 3).

7.4 FWP vs. the Label Correcting Method

The MMP and ICH algorithms propagate windows
in a continuous-Dijkstra fashion. Dijkstra’s algorithm
takes the node with the smallest label in a candidate
list C' and is known as a label setting method, since the
node removed from the list is permanently labeled
and never enters the list again. A label correcting
(LC) method maintains a queue for the candidate
list C' so that the selection of the to-be-processed
node takes only O(1) time, at the expense of multiple
entrances of nodes in C. Among many label correcting
schemes, Bertsekas [23] observed that the SLF-LLL-
THR algorithm performs extremely well in practice,
significantly outperforming the original Dijkstra’s al-
gorithm on real-world sparse graphs.

We implemented the SLF-LLL-THR strategy in the
MMP and ICH algorithms and we refer to the LC
based methods as the LC-MMP and LC-CH algo-
rithms. We compare the FWP-based algorithms with
the LC-based algorithms and we observe that the
FWP method runs consistently faster than the LC
methods on all test models, the higher the mesh
resolution and anisotropy, the better the performance
improvement of the FWP method to the LC method.
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Heat method SVG (K = 50)
Model | |F| Pre-computation Solvine | Mean Error ICH |[FWP-MMP| PCH
Pre-computation [Solving[Mean Error[FWP-MMP ICH &
Armadillo|346K 1.75s 0.11s 0.90% 17.52s  54.4s  0.08s 0.14% 9.39s 3.43s 1.39s
Bunny |144K 0.72s 0.04s 0.83% 7.82s 23.63s  0.02s 0.12% 5.43s 2.0s 1.15s
Fertility | 60K 0.22s 0.01s 1.81% 2.95s 10.14s  0.01s 0.14% 1.74s 0.79s 0.41s
Horse [ 97K 0.35s 0.04s 0.72% 732s  1591s 0.02s 0.12% 3.41s 1.38s 0.88s
Sphere [327K 4.92s 0.15s 0.19% 18.85s  51.29s 0.06s 0.10% [75.02s] 16.56s [11.02s
TABLE 3

Performance statistics on meshes with fairly good tessellation. The PCH algorithm was tested on an Nvidia GTX580 card
with 512 CUDA cores and all the other methods were implemented in single threaded C++ and tested on a PC with an Intel
Core i7-2600 CPU (8.40 GHz). Both the heat method and the SVG method compute the approximate geodesic distances,
whereas the others are exact. For the heat method, we set the the diffusion time ¢ = h?, where h is the average edge length.
We construct a small-scale saddle vertex graph with K = 50 and report the mean relative error. The FWP-MMP based SVG
construction is 2 to 3 times faster than the ICH method.

8 CONCLUSION
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Fig. 15. The FWP method is consistently faster than the LC-
based method. The vertical axes show the ratio of the timing
of the LC method to our method.

See Figures 15. Moreover, as a macro algorithm, the
FWP method is more robust to mesh triangulation
(using an anisotropic measure g) than the micro LC
algorithms.

Theoretically, the LC-based Dijkstra’s algorithm [23]
does not have a time bound due to the heuristics used
for determining the threshold. For the LC-based dis-
crete geodesic algorithms, in Supplementary Material
we construct a triangulation pattern so that the LC
method produces at least 2(n®) windows, leading to
a Q(n?) time complexity. In sharp contrast, our bucket
data structure and adaptive K strategy guarantees
an O(n?) window complexity accompanied with an
O(n*logn) time complexity for the FWP-MMP algo-
rithm and an O(n?) time complexity for the FWP-CH
algorithm.

This paper presented a fast wavefront propagation
(FWP) framework, which has the following advan-
tages. First, as a macro algorithm, the FWP method
is less sensitive to mesh tessellation than the existing
micro (MMP/CH/ICH) algorithms. It is also a generic
computational framework that enables the MMP and
ICH algorithms to propagate the wavefronts in a sim-
ilar fashion. Second, the FWP method is theoretically
sound and has provable time and space complexity.
The FWP-CH and FWP-MMP algorithms have O(n?)
and O(n?logn) time complexity, respectively. It is
worth noting that the FWP-CH algorithm is the first
window-oriented algorithm that reaches the O(n?)
lower bound while performing well in practice. Third,
computational results show that the FWP-MMP algo-
rithm can improve the speed of the MMP algorithm
by a factor of 10 and the FWP-CH algorithm is
also 5 times faster than the ICH algorithm. Through
extensive evaluation presented in Supplemental Ma-
terial, we confirm that the FWP-MMP algorithm is the
most efficient serial and exact algorithm for computing
geodesic distances on triangle meshes. In the future,
we will investigate the GPU-based parallelization of
the FWP framework.
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