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h i g h l i g h t s

• We propose two intrinsic methods for computing centroidal Voronoi tessellation (CVT) on triangle meshes.
• Thanks to their intrinsic nature, our methods compute CVT using metric only.
• Our results are independent of the embedding space.
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a b s t r a c t

Centroidal Voronoi tessellation (CVT) is a special type of Voronoi diagram such that the generating point
of each Voronoi cell is also its center of mass. The CVT has broad applications in computer graphics, such
as meshing, stippling, sampling, etc. The existing methods for computing CVTs on meshes either require
a global parameterization or compute it in the restricted sense (that is, intersecting a 3D CVT with the
surface). Therefore, these approaches often fail on models with complicated geometry and/or topology.
This paper presents two intrinsic algorithms for computing CVT on triangle meshes. The first algorithm
adopts the Lloyd framework, which iteratively moves the generator of each geodesic Voronoi diagram
to its mass center. Based on the discrete exponential map, our method can efficiently compute the Rie-
mannian center and the center of mass for any geodesic Voronoi diagram. The second algorithm uses the
L-BFGS method to accelerate the intrinsic CVT computation. Thanks to the intrinsic feature, our methods
are independent of the embedding space, and work well for models with arbitrary topology and compli-
cated geometry, where the existing extrinsic approaches often fail. The promising experimental results
show the advantages of our method.
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1. Introduction

Centroidal Voronoi tessellation (CVT) is a special type of
Voronoi diagram (VD) such that the generating point of each
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Voronoi cell is also its center of mass [1]. The CVT has broad appli-
cations in computer graphics, such asmeshing, stippling, sampling,
etc. Although the CVT in Euclidean space has been extensively
studied, relatively little progress has been reported towards com-
puting the CVT on curved surfaces. A key step in computing the
CVT is to construct the Voronoi diagrams in each iteration. It is
fairly simple to construct the Voronoi diagrams in Euclidean space
(e.g.R2 andR3), sincemany efficient algorithms and software tools
are readily available. However, it is technically challenging to com-
pute VD on curved surfaces. Some researchers tackle this challenge
by computing the restricted Voronoi diagrams [2], which is the in-
tersection between the input mesh and the Voronoi diagram in R3.
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These approaches are embedding space dependent andmay fail on
models with complicated geometry and/or topology. Others adopt
the global parameterization to map the surface to the paramet-
ric domain, such as Euclidean plane E2, the sphere S2, or hyper-
bolic disk H2, in which the 2-dimensional CVT is computed [3]. It
is known that parameterizing models with complicated geometry
and/or topology is computationally expensive and often suffers se-
rious numerical issues. To our knowledge, there is no method for
computing the CVT on arbitrary surfaces.

To tackle the above-mentioned challenge, this paper presents
two intrinsic algorithms for computing the centroidal Voronoi tes-
sellation on arbitrary triangle meshes. Our first algorithm adopts
the Lloyd framework, which iteratively moves the generator of
each geodesic Voronoi diagram to its mass center. Based on the
discrete exponential map, our method can efficiently compute the
Riemannian center and the center of mass for any geodesic VD.
Our second algorithm uses the L-BFGS method (limited-memory
BFGS), which uses the CVT energy function and its gradients to ap-
proximate the Hessian matrix. The L-BFGS method has better per-
formance due to its super-linear convergence rate. Thanks to the
intrinsic feature, our methods are independent of the embedding
space, and work well for models with arbitrary topology and com-
plicated geometry, where the existing extrinsic approaches often
fail. Fig. 1 shows our result on the genus-5 Pegaso model. More-
over, our methods are insensitive to the mesh resolution and tes-
sellation, and can be applied to surfaces embedded in arbitrary
dimensional space. The promising experimental results demon-
strate the efficacy of our methods.

The rest of the paper is organized as follows. Section 2 briefly
reviews the existing work on CVT and the related topics. Then
Sections 3 and 4 presents our intrinsic Lloyd and L-BFGS CVT
algorithms in detail. Section 5 shows the experimental results,
compares our method to the existing techniques and discusses its
advantages and limitations. Finally, Section 6 concludes the paper.

2. Existing work

2.1. Voronoi diagram & centroidal Voronoi tessellation in R2

Let S = (si)mi=1 be a set of distinct sites in a connected compact
region Ω ⊂ R2. The Voronoi region Ωi of si is defined as:

Ωi = {x ∈ Ω | ∥x− si∥ ≤ ∥x− sj∥, ∀i ≠ j},

where ∥·∥ denotes the Euclidean norm. The Voronoi regions,Ωi, of
all the sites form the Voronoi diagram of S. The VD is a fundamen-
tal geometric tool that has a wide range of applications in science,
engineering and even arts. The classic algorithms for constructing
Voronoi diagram in R2 are the sweep line algorithm [4] and the
divide-and-conquer algorithm [5], which have optimal time com-
plexity O(m logm).

Let the domainΩ be endowedwith a density functionρ(x) > 0,
which is assumed to be C2. A typical energy function on Ω with
regard to the Voronoi tessellation is defined as follows [1]:

F(S) =
m
i=1


Ωi

ρ(x)∥x− si∥2dσ ,

m
i=1

Fi,

where the term Fi expresses the compactness (or inertia momen-
tum) of the Voronoi cell Ωi associated with the site si. The Voronoi
tessellation {Ωi} is said to be a centroidal Voronoi tessellation if
each site si coincides with the centroid ci of its Voronoi cell, that is:

si = ci


=


Ωi

ρ(x)xdσ
Ωi

ρ(x)dσ


.

The Lloyd algorithm [6] iteratively moves the generator of
Voronoi cell to its mass center. Although it is conceptually simple
Fig. 1. Our intrinsic method can compute a high-quality centroidal Voronoi
tessellation on model with complicated geometry and topology. The CVT on the
Pegaso model was created by 3000 sites.

and easy to implement, the Lloyd algorithmhas only linear conver-
gence rate. Liu et al. [7] proved that the CVT energy function is C2

continuous. As a result, one can minimize the CVT energy by the
Newton or quasi-Newton method, which converges much faster
than the Lloyd algorithm.

2.2. Computing CVT on surfaces

Both the Lloyd algorithm and the Newton algorithm require
computing the Voronoi diagrams in each iteration. Although it is
fairly simple to construct the VD in Euclidean space (e.g. R2 and
R3), computing VD on curved surfaces is technically challenging.
Alliez et al. [8,9] conformally parameterized genus-0 open surface
to a disk and evaluated the centroids over the density function ex-
pressed in parameter space rather than on the surface. Thanks to
the angle-preserving and local isotropic properties of conformal
parameterization, a well-shaped triangle in parameter space will
not be deformed too much once lifted back into R3, except for its
size, which can be easily compensated by the weighted density
function in R2. Rong et al. [10] generalized the CVT energy func-
tion from R2 to spherical space S2 and hyperbolic space H2 and
then combined all of them into a unified framework—the CVT in
universal covering space (UCS). They adapted Lloyd’s iteration to
compute the CVT in the embedded fundamental domain of theUCS.
If a centroid is outside of the fundamental domain by one side,
they performed a rigid motion to move it to the opposite side of
the fundamental domain. The adjusted centroids are all inside the
fundamental domain and are used as the new sites in the next iter-
ation. Rong et al. [11] proposed a GPU-based method for comput-
ing the CVT on the plane and observed significant speedup of these
GPU-based methods over their CPU counterparts. Their method
also works for some 3Dmodels that can be represented as a geom-
etry image. However, asmentioned above, global parameterization
is computationally expensive and may suffer from serious numer-
ical issues if the surface has complicated geometry and non-trivial
topology. For example, the Bunny’s ears are shrunk to very tiny
regions under spherical conformal parameterization [12], which
poses a great numerical challenge to compute the CVT on S2.
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Fig. 2. Exponential map naturally defines a geodesic polar coordinate system on
curved surfaces.

Yan et al. [2] proposed a different approach. Rather than con-
structing the CVT on the mesh directly, they repeatedly computed
restricted Voronoi diagrams (RVD), defined as the intersection be-
tween the input mesh and a Voronoi diagram in R3. Their method
uses a kd-tree to quickly identify and compute the intersection of
each triangle face with its incident Voronoi cells. The time com-
plexity for computing RVD is O(m log n), where n is the number of
seed points and m is the number of triangles of the input mesh.
Their method also adopted the quasi-Newton method for fast
convergence. They demonstrated that the restricted RVD-based
method is flexible for computing the CVTwith a non-constant den-
sity function. However, their method is embedding space depen-
dent andmay fail onmodels with complicated geometry/topology.
Recently, Lévy and Bonneel [13] proposed an elegant method for
constructing curvature-adaptive anisotropic meshes. Their idea is
to transform the 3D anisotropic space into a higher dimensional
isotropic space, in which the mesh is optimized by computing a
CVT. Lévy and Bonneel’s method overcomes the d-factorial cost of
computing a Voronoi diagram of dimension d by directly comput-
ing the restricted Voronoi cells with an algorithm called Voronoi
Parallel Linear Enumeration, which can be easily parallelized. Their
method is extrinsic due to the computation of intersection be-
tween the (higher dimensional) Voronoi cells and the surface.

2.3. Discrete geodesics & exponential map

For any two points p and q on a 2-manifold surface, the geodesic
path between p and q is a local shortest path connecting p and
q on the surface [14]. If the surface is smooth, the geodesic is
a curve on the surface whose geodesic curvature is always zero.
Since geodesic curvature is only dependent on the first fundamen-
tal form, the geodesic is intrinsic to the surface. To compute the dis-
crete geodesic on a trianglemesh of arbitrary topological type, two
broad classes ofmethods exist. The first class treats themesh as the
first-order approximation of a smooth surface and uses numerical
methods to solve a characterizing partial differential equation on
the mesh; as a typical example, the Eikonal equation is solved on
a mesh in [15]. The second class treats the mesh as a polygonal
domain and uses computational geometry methods to build the
shortest paths. The second class can compute the discrete geodesic
exactly, and is typified by the Mitchell–Mount–Papadimitriou
(MMP) algorithm [16], the Chen–Han (CH) algorithm [17] and their
many variants [18–22]. The time complexities of the MMP and CH
algorithms are O(n2 log n) and O(n2), respectively, where n is the
number of mesh vertices. Recently, Ying et al. [23] proposed the
saddle vertex graph (SVG), which is a pre-computation technique
for efficiently computing various types of discrete geodesics.

With the above-mentioned discrete geodesic algorithms, one
can compute the exponential map, which defines a geodesic polar
coordinate system onmeshes (see Fig. 2). Let p ∈ M be an arbitrary
point on a smooth surface M . The exponential map expp : TpM →
M at p is a map from the tangent plane at p to p’s local neighbor-
hood. Given a radial line on the tangent plane which originates at
Fig. 3. Bisector and geodesic Voronoi diagram. Row 1: The bisector (red) of two
sites (green) on the double-torus has three separated components. Besides line
segments, a bisector on trianglemeshmay also contain hyperbola segments. Row2:
The geodesic Voronoi diagram of four sites. Each Voronoi cell is bounded by two or
three closed bisectors. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

p and has direction v ∈ TpM , the exponential map sends p + tv
to a unique geodesic curve γ originating at p such that γ ′(0) = v
and ∥γ (t)∥ = 1. Conversely, given an arc-length parameterized
geodesic γ originating at p, γ (0) = p, there is a unique tangent
direction γ ′(0) on the tangent plane exp−1p (γ ) = γ ′(0). The expo-
nential map has been used in various graphics applications, such
as decal compositing [24], texturemapping [25], Poisson disk sam-
pling [26], etc.

2.4. Geodesic Voronoi diagram on meshes

To compute the geodesic Voronoi diagram on a 2-manifold
mesh M , the Euclidean norm is replaced by the geodesic metric.
Such a metric change results in fundamental change in the bisec-
tor and Voronoi regions between the Euclidean plane and a curved
2-manifold. For example, a bisector in R2 is a line segment, while
a bisector on a triangle mesh may contain both line segments and
hyperbola segments. Given a genus-g meshM , it was shown in [27]
that the bisector of two distinct points onM can have at most g+1
separated components and a Voronoi region of a point in S can
be bounded by one or more closed bisectors (see Fig. 3). Liu [28]
proved that the combinatorial complexity of geodesic Voronoi di-
agram on M is O((m + g)n), where m is the number of points in
S and n is the number of triangles in the mesh. Edelsbrunner and
Shah [29] showed that for a general topological space, if a closed
ball property is satisfied, then the dual Delaunay triangulation of
Voronoi diagram exists. Recently, Liu et al. [30] showed that the in-
trinsic Delaunay triangulation on mesh M can be obtained by the
duality of a geodesic Voronoi diagram onM . They proved that this
duality exists under two practical assumptions and proposed an
efficient algorithm for constructing the Delaunay triangulation.

We refer the readers to [31] for in-depth discussion on the
properties of Delaunay triangulation and Voronoi diagram on a
2-manifold mesh.
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Algorithm 1 Intrinsic computation of centroidal Voronoi tessella-
tion on meshes
Require: A triangle mesh M = (V , E, F), the set of sites S =
{si|si ∈ M, i = 1, · · · ,m} and the convergence threshold ilon;

Ensure: The centroidal Voronoi tessellation onM;
1: do
2: Compute geodesic distance field with {si}mi=1 as sources;
3: Form the geodesic Voronoi diagram;
4: for i = 1 tom do
5: Compute the Riemannian center ri for Voronoi cell Ωi;
6: Compute the center of mass ci for Ωi;
7: di ← d(si, ci);
8: si ← ci;
9: end for

10: while
m

i=1 di
m > ilon

3. The Lloyd framework

3.1. Overview

LetM = (V , E, F) be a triangle mesh representing a 2-manifold
surface, where V , E and F are the set of vertices, edges and faces,
respectively. Let S = {si|si ∈ M, i = 1, . . . ,m} denote the set of
sites onM .

Our algorithm adopts the Lloyd framework, which iteratively
computes the geodesic CVT on meshes. For each iteration, we
first compute the multiple-source-all-destination geodesic dis-
tance with the sites si, i = 1, . . . ,m, as the sources. This geodesic
distance field on M induces a geodesic Voronoi diagram. Then for
each geodesic Voronoi cell, say Ωj ∈ M , we compute its Rieman-
nian center rj, which is defined as the average of its corners. Next,
we compute the exponential map exp(rj) at the Riemannian center
rj, andmap theVoronoi cellΩj to the tangent plane Trj , onwhichwe
can compute the center of mass cj. Finally, we map the mass cen-
ter from the tangent plane to the mesh using the exponential map
exp(rj). We update each site si to the newmass center and then re-
peat the above-mentioned procedure until the offsets of the sites
are below the user-specified threshold.

3.2. Computing the geodesic Voronoi diagram

Taking {si}mi=1 as sources, we apply the ICH algorithm [21]1 to
compute the multiple-source geodesic distance field. As a result,
each mesh vertex is assigned a geodesic distance to its closest
source. Then we label an edge LE if its two endpoints have differ-
ent sources. Clearly, an LE edge is passed by a bisector. We further
collect into a list LT all the triangles in M that are incident to any
LE edge. As [27] shows, if a triangle t ∈ LT has all its three edges
labelled LE, then t contains a branch point in the geodesic Voronoi
diagram; otherwise t is passed through by a single piece of a bi-
sector. Based on the lists of LE and LT , we run the marching algo-
rithm [27] for extracting the geodesic Voronoi diagram onM .

Assume the sites si are uniformly distributed. This assumption
is reasonable, since the distribution of the sites is improved after
only a few Lloyd iterations (see Fig. 4). The ICH algorithm takes
worst-case O( n2

m log( n
m )) time and empirical O( n2

m ) time, where n
is the number of mesh vertices. The geodesic Voronoi diagram is
then built in O(k log k) time, where k be the number of triangles in
LT . Fig. 5 shows the geodesic distance field and its induced geodesic
Voronoi diagram on the double-torus model.

1 The ICH algorithm in [21] computes the single-source geodesic distance. But it
can be extended to multi-source case easily by adding a stoping criteria during the
window propagation procedure: when two windows from different sources cover
the same vertex, both windows stop propagation.
Algorithm 2 Computing the Riemannian center
Require: A set of points v1, v2, · · ·, vk on M; the convergence

threshold δ;
Ensure: The Riemannian center x;
1: x← v1;
2: do
3: x0 ← x;
4: Compute the exponential map expx at x
5: The inverse map exp−1x brings the points vi, i = 1, · · · , k,

back to the tangent plane TxM;

6: x̂←
k

i=1 exp−1x (vi)

k ;
7: x← expx(x̂);
8: while d(x, x0) > δ

3.3. Computing the Riemannian center

Let v1, v2, . . . , vk be the corners of a Voronoi cell Ωi ∈ M . The
Riemannian center is defined as the localminima x of the following
function

U(x) =
k

i=1

d2(x, vi), (1)

where d(p, q) is the geodesic distance between p and q. If M
has zero Gaussian curvature (that is, developable), the Rieman-
nian center exists and is unique. However, in general, the func-
tion U(x) is not convex, and the minimizer may not be unique.
Kendall [32] and Karcher [33] showed the conditions to ensure the
existence and uniqueness of the Riemannian center of mass. Intu-
itively speaking, if the points vi are not too far from each other,
there exists a unique Riemannian center of mass. Refer to [34,35]
for the rigorous results.

Let x∗ ∈ M be the local minimal of Eq. (1). Then x∗ satisfies

0⃗ = ∇U(x∗) =
k

i=1

∇d2(x∗, vi) = 2
k

i=1

d(x∗, vi)∇d(x∗, vi). (2)

Since d(, ) is the geodesic distance, ∇d(x∗, vi) ∈ Tx∗M is a unit
tangent vector. Therefore, d(x∗, vi)∇d(x∗, vi) represents a tangent
vector with length d(x∗, vi), denoted by t⃗i. Eq. (2) requires

k
i=1 t⃗i

= 0⃗, which means x∗ is the center of the terminal points of t⃗i.
We iteratively compute the local minimal x∗. Let x be the ini-

tial point, which could be either one of the corner points vi or the
site’s location si. We compute the exponential map expx at x. The
exponential map expx : TxM → M builds a geodesic polar coor-
dinate system at x. The inverse map exp−1x maps the point vi ∈ M
to the tangent plane TxM . Let x̂ ∈ TxM be the average of the points
exp−1x (v1), . . . , exp−1x (vk). If x̂ does not equal x, we send x̂ to the
mesh M by the exponential map expx(x̂). Setting x = expx(x̂), we
then repeat the above procedures until the average x̂ agrees with
x. Note that the exponential map, in general, does not preserve the
area. However,when theVoronoi cells are smallwith respect to the
injectivity radius [34], we observe that our algorithm can generate
fairly good results. In our implementation, we set the initial point
x = si, which is the center of the Voronoi region in the previous it-
eration. During the CVT iterations, the sites are getting closer to the
Riemannian center, making finding the Riemannian center faster.
We have observed that the iterative algorithm for finding Rieman-
nian center converges very fast, took only two or three s for all test
models in our paper (see Fig. 6).

3.4. Computing the center of mass

Although the Riemannian center r is not the center of mass, it is
close to all corners of the Voronoi cell. Therefore, it is very natural
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Fig. 4. Iteratively computing geodesic CVT on meshes. Row 1: the Lloyd algorithm; Row 2: the L-BFGS algorithm.
to use r to compute the center of mass. Let expr be the exponen-
tial map at the Riemannian center and v̂i = exp−1r (vi) the pre-
image of vi, which lies on the tangent plane TrM . Since the points
v̂i, i = 1, . . . , k, form a polygon on the tangent plane, its center of
mass ĉ ∈ TrM is given by

x =
1
6A

k−1
i=1

(xi + xi+1)(xiyi+1 − xi+1yi)

y =
1
6A

k−1
i=1

(yi + yi+1)(xiyi+1 − xi+1yi)

where (x, y) are the coordinates of ĉ , (xi, yi) are the coordinates of
v̂i, and A is the area of the polygon

A =
1
2

k−1
i=1

(xiyi+1 − xi+1yi).

Finally, the center of mass for Voronoi cell Ω is given by c =
expr(ĉ).

4. The L-BFGS framework

Liu et al. [7] proved that the CVT energy function F has C2

smoothness, thus, one can use the Newton or quasi-Newton
method to optimize the energy F . In this section, we adopt the L-
BFGS method to accelerate the CVT computation. To compute the
numerical integration on meshes, we modify the ICH algorithm
[21] for computing the geodesic distance between any point (not
necessarily a vertex) to the source point. We use [36] to compute
numerical integration on each triangle. The details of the modi-
fied ICH algorithm is in Section 5.1. The L-BFGS method requires
the gradient of the energy function for approximating the approx-
imated Hessian matrix. Given the energy function F in Section 2,
the gradient of the CVT energy is [37,1]:
∂F
∂xi
= 2mi(xi − ci),
wheremi =


Ωi
ρ(x)dσ , ci is the center of mass of the Voronoi cell

Ωi. We use themethods in Sections 3.3 and 3.4 to compute ci. Note
that the seeds are restricted on the inputmeshM , and the gradients
are also constrained on the tangent space Tx. Using the exponential
map expx : TxM → M , we can compute the projection ĉi of ci on
Tx. During the L-BFGS optimization process, we use 2mi(xi − ĉi) as
the gradient, so that it is on the tangent plane at point xi. During
each iteration in L-BFGS method, we get x̂′i on Tx for each Voronoi
cell, and use the inverse map exp−1x to get x′i = exp−1x (x̂′i). Fig. 7
shows the energy plot comparison between Lloyd method and
L-BFGS method.

Algorithm 3 The L-BFGS algorithm for intrinsic CVT
Require: A triangle mesh M = (V , E, F), the set of sites S =
{si|si ∈ M, i = 1, · · · ,m} and the convergence threshold ilon;

Ensure: The centroidal Voronoi tessellation onM;
1: do
2: Compute geodesic distance field with {si}mi=1 as sources;
3: Form the geodesic Voronoi diagram;
4: for i = 1 tom do
5: Compute the Riemannian center ri for Voronoi cell Ωi;
6: Compute the center of mass ĉi on tangent plane Ti;
7: Compute energy Fi(x) and gradient ∂F

∂xi
for Ωi;

8: end for
9: Using L-BFGS method to compute all seeds ŝi on their

tangent plane Ti ;
10: Compute all updated seeds s′i on Ωi using exp map;
11: while ∥∇F(x)∥ > ilon

5. Experimental results

5.1. Implementation

The ICH algorithm [21] has linear space complexity and
can compute the exact single-source geodesic distance in an
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(a) Geodesic distance field. (b) Geodesic Voronoi diagram.

Fig. 5. Themultiple-source geodesic distance field induces a geodesic Voronoi diagram. The cold (resp. warm) color in (a) indicates the small (resp. large) geodesic distance.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Computing the center of mass for the Voronoi cell Ωi . It takes two iterations (b) and (c) to obtain the Riemannian center c. The blue dot exp−1x (ĉ) in (d) is the center
of mass. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Statistics of the mesh complexity and the timing. g: genus; |V |: the number of vertices; m: the number of sites; #iter: total number of iterations; T : average time for each
Lloyd iteration measured in seconds on an Intel 2.50 GHz CPU with four cores. The last four columns are the quality measures for the dual Delaunay triangulation.

Model g |V | m T Qmin Qavg θmin θavg

Armadillo 0 172,974 1,500 2.12 0.555 0.914 23.5 52.9
Bimba 0 74,764 1,500 0.91 0.639 0.926 35.4 53.9
Happy Buddha 6 488,217 1,500 8.27 0.456 0.901 21.5 51.4
Bunny 0 72,020 5,000 0.63 0.665 0.918 32.2 53.4
Double-torus 2 12,286 500 0.076 0.651 0.935 29.8 54.6
Dragon 0 422,558 1,500 6.18 0.445 0.901 21.9 51.9
Knotty-bottle 2 96,830 2,000 1.44 0.401 0.913 25.3 52.8
Pegaso 5 333,727 3,000 3.61 0.401 0.913 23.4 52.7
Sculpture 3 199,837 2,000 1.92 0.658 0.923 35.7 54.1
Spring 0 313,874 20,000 5.25 0.455 0.904 22.6 52.1
O(n2 log n) time (The empirical time complexity is O(n1.5 log n)),
where n is the number of vertices. The ICH algorithm computes the
exact geodesic distances between any mesh vertex to the source
vertex. However, it cannot compute the exact geodesic distance
between any mesh points, i.e., non-vertex points on the mesh. We
modify the ICH algorithm by sacrificing its space complexity: we
store all the windows (a data structure that carries the geodesic
distance from an edge interval to the source) generated in the
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Fig. 7. Convergence rate comparison between the Lloyd method and the L-BFGS method.
Fig. 8. Experimental results. Images are rendered in high resolution that allows close-up examination.
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Fig. 9. Experimental results on high-genus models.
1.00E-04

8.00E-05

6.00E-05

4.00E-05

2.00E-05
0 50 100 150 200

0.95

0.90

0.85

0.80

0.75

0.70
0 50 100 150 200 0 50 100 150 200

55

50

45

35

40

(a) Normalized CVT energy function. (b) Triangle quality Qavg . (c) Minimal angle θavg .

Fig. 10. Energy function and quality measures. The horizontal axis in the plots shows the iteration number. The vertical axis in (a) is the normalized CVT energy function,
that is, F(S)

A2
, where A is the area of the model.
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(a) Input model. (b) Our result.

(c) [2].

Fig. 11. Intrinsic vs. extrinsic. Consider the Coil Spring model, where the pitch of the helix equals the diameter of the coil. Therefore, the coil almost touches itself and
leaves very small gap. See the closeup view. As an intrinsic method, our method is independent of the embedding space and it can correctly separate the coil. The extrinsic
method [2] computes the CVT by intersecting a 3D CVT with the model, which cannot distinguish the two geometrically-close-but-topologically-separate pieces. The
Delaunay triangulations, the dual of the computed CVTs, are shown in this figure.
window propagation procedure. When computing the distance
from the source to a non-vertex point, say p ∈ t , which is inside
a triangle t , we consider all windows covering t ’s sides, and find
the one which can provide the shortest distance to p.

The modified ICH algorithm can also compute the discrete ex-
ponential map on triangle meshes. Thanks to the parallel structure
of the Lloyd iteration, our algorithm can be easily implemented
in parallel. Each ICH thread takes a point (not necessarily a mesh
vertex) as the source, the ICH algorithm partitions each mesh edge
into a set of intervals, called windows, which encode both the
geodesic distance and the direction of the geodesic path emanat-
ing from the source. The windows are maintained in a priority
queue according to the distance from the source and are propa-
gated across the mesh faces: pops a window from the queue and
then computes its children windows which can add, modify, or re-
move existingwindows, and updates the queue accordingly.When
a window reaches a vertex v, it updates v’s distance and direction,
which are used for the polar coordinates. The ICH algorithm termi-
nates if the wavefront has reached the user-specified radius.

The inputmesh is encoded in the half-edge structure and stored
in the CPU’s global memory in a read-only manner. Each CPU
thread maintains its own data (i.e., the source point, the wave-
front windows and the priority queue) in its own memory pool.
Even though two ormore ICH threadsmay compute on overlapped
regions, they do not have any data and control conflicts, so each
thread can proceed independently.

5.2. Results & comparison

We adopted OpenMP to implement our method on an Intel
2.50 GHz CPUwith four cores. Our program asks the user to specify
the number of sites, then it generates the sites on the mesh ran-
domly. We set the convergence threshold ε = 10−6 in our imple-
mentation. Table 1 lists themodel complexity and the performance
of our algorithm and Fig. 8 shows the computed CVT on some 3D
models. Fig. 9 shows CVT on high genus models.

To evaluating the quality of our results, we compute the Delau-
nay triangulation, which is the dual graph of CVT. Then we adopt
the following measures [38,2]:

• Triangle quality: Let Q (t) = 6St/(
√
3ptht) be the quality of a

triangle t , where pt , St and ht are the inradius, area, and the
length of the longest edge of t , respectively. Let Qmin (resp. Qavg)
be the minimal (resp. average) quality measure. The closer the
value to 1.0, the more isotropic of the Delaunay triangulation,
therefore, the higher quality of the CVT one obtains.
• Minimal angle: Let θmin be the minimal of the smallest angle of

all triangles and θavg the average of minimal angles of all tri-
angles. The closer the values of θmin and θavg to 60°, the more
isotropic of the triangulation one obtains.

Fig. 10 shows the quality improvement via the Lloyd iteration.
Fig. 12. Comparison to the RVDmethod [39] and the UCS method [10]. Ns denotes
the number of singularities (i.e., vertices whose valence is not six).
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Fig. 13. Thanks to its intrinsic property, our method can produce consistent results on the various poses of the Lion model.
Fig. 14. The intrinsic CVT and extrinsic RVD with very few sites.

Compared to the parameterization-based methods [9–11], our
method avoids the inaccuracy due to the approximation andmetric
distortion in parameterization. Furthermore, ourmethod can apply
to models of arbitrary geometry and topology, for which the pa-
rameterization is not easy to obtain. As Fig. 12 shows, our method
outperforms theUCSmethod [10] and the RVDmethod [2] in terms
of quality (higher angle measure Qave and lower number of singu-
larities).

The restricted Voronoi diagram methods [2,39] approximate
the CVT on surface by computing the intersection of a 3D CVT and
the input mesh. Although it works fairly well for models with sim-
ple geometry, this approximation is extrinsic, that is, embedding
space dependent. Fig. 11shows a Coil Spring model, where the coil
almost touches itself and leaves very small gap. The RVD method
cannot distinguish the geometrically-close-but-topologically-far
pieces, and produces the wrong result. Our method is completely
intrinsic in that all the computations are based on the metric
only. So it can clearly distinguish these geometric ‘‘ambiguity’’. To
further demonstrate the efficacy of our intrinsic method, we ap-
ply it to the Lion model in various poses. As Fig. 13 shows, the
computed CVTs are consistently among the near-isometric poses.
Fig. 14 shows the CVTs with very few sites. Since each Voronoi cell
is big, we can clearly see the difference between the extrinsic RVD
and our intrinsic CVT.

6. Conclusion

This paper presents an intrinsic algorithm for computing cen-
troidal Voronoi tessellation on arbitrary triangle meshes. Our al-
gorithm adopts the Lloyd framework, which iteratively moves the
generator of each geodesic Voronoi diagram to its mass center.
Based on the discrete exponential map, our method can efficiently
compute the Riemannian center and the center of mass for any
geodesic VD. Thanks to its intrinsic feature, our method works
well formodelswith arbitrary topology and complicated geometry,
where the existing extrinsic approaches often fail. The promising
experimental results show the advantages of our method.
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