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Abstract  Line drawings, as a concise form, 

can be recognized by infants and even 

chimpanzees. Recently, how the visual system 

processes line-drawings attracts more and 

more attention from psychology, cognitive 

science and computer science. The 

neuroscientific studies revealed that line 

drawings generate similar neural actions as 

color photographs, which give insights on how 

to efficiently process big media data. In this 

paper, we present a comprehensive survey on 

line drawing studies, including cognitive 

mechanism of visual perception, 

computational models in computer vision and 

intelligent process in diverse media 

applications. Major debates, challenges and 

solutions that have been addressed over the 

years are discussed. Finally some of the 

ensuing challenges in line drawing studies are 

outlined. 

 

Keywords line drawings, cognitive 
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1  Introduction 

 

Visual media usually includes images, videos 

and 3D digital models. Intelligent process of 

visual media plays an important role in many 

areas of academic research and industrial 

applications. Nowadays, with the development 

of digital media capturing devices and internet 

techniques, big media data is emerging. How 

to efficiently process, obtain required 

information and reuse big media data is a 

currently hot research area in computer 

science. 

 Human brain has remarkable capacity for 

visual media processing. In [1] there is a good 

comparison between human brain and the 

state-of-the-art supercomputer: 1) in human 

brain, memory is 3.5 quadrillion bytes, 

computing performance is 2.2 billion 

megaflops and the power is 20 watts, 2) in the 

world’s most powerful supercomputer in 2011, 

the K from Fujitsu, memory is 30 quadrillion 

bytes, computing performance is 8.2 billion 
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megaflops and the power is 9.9 million watts. 

A conclusion was drawn in [1] that 

“computers are good at storage and speed, but 

brains maintain the efficiency lead’’. 

Accordingly, cognitive science that is the 

interdisciplinary scientific study of the human 

mind and its processes has attracted 

considerable attention recently. 

 Recently, line drawings had been 

emerging as an efficient tool for intelligent 

processing of big visual medial data. A line 

drawing (sometimes also called a sketch) is a 

set of sparse, simple two- dimensional feature 

lines without hatching or stippling for 

shading/tone effects. Fig.1 shows an example, 

in which a line drawing (Fig.1b) is extracted 

from a color photograph (Fig.1a), by a trained 

artist. Obviously, the line drawing only carries 

a fraction of original information such as lines 

and shapes, and the surface information such 

as color and texture is lost. However, human 

can easily understand the line drawings at a 

glance. In this survey paper, we first introduce 

the cognitive mechanism related to line 

drawings in Section 2. Then in Section 3, we 

summarize several popular computational 

models of visual perception for line drawings. 

The intelligent process and applications of line 

drawings are presented in Section 4. Section 5 

presents several future directions and finally 

Section 6 concludes this paper. 

 

   
        (a)       (b) 

Fig.1 A line drawing (b) produced by a trained 

artist at the Academy of Arts & Design, 

Tsinghua University, by selectively tracing 

contours in a color photograph (a) 

 

2. Cognitive mechanism of 

line-drawing perception 

 

Based on recent findings in neurophysiology 

and cognitive psychology, the cognitive 

process of visual media is divided into three 

successive stages in [2], namely perception, 

memory and judgment (PMJ). The perception 

stage concerns how sensory information is 

perceived. The memory stage concerns how to 

encode and store conceptual prototypes as 

well as how to update and consolidate them 

for both short-term and long-term memories. 

The judgment stage concerns how to make a 

decision to complex problem solving. 

 One of the fundamental problems in 

vision is visual recognition [3], in which two 

related but different topics are object 

recognition and natural scene categorization. 

A distributed computational cognitive model 

for object recognition using the PMJ model 

was studied in [4]. One object recognition 

model in [5] provided evidence for 

partitioning the recognition process into PMJ 

stages: 1) Processing of basic object 

components, such as form and color. These 

basic components are then grouped to provide 

information on distinct edges for a visual form, 

and subsequently lead to figure-ground 

segregation. 2) The visual representation is 

matched with structural descriptions in 

memory. 3) Semantic attributes are applied to 

the visual representation, providing 

meaningful recognition. 

Below we summarize the cognitive 

mechanism related to line drawings in object 

recognition and natural scene categorization. 

 

2.1 Surface versus edge-based representation 

Much information can be used for object or 

scene recognition, such as shape, color, 

brightness, texture and motion cues, etc. These 

information can be classified into two classes:  



 

   

 (a) Original color photograph    (b) Canny edge extraction   (c) A line drawing by an artist 

Fig.2 Surface vs. edge-based representation. (a) The original color photograph contains surface 

gradient. (b) Edge extraction using the Canny’s method [6]. (c) A sparse line drawing from a 

trained artist by selectively tracing contours in the color photograph 

 

1) edge-based information, including the 

shape information represented by contours or 

line drawings, 2) surface-based information, 

including color, brightness and texture, etc.  

 Edge-based information is mainly 

contours or lines that intend to convey specific 

3D shapes. Not every edge corresponding to a 

sharp gradient change in a color photograph is 

used in a line drawing. Indeed, a line drawing 

favored by the visual system is only a subset 

of these edges and it seems that only artists 

capture these ambiguous rules [7]. See Fig.2 

for an example. These sparse line drawings 

only consist of major components of an object, 

while small details related to texture, shading 

and shadows are usually discarded. Line 

drawings seem to be appropriate for the visual 

system because human brain has remarkable 

capacity to deal with line drawings [8], and 

even infants [9] and chimpanzees [10] can 

recognize line drawings. For example, a child 

can easily recognize the curved shape from the 

sparse line drawing shown in Fig.3 as a hat. 

An interesting study investigated how well 

line drawings depict shape [11] based on a 

gauge figure protocol in visual psychophysics 

[12, 13]. Their findings revealed that people 

interpret certain shapes from a line drawing 

almost as well as those from a color 

photograph. 

   

        (a)       (b) 

Fig.3 A comparison of surface-based (a) and 

edge-based (b) representations: a person can 

easily perceives the curved shape of the hat 

from a sparse line drawing (b), even without 

fine details (i.e., surface information such as 

texture, color, shading and shadows) in the 

original color photograph (a) 

 

Surface-based information is useful to 

infer surface material property and 3D shape. 

For example, from variations in color or 

brightness, a 2.5D depth estimation called 

2.5D sketch can be constructed [14]. Watt and 

Rogers [15] argued that 2.5D is the 

construction of a three-dimensional 

environment from 2D retinal projections. The 

surface-based information towards a 2.5D 

sketch representation is also well studied in 

computer vision, in which the so-called shape 

from X technique (X stands for shading, 

texture, motion, focus/defocus, etc) is still a 

hot research area [16]. The surface material 

property inherent in surface-based information 



 

also provides additional distinct features for 

facilitating object recognition. For example, 

for the high color diagnostic (HCD) objects 

such as banana, the detection of color such as 

yellow will facilitate the recognition. Similarly, 

textures such as those in zebra are also helpful 

for the recognition. 

Although both edge-based and 

surface-based information make a contribution 

to object recognition, there is a long debate on 

how they contribute to the recognition. An 

edge-based theory assumes that edge-based 

information is sufficient for object recognition 

and surface gradients provide less efficient 

routes for accessing the memorial 

representation [17, 18]. For example, it is 

found that reaction times and error rates were 

virtually identical for common objects of color 

photographs and line-drawings when the 

images were briefly (50-100 ms) presented. 

That is, the edge-based representation is 

sufficient for object recognition and as stated 

in [18], “although differences in surface 

characteristics such as color, brightness, and 

texture can be instrumental in defining edges 

and can provide cues for visual search, they 

play only a secondary role in the real-time 

recognition of an intact object when its edges 

can be readily extracted.” 

On the contrast, an alternative 

surface-based theory assumes that surface 

gradients are central for object recognition and 

both edge-based and surface-based 

information are simultaneous routes for basic 

level categorization. For example, it is found 

that color improved object recognition of 

common food items when there was no time 

limit in stimulus presentation. Notice that the 

stimulus duration might lead to the different 

findings. We [19] manipulated the Stimulus 

Onset Asynchrony (SOA) to examine this and 

found that the stimulus duration did mediate 

the role of surface gradients in natural scene 

categorization. When the SOA was short 

enough, the accuracy was higher for 

line-drawings than for color photographs, 

although when the SOA was longer, the 

accuracy was lower for line-drawings than for 

color photographs. The findings were 

consistent with the edge-based theory, 

providing new evidence for contour 

information receiving priority processing. 

Moreover, it is widely believed that the 

visual system operates in a way of performing 

a strong data reduction at an early stage [20], 

and creates a compact summary of relevant 

information, determining what is perceived as 

“meaningful features”, that can be handled by 

further levels of processing. The initial 

processing of visual information is often 

described as the extraction of a simplified line 

drawing based on a limited number of ‘‘salient 

features” [21]. 

 

2.2 Features in the recognition 

 

The performance of object recognition and 

natural scene categorization in human vision 

system is subject to the image features, such 

as shape, color, luminance, contrast, 

orientation, texture, Fourier spectra (amplitude 

and phase spectra) and emotional meaning. 

The relations between performance and these 

individual features have received much 

investigation. See [22,23] for some 

comprehensive summaries. 

Below we summarize some widely 

studied features in vision research. 

 A shape is usually represented by 

external boundary or outline of an object, 

detected in images by difference between 

the object and the background.  

 Color is a visual perceptual property in 

human brain characterized by the color 

categories such as red, green, blue and 

others. The color of an object depends on 

1) the physics of the object, 2) its 

embedded environment and 3) the 



 

characteristics of the perceiving eye/brain 

(or camera).  

 In optical science, luminance is a 

photometric measure about the amount of 

visible light leaving a point on a physical 

surface or an imaginary plane in a given 

direction. In a gray scale image, the 

luminance value is usually the pixel 

value. In a color image, the luminance 

value is usually determined by some 

weighted combinations of three color 

channels, e.g., OpenCV uses grayscale = 

0.299red+0.587green+0.114blue. In 

[23], a contrast in color between the 

animal and its background is defined 

physiologically in a DKL color space 

[24]. 

 In vision, contrast is the difference in 

luminance and/or color between parts of 

an image. The human visual system is 

more sensitive to contrast than absolute 

luminance. Several definitions exist. A 

contrast definition used in physiology [25] 

is the maximum luminance minus the 

minimum luminance divided by twice the 

mean luminance. Some other definitions 

such as Weber contrast, Michelson 

contrast and root mean square contrast, 

are also used. 

 Orientation is a placement of an object in 

a rotational coordinate system with 

respect to a fixed point and a reference 

position.  

 Texture is a repetitive pattern with a 

specific luminance, contrast, color and 

orientation, and thus can be regarded as a 

multi-cue feature. In other words, texture 

is not independent from its constituting 

features. 

 The Fourier transform maps signals such 

as images from spatial domain to 

frequency domain. In the frequency 

domain, a discrete set of complex 

amplitudes, called Fourier series 

coefficients, represent the frequency 

spectrum of the original signal. The 

complex number gives both the 

amplitude (or size) of the wave and the 

phase (or the initial angle) of the wave. 

In Sections 2.1 and 2.3, we summarize 

neuroscientific studies based on the 

comparison of line drawings (shape feature) 

and color photographs (color feature) in 

natural scene categorization. These works can 

also be extended to consider more features, 

e.g., a set of grayscale photographs of natural 

scenes equalized in average luminance, global 

contrast and spectral energy were used in a 

phase feature analysis in rapid visual 

categorization [26]. 

In [27], a series of experiments revealed 

systematic effects of orientation on the time 

required to identify line drawings of natural 

objects. The result suggested that novel 

depictions of a known class of objects may be 

identified by a process of mental rotation. That 

is, to recognize misoriented objects, our visual 

system may normalize the stimulus 

representation to a canonical upright position 

through a process of mental rotation and then 

recognize the upright image. However, this 

hypothesis was skepticized in [28] by 

observing a patient with a large right middle 

cerebral artery territory stroke who fails three 

different mental rotation tasks but is 

nonetheless able to recognize misoriented 

numbers, letters, and drawings.  

For the role of amplitude spectrum and 

phase alignment, some researchers [25, 29] 

regarded that the visual system behaves as a 

Fourier analyzer and the Fourier components 

of an image are represented as amplitude and 

phase spectra. It was a common belief that 

phase spectrum can determine most 

recognizable image structure [30] and phase 

information dominates the perception of 

natural scenes [31]. However, some recent 

studies showed that amplitude-based processes



 

   

   

   

   

Fig.4 Photographs and line drawings of six categories of natural scenes: beaches, city streets, 

forests, highways, mountains and offices. Original images by flickr users David K, Nicholas A. 

Tonelli, francois, Norris Wong, David Herrera, and Mo Riza 

are sufficient for rapid scene categorization 

[32] and amplitude spectrum characteristics of 

the natural scenes are useful to speed up 

context categorization processes [26]. Our 

study in a subliminal perception experiment 

showed that compared to the gray photographs, 

line drawings is less influenced by amplitude 

spectra [33]. This is in line with [31] that 

amplitude information was less important than 

phase for perception, and lines and edges may 

be mainly defined by phase information, 

providing a useful definition of visual features 

[34].  

 

2.3 Patterns of brain activity measured by 

fMRI 

 

Line drawings (mainly shape features) and 

color photographs (multi-cues features) have 

remarkable difference in image statistics (Fig. 

4). To reveal how human brain processes line 

drawings and color photographs, the 

functional magnetic resonance imaging (fMRI) 

technique was widely used. 



 

The fMRI measures brain activity by 

detecting the changes in blood oxygenation 

and flow that occur in response to neural 

activity [35]: a more active brain area 

consumes more oxygen for meeting an 

increased demand of blood flow, and 

activation maps can be produced to show 

which parts of the brain are involved in a 

particular mental process.  

The fMRI studies showed that a set of 

lines that match the cube’s edges would 

trigger similar occipital responses as the 

original cube indicating that, on a neural level, 

line representations are equivalent to the 

originals they depict [8]. Importantly, a recent 

fMRI study [36] showed that the areas in 

primal visual cortex, such as V1, the 

parahippocampal place (PPA), retrosplenial 

cortex (RSC), and lateral occipital complex 

(LOC), were responsible for extracting 

differences in spatial layout among different 

scene categories. Based on this finding, a 

further fMRI study [37] showed that in the 

PPA and RSC areas, the line drawings 

generate similar neural activation as color 

photographs, indicating that human vision 

system may use a schematic representation 

analogous to simple line drawings for 

encoding and processing scene category 

information. Moreover, by selectively 

removing long or short contours from the line 

drawings, they [37] found that the global 

scene structure preserved in line drawings 

(possibly corresponding to low frequencies in 

the amplitude spectrum) plays a crucial role in 

representing scene categories. 

Although the fMRI studies provided 

neuroscientific evidence that edge-based 

representation akin to simple line drawings are 

sufficient for rapid object and scene category 

recognition, it remains unclearly whether the 

edge-based information receives priority 

processing because of the poor temporal 

resolution of the fMRI studies on the order of 

one or few seconds. To determine the time 

course of object and scene recognition, the 

event-related potential (ERP) technique was 

used [38]. 

 

2.4 Different time courses in visual perception 

 

Electroencephalography (EEG) is a 

non-invasive and inexpensive method using 

electrodes placed on the scalp to record the 

electrical activity of large populations of 

neurons that are synchronously firing in the 

brain over time. By means of EEG, an 

event-related potential (ERP) experiment can 

be designed, in which a large number of 

time-locked experimental trials are averaged 

together, causing random brain activity to be 

averaged out and the relevant waveform to 

remain. The ERP technique can investigate the 

perceptual process with millisecond precision. 

This high temporal resolution makes available 

the study of transitions from earliest 

sensory-based perceptual processes to the 

higher cognitive processes.  

As suggested in [39, 40], object 

recognition consists of two consecutive stages: 

an early perceptual stage about 75 

milliseconds and a later stage for decision 

making about 150 milliseconds. To address 

the differences in the time course of 

categorizing color photographs and line 

drawings, an ERP study [41] was conducted 

by using a categorization task with backward 

masking technique, where a variable delay 

between the scene and the mask (the Stimulus 

Onset Asynchrony, SOA) was manipulated. 

The ERP results showed that overall, the 

latencies of early ERP components were 

slower for color photographs than for 

line-drawings, and the latencies of early ERP 

components significantly increased with 

longer SOA only for color photographs but not 

for line-drawings. These results suggest that 

more usable information continues to be 



 

extracted from color photographs rather than 

line drawings as SOA increased and provided 

strong evidence for the edge-based theory. 

 

2.5 Semantic access to conceptual 

representation in human brain 

 

An old Chinese saying is that “a good picture 

is worth a thousand words.” In our work, we 

conjecture that a good simple line drawing, 

akin to Hieroglyphics, behaves like a 

conceptual prototype that provides a semantic 

access to conceptual representation in our 

brain [4, 42]. Therefore line drawings play an 

important role in bridging the big gap between 

low-level image feature processing and 

high-level semantic understanding. 

Accordingly, line drawings are considered to 

be the simplest and most typical pictorial 

representations of objects and scenes. Below 

we summarize the applications of line 

drawings in psycholinguistic and cognitive 

research. 

 Snodgrass and Vanderwart [43] published 

their classic corpus of 260 black-and-white 

line drawings of objects from 14 concrete 

categories. As the first standardized set of 

pictures, all the line drawings were 

standardized on four variables of central 

relevance to memory and cognitive processing, 

that is, name agreement, image agreement, 

familiarity, and visual complexity [43]. During 

the last three decades, this historical article 

[43] received more than 3100 citations. This 

corpus has been extensively used in 

experimental and clinical research on 

cognitive processing, such as language, 

memory, and object recognition [44]. After 

Snodgrass and Vanderwart’s seminal work, 

several new test sets of picture norms were 

published, e.g., in [44-46], most of which 

were comprised of line drawings. 

In the studies of language production, 

line drawings presented in [43] were used as 

stimuli in language production tasks to 

investigate the activation of conceptual 

representation and the following lexical access, 

e.g., in [47-50]. For all of language production 

models, their ultimate aim is only one, which 

is to describe all of the stages between having 

a concept and translating that concept into 

linguistic form. The general paradigm of this 

area to make participants in the tasks for 

producing language is to present them a line 

drawing of an object, and this paradigm has 

been proved a very efficient way to address 

the questions of language production so far. It 

seems that line drawings of objects could be 

perfect visual symbols for semantic access to 

their conceptual representations in human 

brain. 

 

3. Computational models of line 

drawings 

 

As revealed in neurophysiological evidence 

summarized in Section 2, there are large 

amount of redundancies in natural 

photographs and line drawings can serve as a 

concise form for fast processing of visual 

media. To utilize these neurophysiological 

findings, in this section, we summarize 

computational models inherent in line 

drawings’ analysis and interpretation. 

 We use the PMJ model [2] to characterize 

the cognitive process involving line drawings 

by the following perception, memory, learning 

and judgment stages.  

 Perception starting with image projection. 

Human perceives the world through eyes 

and images are projected onto the retina. 

We simulate this process by sampling 

viewpoints from a spherical distribution 

(Fig. 5a). The projected images are then 

converted into line drawings for a fast 

process in later stages (Fig. 5b). 

 Memory coding as local descriptors by 

exploring geometric structures. We 



 

 

(a) 

 

(b) 

Fig.5 (a) Image projection using 

viewpoints uniformly sampled from a 

spherical surface and (b) the images are 

converted into line drawings using the 

CLD method [51]  

 

simulate the short-term memory for 

storing local abstract forms by exploring 

geometric structures inherent in the line 

drawing (Fig. 6).  

 Learning in feature space. The local 

abstract forms encode local geometric 

structures of line drawings in a feature 

space and these abstract forms are 

evolving in time for different user 

experiences, served as the long-term 

memory. 

 Judgment using local descriptors. Most 

judgment tasks can be efficiently 

achieved by using the vocabulary in the 

long-term memory. 

 

3.1 Perception starting with image projection 

 

Human views the physical world through the 

images projected on retina. Many methods 

have been proposed to determine the 

representative images of 3D objects. Broadly 

there are two classes. One is the good 

viewpoint selection and the other is to cluster 

uniformly sampled viewpoints into 

representative viewpoints. 

 For the first class of good viewpoint 

selection, the information associated with 

different viewpoints is measured by some 

quantitative criteria and few good viewpoints 

are determined by solving an objective 

function (e.g., [52, 53]). An entropy map 

method is proposed in [52], in which the 

Shannon entropy is used as a measure. An 

image x may best represent one of n objects 

{Oi}. The characteristic of each representation 

can be modeled by a posterior probability 

distribution P(O|x) and its Shannon entropy is 

. The measure 

p(Oi|x) is then determined by standard 

Bayesian method , 

where K is a normalization constant and mx is 

determined in a training preprocess. Recent 

work on good viewpoint selection makes use 

of human perception with the observation that 

the human-preferred view is highly correlated 

with a combination of several simple 

measures such as silhouette length and 

projected area [54]. 

 In the second class, an object is placed at 

the center of a bounding sphere (Fig5a). Then 



 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.6 (a) The minimum-area enclosing box B. 

(b) Randomly sample 500 points in B. (c) a 

circular region C centered at a sample point, 

which partitions into 20 circular rings. (d) The 

circular histogram of (c). 

 

a set of dense and uniform viewpoints are 

sampled on the spherical surface [55- 57]. For 

each viewpoint, an image is taken by virtually 

simulating the shading process using OpenGL 

functions. Then some classification techniques 

[58] can be applied based on extracted 

features that discriminates image content from 

different viewpoints. To extract meaningful 

line drawings from a shaded image, the CLD 

method can be applied [51] An efficient line 

drawing clustering method by mimicking 

keyframe selection from a video clip is 

proposed in [57]. After clustering, each 3D 

object is represented by several representative 

line drawings. The number of representative 

line drawings adaptively depends on the 

model’s complexity, e.g., for a sphere model, 

one representative circle is enough; for a 

complex model such as a camel, three or more 

representative line drawings are generated 

(Fig5b). 

 

3.2 Memory coding as local descriptors 

 

Image contents are usually characterized by 

local image descriptors. Several efficient local 

descriptors for line drawings have been 

proposed, such as the angular partitioning 

descriptor [59], the Gabor local line-based 

descriptor [60] and the circular histogram 

[57]. 

 By considering that a line drawing is a 

hand-drawn rough black and white, an 

angular-spatial distribution of pixels is used in 

[59] to build a local descriptor that is rotation 

and scale invariant and robust against 

translation. Observing that a line drawing 

mainly consists of elongated lines on a 

constant background, Eitz et al. [60] proposes 

to use the Curvelet basis as the maximally 

sparse representation for such data. Liu et al. 

[57] observed that if a sketch or a line drawing 

depicts a person’s mind, it is usually 

inaccurate and repeated sketching the same 

shape frequently shows local distortion like 

angular squeezing or stretching. Accordingly, 

they propose a circular histogram that only 

keeps the radial information in a local region 

of line drawings and is thus insensitive to 

angular variations. 

 The circular histogram proposed in [57] 

is computed as follows. First the 

minimum-area enclosing box B of all black 

pixels in a line drawing is computed (Fig.6a), 

which leads to a property of rotation 



 

invariance. Then a quasi-random point 

sequence is applied to sample 500 points 

inside B (Fig.6b). Centered at each sample 

point, a circular region C is located. The 

radius of the circle is one fifth of the diagonal 

length of B. The circular region C is further 

partitioned into 20 circular rings by 

partitioning r into 20 equal intervals and 

determining 20 concentric circles (Fig.6c). To 

build a circular histogram, each circular ring is 

served as a bin and its number is the number 

of black pixels fallen into that circular ring 

(Fig.6d). At this end, a line drawing is 

represented in a distributed way [4] and stored 

as 500 local circular histograms. 

 The local descriptors such as circular 

histograms can be regarded as a point in a 

high-dimensional feature space. For example, 

a circular histogram is a point in 

20-dimensional space. Given m local 

descriptors sampled from n objects, some 

clustering techniques can be applied in the 

feature space such that these m points are 

partitioned into a small number k of clusters 

and each cluster is represented by a 

representative point. Then these k 

representative points are stored in memory as 

abstract local forms extracted from n objects. 

 Recently some works in neuroscience [61, 

62] show that in addition to local descriptors, 

the shape skeleton information also play a role 

in memory encoding. In particular, the brain 

seems to identify an object by its parts and 

early computation of individual parts’ 

skeletons leads to encoding of aggregation in a 

hierarchy of skeletons at later stages in the 

human vision system [62]. Toward this 

direction, an interesting line drawing 

generation method using skeleton information 

is presented in [63]. 

 

3.3 Learning in feature space 

 

The abstract local forms should not be static in 

memory since human has a remarkable 

capacity of learning and the abstract local 

forms are evolved when more and more 

objects are seen. A continuous learning 

process is modeled in [4]. This learning model 

consists of two parts: 

(1) The number k of abstract local forms in 

memory is evolved. When human sees 

more objects, k is increased with large 

possibility. When human did not see some 

objects for a long time, k is decreased 

with large possibility. This factor is 

modeled by a Poisson process. 

(2) The abstract local forms themselves are 

evolved, e.g., when some objects are 

gradually forgotten and some novel 

objects are seen later. This factor is 

modeled by a continuous-time Markov 

chain. 

These two-factor learning model was 

applied in [57]. A user study in 

line-drawing-based conceptual design showed 

that it models user’s adaptive learning 

capacity well and can be used in a 

human-centered design environment. 

 The learning model in [57] needs 

hundreds of training data to obtain good 

performance. Another learning technique [64], 

called one-shot learning, can learn from only 

one or a very few examples of line drawings. 

This technique makes use of a global 

structural decomposition that decomposes a 

line drawing into a hierarchy of tokens, 

strokes and substrokes. This hierarchical 

structure can be described by the Backus 

normal form [65]. The learning and inference 

in [64] is modeled by a hierarchical Bayesian 

program. 

 

3.4 Judgment using local descriptors 

 

Most judgment tasks in computer vision are 

related to object recognition. A hypothesis in 

human vision is recognition by component 



 

(RBC) [17]. The fundamental RBC hypothesis 

is that a small set of local components are 

generally invariant over viewing positions and 

are sufficient for diverse object 

representations and recognition. That is, any 

object is represented by a unique relation of a 

small set of local components. The abstract 

local forms stored in memory are consistent 

with the RBC hypothesis. 

 To use these evolving abstract local 

forms for efficient object recognition, the 

classic bag-of-feature or bag-of-word 

approach [66] in image retrieval can be 

applied [60, 57]. The bag-of-feature approach 

makes use of local image descriptors such that 

partial matching can be efficiently done, 

which is also reliable to global deformation 

inherent in different line drawings. 

 In terms of k abstract local forms {f1, 

f2, …, fk}, each form fi functions like a visual 

word in the bag-of-feature approach. Given 

any line drawing LD with 500 local circular 

histograms, it is encoded by LD = (n1f1, 

n2f2, …, nkfk), where ni is the number of 

circular histograms (i.e., points in a feature 

space) fallen into the cluster of fi. Sometimes, 

inverse document frequency [67] can be 

applied to adjust the weight ni. Given the 

vector encoding LD(I) of an line drawing I 

query and the vector encoding LD(L) of any 

line drawing L in a database, the similarity 

between I and L can be obtained by a metric 

from an inner product <LD(I), LD(L)>. The 

object (represented by line drawings of 

representative views) with the highest 

similarity value is recognized for the line 

drawing queries. 

 

3.5 3D reconstruction from line drawings 

 

In addition to the computational cognitive 

process of line drawings as presented in 

Sections 3.1 to 3.4, there is another important 

stream in computer vision research, called 

machine interpretation of line drawings [68]. 

Its main target is to investigate a 

computational mechanism for reconstructing 

3D structures from 2D line drawings. 

Basically the 3D structure under investigation 

is in the form of polyhedrons. We emphasize 

that this is a very difficult ill-posed problems, 

since (1) solid polyhedrons bounded by planar 

faces cannot be fully specified by line 

drawings, since they are only single-view 

pictures of 2D projection, and (2) human 

perception seems have infinite understandings 

of line drawings and thus some priori 

knowledge as well as specific domain 

knowledge must be used. We also note that 

this kind of computational intelligence for 3D 

reconstruction may be quite different from 

computational cognitive process employed in 

human perception. Some excellent surveys on 

early work of 3D reconstruction from line 

drawings can be found in [68, 69]. 

 

4. Intelligent processing and 

applications of line drawings 

 

Since line drawings can naturally represent the 

human mind, they are widely used in diverse 

application of visual media. In this section, we 

summary some state-of-the-art applications 

for processing visual media including images, 

videos and 3D digital geometry. Equipped 

with sketching interfaces in touch devices 

such as Tablets or iPads, these 

line-drawing-based applications show some 

intelligence since the users’ indent can be 

addressed naturally and fluently by mimicking 

traditional paper-and-pencil-based 2D 

sketches. 

 

4.1 Interaction with image data 

 

It would be fantastic if we can convert our 

thought into photorealistic images using some 

computer program. Sketch2Photo [70] is such 



 

a technique. It novelly combines two methods: 

one is line drawing that easily captures human 

thought but with limited realism, the other is 

photomontage that uses massive existing 

photographs to compose a novel image.  

Sketch2Photo works in the following way. 

First, to better capture a user’s mind, a user 

draws a free-hand line drawing together with 

some necessary text labels. Second, Each 

scene item as well as the background in the 

line drawing was searched using the text label 

in the internet. Third, to exclude undesirable 

images, the search results are filtered by 

segmenting searched images into scene items 

and matching the shape of scene items with 

line drawings. Fourth, to seamlessly compose 

the filtered images, an image blending 

technique is used. Finally, several candidates 

of image compositions are automatically 

generated and recommended to the user. Three 

examples in Sketch2Photo are shown in Fig.7. 

Sketch-based image search plays an 

important role in a large variety of image 

applications including Sketch2Photo [70]. 

Although it had been extensively studied two 

decades ago, the research of sketch-based 

image search is undergoing a renaissance due 

to the explosion of web images and the 

popularity of touch devices. A novel index 

structure with a contour-based matching 

algorithm was proposed in [71] to assess the 

similarity between a sketch query and natural 

images in a database. This method can indexes 

2.1 million Flickr images with 6.5GB memory 

(suitable to store in a common server) and 

supports real-time response by returning 

search results around 1 second. 

 

4.2 Interaction with video data 

 

Nowadays, with the explosion of video data 

on the internet, a concise form that can assist 

human to quick grasp the gist in a long video 

is much desired. Such a concise form is 

usually referred to video summarization or 

video abstraction in computer vision and 

multimedia societies [72]. Previously 

keyframes and keywords are widely used as 

efficient video abstraction forms. In recent 

work [42, 73], a user study showed that line 

drawings generally outperform keyframes and 

keywords as an abstraction form in video 

annotations for human understanding. See 

Fig.8 for an example. According to this result, 

an efficient video authoring tool, which 

creates from a collection of video clips a 

context-aware, interactive video representation, 

was presented in [73]. This tool utilizes a 

sketch-based two-layer representation (called 

SSG). One layer in SSG uses line drawings to 

visualize scene information. The other layer 

uses a graph to represent and edit the narrative 

structure of the authoring interactive video 

representation. Fig.9a shows an example. To 

reuse the knowledge in existing SSGs, a new 

SSG can be created by matching the line 

drawings and combining the graphs in existing 

SSGs (Fig.9b)  

In a further work [42], a single-layer 

sketch graph was proposed for efficient 

organization of large-scale video clips. Line 

drawings are also used as an efficient way to 

represent the user’s mind for organization 

purpose and two kinds of knowledge are 

considered. Each node in a sketch graph is a 

line drawing that reflects declarative 

knowledge, that is, some factual information. 

Each edge in a sketch graph is a free-hand 

stroke that reflects procedural knowledge, that 

is, skills in performing some tasks that is 

usually dynamic. User studies in [42] showed 

that sketch graphs can better represent the 

organization structure in a large-scale video 

clips than a simple combination of keyframes 

and keywords (Fig.10), and are more efficient 

than SSG in [73] in terms of scalability.  



 

   

   

Fig.7 Three examples of Sketch2Photo [70]. Top row is input and bottom row is output. 

 

   

   

   

Park, Lake, Boat,  

Bird nest,  

Water cube, Tower, 

Pavilion, 

Mountain, 

Sprint 

 

 

  

Ball, Crash, 

Bound, Tom, 

Teeth 

 

Keyframes Keywords Line drawing 

Fig.8 Three abstraction forms (keyframes, keywords and line drawings) for video clips 

 Both multimedia authoring [73] and 

video organization [42] rely on an efficient 

sketch-based video retrieval. Since line 

drawings or sketches are good abstraction 

forms of videos, they had been considered as 

an effective media for video retrieval. A 

content based video retrieval system (CBVR), 

driven by free-hand sketch queries, was 

proposed in [74]. This system encodes the 

shape and motion of a sketched object. 

Considering the sketches drawn for CBVR are 

often imprecision with respect to both 

appearance and motion, an autoregressive 

model was proposed for video clips. The 

sketch queries are then matched to clips for 

objects and their movement. In [73], a 

bag-of-visual-words method is applied for 

sketch-based video retrieval. This method 

decomposes video clips into shots and 

keyframes, and depicts sketch queries using 

the circular histograms as shown in Fig.6. By 

converting each keyframe into a sketch using



 

 

   

(a) Two layers in a sketch-based two-layer 

representation (SSG) 

(b) New SSG creation by reusing existing 

SSGs 

Fig.9 The sketch-based two-layer  

representation (SSG) for video clips in [73] 

 

the CLD method, the sketch-based video 

retrieval is transformed to a sketch-to-sketch 

retrieval problem. Both sketch-based video 

retrieval methods [73] [74] cannot be scalable 

to a large-scale video database. In [42], an 

index structure is proposed with the circular 

histogram descriptor, which leads to an 

efficient large-scale sketch-based search in a 

database of more than ten thousands of video 

clips. 

 

4.3 Interaction with 3D digital geometry data 

 

3D free-form geometric models are usually 

difficult to create by interaction with 

computers. Traditional powerful commercial 

software such as 3DMax and Maya all uses 

the WIMP (windows, icons, menus, pointer) 

interface. This interface is well known far 

from natural and efficient in terms of 

interaction performance. Sketching interface 

had been studied for creating 3D geometry by 

sketching some simple line drawings [75-77]. 

Teddy [75] is a classic system that uses 

sketching interface to design 3D free-form 

shape from free-form strokes. Sketching with 

gesture operations can naturally express the 

user’s design intent. However, the number of 

gestures that are used for free-form shape 

modeling cannot be large due to limited 

capacity of human working memory. 

Error-prone behavior also restricts the 

applications of sketching based 3D shape 

modeling. By extending freeform stokes to 3D 

control curves, a progress is made in a 

FiberMesh system [76] that can create much 

more sophisticated models. A new sketching 

form, called editable sketching curves, was 

further proposed in [77] that combine the 

advantages of natural expression of free-form 

strokes and the controllability of B-spline 

curves. To speed up sketch-based operations 

for a real-time performance, GPU acceleration 

technique has been studied in [78]. 

An interactive toy design system called 

EasyToy was built up with editable sketching 

curves [77]. In EasyToy, both shape and color 

are manipulated by simple sketching tools, 

that is, five tools for shape (extrusion, Boolean, 

disk deformation, skeleton deformation and 

bounding box deformation; See Fig.11) and 

four tools for color (pick a color, paint with 

sketching curve, fill in a local region and paint 

with strokes; See Fig.12). EasyToy can 

construct sophisticated models whose 

complexity is comparable with those by 

professional systems such as 3DMax and 

Maya (Fig.13). 

 

5. Future directions 

 

Despite significant progress of research on 

line drawings over the last two decades, 

several potential avenues still exist for future



 

 

Take a video      Miss the train

To the next station         Wait

Miss again           For help
  

   First opera show        Meet Raoul

Phantom appears Underground castle

          Propose              Kiss of love 

Phantom anger       Fight in snow

      Out of mask       Catch Christine

Mercy kiss           Forgiveness  
 

Keyframe+keywords Sketch graph 

Fig.10 Organization of large-scale video clips using keyframes+keywords, or using sketch graph 

studies. Below we summarize five research 

directions. 

1. Cognition mechanism. Although fMRI 

and ERP techniques had been applied to 

cognition mechanism research by 

comparing natural photographs and line 

drawings, we are still far from clear what 

are the underlying neural codes of human 

vision. For example, does the spectral 

magnitude or phase play a role in line 

drawing understanding? The answer to 

this question relates to global (long 

strokes) or local (short strokes) structures 

in a line drawing. We also do not know 

why artists understand (possibly implicit) 

the neuro codes of vision by having the 

capacity to choose the right lines for 

depicting depth, occlusion, shadow or 

motion (Figs. 1, 2c and 4). More 

advanced brain studies should be 

conducted to answer these questions.  

2. A computer program to extract aesthetic 

line drawing from images. So far only 

artists can select right lines in images for 

generating a meaningful and aesthetic 

line drawing. Even state-of-the-art 

computer algorithms can only be applied 

in restricted cases. For example, for the  



 

 

 

Extrusion with editable sketching curves 

  

Boolean operations (cut and paste) 

 

Disk deformation 

   

 

Skeleton deformation 

   

Bounding box deformation 

Fig.11 Five sketching operators for shape 

manipulation in EasyToy [77] 

  

classic CLD algorithm [51], we already 

know that 1) it works well for cartoon 

pictures, and 2) it works very badly on 

low resolution images such as the 

keyframes extracted from old movies, 3) 

it works unstably for other natural images 

(Fig. 14). Then developing a good 

computer algorithm that can mimic 

artists’ performance will be definitely 

  

Fig.12 Four sketching operators for color 

manipulation in EasyToy [77]. (a) Pick a color. 

(b) Paint with an editable sketching curve. (c) 

Fill in a local region with a color. (d) Paint 

with strokes. 

 

useful in many applications such as video 

abstraction, organization and multimedia 

authoring. Many image techniques such 

as 2.1D sketch generation [79], salient 

region detection, foreground/background 

separation and feature enhancement, may 

be needed to be considered in a 

combinatorial framework. 

3. Better learning methodology. Human can 

learn and recognize hand written 

characters and line drawings quickly and 

accurately. The one-shot learning 

technique [64] made a step in modeling 

such a learning capacity. However, the 

complexity of the shape hierarchy in [64] 

is low and if a complex line drawing is 

given, the computational complexity 

increases explosively in the hierarchical 

Bayesian model. Developing an efficient 

learning methodology for complex line 

drawings is still under exploration. 

4. Scalability to large databases. Line 

drawing or sketch based visual media 

retrieval has attracted considerable 

attention and many good algorithms had 

been proposed. In these algorithms, 

however, few of them have good 

scalability to fit in a large-scale database. 

Some exceptional work includes image 



 

 

     

Fig.13 Some models (bottom row) created from line drawings (top row) in EasyToy [77] 

        

(a) Good extraction 

        

(b) Bad extraction 

Fig.14 The performance of CLD algorithm [51] on different types of images. 

    

    

Fig.15 Different sketching interface and devices with touchable screen for line drawing 

applications 

search [71], video search [42] and 3D 

geometry [80] in a large scale. The 

explosive growth of internet visual media 

has motivated the great demand for more 

search/retrieval techniques with good 

scalability for line drawing queries. 

5. More exciting intelligent applications in 

visual media. Line drawings are natural 

to represent human mind, which are also 

naturally incorporated in devices with 

touchable screens. With the advance of 

hardware development for touch devices 



 

(Fig.15), more exciting intelligent 

applications are expected. 

 

6. Conclusions 

 

In this paper we present a comprehensive 

survey on cognitive mechanism of line 

drawings and its applications in intelligent 

process of visual media. Several key issues in 

cognitive process of line drawings in human 

brain are discussed, including surface versus 

edge-based representation of visual perception, 

features used in the perception of line 

drawings, human brain activity and time 

course of visual perception, and semantic 

access to conceptual representation. Based on 

these neurophysiological findings, intelligent 

processing of line drawings on visual media, 

including image, video and 3D digital 

geometry, is discussed with various 

applications.  

 Line drawing or sketch based visual 

media processing, as well as its related 

cognitive study, is an active and 

multidisciplinary area of research. This survey 

is not meant to complete, especially for a large 

variety of applications in the intelligent 

processing of visual media. Nevertheless, we 

hope this survey can provide some 

information for researchers to review the past 

developments and identify possible directions 

for future research on cognitive mechanism 

and intelligent processing of line drawings. 
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