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Abstract

A natural metric in 2-manifold surfaces is to use geodesic distance. If a 2-

manifold surface is represented by a triangle mesh T , the geodesic metric on

T can be computed exactly using computational geometry methods. Previous

work for establishing the geodesic metric on T only supports using half-edge

data structures; i.e., each edge e in T is split into two halves (he1, he2) and

each half-edge corresponds to one of two faces incident to e. In this paper, we

prove that the exact-geodesic structures on two half-edges of e can be merged

into one structure associated with e. Four merits are achieved based on the

properties which are studied in this paper: (1) Existing CAD systems that

use edge-based data structures can directly add the geodesic distance func-

tion without changing the kernel to a half-edge data structure; (2) To find the

geodesic path from inquiry points to the source, the MMP algorithm can be

run in an on-the-fly fashion such that the inquiry points are covered by correct

wedges; (3) The MMP algorithm is speeded up by pruning unnecessary wedges

during the wedge propagation process; (4) The storage of the MMP algorithm

is reduced since less wedges need to be stored in an edge-based data structure.

Experimental results show that when compared to the classic half-edge data

structure, the edge-based implementation of the MMP algorithm reduces 44%

running time and 29% storage on average.

Keywords: Exact geodesic, triangle meshes, 2-manifold, edge-based data

structure
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1 Introduction

In many geometric problems in industry, solution spaces (such as object spaces or config-

uration spaces) are usually given in the form of polygonal meshes in R3 which represent

2-manifold surfaces. On curved 2-manifold surfaces, a natural metric is to use geodesic

distance. Computing geodesic metric has found a widely range of applications in natural

science and engineering. In this paper, we study the computation of exact geodesic metric

on 2-manifold triangle meshes.

A geodesic path between two points p and q on a 2-manifold M is a local shortest path

on M which connects p and q. A geodesic metric on M is a real function d : M ×M → R

such that ∀p, q ∈ M , d(p, q) is the length of the shortest path between p and q. Let T be

a 2-manifold triangle mesh. If a geodesic path on T does not go through any vertex in T

except for its two endpoints, we can always unfold the triangles, which are passed through

by the geodesic path, one by one along their shared edges into a 2D plane and then the

geodesic path becomes a straight line in the plane. Fast algorithms have been proposed

for both approximation and exact geodesic computation on T . We briefly summarize some

representative works below. The reader is referred to [1] for a detailed survey.

A path is called a 1 + ϵ approximation of a shortest path on T if its length is at

most 1 + ϵ times the length of the shortest path. Let n be the number of triangles in T .

Hershberger and Suri [2] presented a simple linear algorithm to compute an approximate

shortest path (ϵ = 1) on convex polytopes. For ϵ < 1, Agarwal et al. [3] presented

an algorithm of O(n log 1
ϵ + 1

ϵ3
) time complexity, which had been further improved to

O(n+ logn
ϵ1.5

+ 1
ϵ3
) [4] and O( n√

ϵ
+ 1

ϵ4
) [5], respectively. These algorithms [2, 3, 4, 5] are all

only applicable for convex polytopes. For non-convex polytopes, Har-Peled [6] presented an

1+ϵ approximation algorithm of O(n2 logn+ n
ϵ log

1
ϵ log

n
ϵ ) time complexity. Interpreting a

triangulated surface as a linear approximation of a smooth 2-manifold, geodesic paths can

also be computed approximately using numerical methods [7] which use the fast marching

method to solve the Eikonal equation on T .

Exact geodesic metric can be computed on T using computational geometry methods.

Sharir and A. Schorr [8] proposed an O(n3 log n) algorithm to compute shortest paths on

convex polyhedrons. A breakthrough is achieved in [9], called MMP algorithm below, in

which the shortest path between a source point and any destination point on T is deter-

mined in O(n2 log n) time. The running time of MMP algorithm was further improved

to O(n2) [10] and O(n log2 n) [11], respectively. Surazhsky et al. [12] and Qin and Wang

[13] presented novel implementations of MMP algorithm [9] and CH algorithm [10], re-
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spectively, and reported that their implementations runs fast in practice. The degenerate

cases in the implementation [12] are handled in [14].

All these work [9, 10, 12, 13] for computing exact geodesic metric on T relies on a

half-edge (also called directed edge in literature) representation [15, 16] of T ; i.e., every

edge in T is represented by two half-edges, each of which corresponds to one of two faces

incident to that edge. This property, however, prevents the algorithms to apply with

other widely used data structures in engineering such as doubly-connected edge list [17],

winged-edge data structure [18] and its variants for sold modeling [19], in which each edge

in T is recorded exactly once and we call these data structures [17, 18, 19] as edge-based

data structures, compared to the half-edge data structures [15, 16]. The comparisons of

half-edge and edge-based data structures are studied in [20].

In this paper, we make the following contributions:

• We prove that the exact geodesic metric structure in MMP algorithm [9] based on

half edges can be merged for each edge in T . This makes the algorithm applicable for

edge-based data structures. Furthermore, we show that the MMP algorithm can be

performed in an on-the-fly fashion; i.e., when we start at a mesh point p to propagate

a structure for find the geodesic path to another mesh point q, the MMP algorithm

need not to be performed over the entire mesh surface, but can be terminated when

a correct structure covers q.

• The core of the MMP algorithm is to propagate a set of wedges over all edges in T .

By merging the wedges on two incident half-edges into one set of wedges on an edge,

unnecessary wedges can be efficiently pruned during the wedge propagation process

and the number of total wedges in the MMP algorithm is reduced. We show that

when compared to the half-edge data structures, edge-based implementation of the

MMP algorithm reduces 29% storage and 44% running time on average.

2 A short summary of the MMP algorithm [9, 12]

The key idea of the MMP algorithm [9] is that between two inquiry points p and q ∈ T ,

there exists a set of triangles Tpq = (t1, t2, · · · , tm) ∈ T , p ∈ t1, q ∈ tm, which satisfies:

1. Each two sequential triangles ti and ti+1 are adjacent and share a common edge;

2. If all these triangles are unfolded into a plane R2 along the shared edges one by one,

in the unfolded image of Tpq in R2, the shortest path between p, q on T becomes a

line pq or or a polyline pv1v2 · · · q , where v1, v2, · · · are saddle vertices in Tpq.
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Figure 1: Shortest paths inside triangles (t1, t2, t3, t4, t5) unfolded into a plane. For the
source point p, if the inquiry point q ∈ I1, then the shortest path is a line pq; if q ∈ I2 (or
q ∈ I3), the shortest path is a polyline pv1q (or pv1v2q).

Figure 2: 2D subdivision structure in a triangle mesh T for shortest path computation.
Left: the subdivision of a triangle and each subdivision cell Di is assigned a vertex vi.
Right: tracing the shortest path using the subdivision structure and the assigned vertices.

In above, the saddle vertex is defined as the vertex for which the sum of incident

angles is greater than or equal to 2π. One example of the shortest paths in a triangle set

(t1, t2, t3, t4, t5) is illustrated in Figure 1. For the source point p ∈ t1, the lines connecting

p to vertices v1, v2 partition the bottom edge into three intervals I1, I2, I3. If the inquiry

point q ∈ t5 is in the interval of I1, the shortest path inbetween is a line pq. If q ∈ I2 (or

q ∈ I3), the shortest path is a polyline pv1q (or pv1v2q).

Based on the observation of plane unfolding, the MMP algorithm computes a 2D

subdivision structure (D1, D2, · · · ) on T , which is exhaustiveness (
∪

iDi = T ) and semi-

mutual exclusion (X◦
ij = ∅, Xij = Di∩Dj , for any i ̸= j, where X◦ is the interior of set X).

Each 2D subdivision cell Di is assigned with a point vi that is the 2D image of either the

source point p or a saddle vertex projected onto the plane containing Di. As illustrated in

Figure 2, given such a subdivision structure, the shortest path between source p and an

inquiry point q can be efficiently achieved using the following steps:
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Figure 3: The wedge representation and the intersection of two wedges [12].

S1. Find the subdivision cell Ds containing point q. Set Dc = Ds, r = q.

S2. Connect r and vc (the assigned vertex of Dc) by a line l in the plane defined by Dc.

S3. If r ̸= p, find the intersection x of l and Dc; otherwise stop;

S4. Find the adjacent subdivision Da of Dc shared the same boundary point x. Set

Dc = Da, r = x. Go to step S2.

Due to the extreme complexity of the 2D subdivision structure with curved boundaries

for each subdivision cell, it is impractical to explicitly build and store this 2D structure

on T . Mitchell et al. [9] circumvented this difficulty by only building a 1D subdivision

structure on the half edges of T and Surazhskey et al. [12] propose a novel implementation

of this 1D structure as summarized below.

Definition 1. A wedge is an interval on a half edge he of T , defined by 6-tuple (b0, b1, d0, d1,

σ, τ), where b0 and b1 are parameters measuring distance along he, d0 and d1 are distance

from the assigned vertex s to the endpoints b0 and b1, respectively, which encodes the 2D

position of s, σ is the distance of the shortest path from the source p to s, τ is a binary

direction specifying to which side of he the vertex s lies.

Figure 3(a) illustrates the wedge definition. To compute the 1D edge subdivision,

from the triangle containing the source p, initial wedges can be identified and propagated.

During the wedge propagation, the new derived wedges may intersect some existing wedges.

Let w1, w2 be two intersected wedges with overlap δ (Figure 3(b)). Surazhsky et al. [12]

use the following rules to update w1, w2:

C1. If one of the wedges has a larger distance value entirely over δ, then simply cut δ

from that wedge;
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Figure 4: Merge the wedges in two half-edges he1, he2 into one set of wedges in an edge e.

C2. If the case C1 does not hold, then update two wedges using the new separating point

w (Figure 3(c)) computed by√
(q − s1x)2 + s21y + σ1 =

√
(q − s2x)2 + s22y + σ2 (1)

The solution of Equation (1) is the intersection points of a branch of hyperbola with

the edge. The wedge propagation and updating can be performed using a priority queue

in a continuous Dijkstra fashion. Mitchell et al. [9] proved that

• The propagation algorithm will generate correct solutions that all half edges of T

are completely covered by wedges.

• The total number of wedges in T is bounded by O(n2), where n is the number of

triangles in T .

The MMP algorithm solves a single-source all-destinations geodesic problem on T . It

can be naturally extended to a multiple-sources geodesic field solution by propagating

initial wedges simultaneously from multiple source points on T [21].

3 Edge-based exact geodesic metric on T

The wedge structure on half edges of T provides the exact geodesic metric on T . To

establish and store the exact geodesic metric via wedge structure, the MMP algorithm

[9] split each edge e of T into two halves and each half edge corresponds to one of two

incident triangles of e. Let q be a point on e incident to triangles t1, t2. The necessity of

using half edges is that the shortest path from source p to q that approaches q by crossing

t1 or t2 must be treated separately1 in the MMP algorithm.

If wedges are constructed using a half-edge data structure, all wedges on one half edge

must have the assigned saddle vertices lying on the same side of that half edge (ref. Figure

4 left). In this case the binary direction τ of assigned saddle vertex in Definition 1 can be

1The two paths are called t1-free and t2-free paths in [9].
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ignored. However, Surazhsky et al.’s implementation [12] use a half-edge data structure

and a direction τ in their wedge definition simultaneously: this reveals a deficiency in their

work. Surazhsky et al. [12] presented that for wedge updating, if the case C2 happens,

then a single solution exists in the intersection region δ by solving Equation (1). This

claim is only true for the half edge’s wedge intersection and two intersected wedges must

satisfy certain conditions. We re-examine this claim in Property 6 in Section 4.

In this work, we study wedges in two stages:

• Wedge propagation stage. In this stage, much more wedges than those in the final

stage will be generated, updated or possibly deleted later.

• Final stage. In this stage, only those necessary wedges for answering single-source

all-destinations inquiries are kept.

In this section, we show that wedges on two incident half-edges can be merged into

one set of wedges on an edge (ref. Figure 4 right) and the exact geodesic metric structure

still holds. In particular, we show that this half-edge merging is correct at both wedge

propagation and final stages. We prove the correctness using the following three steps:

• Step 1. Based on the correctness of the MMP algorithm [9], at the final stage, each

half edge of T is completely covered by wedges.

• Step 2. Based on the correctness of Step 1, we prove that wedges on two incident half-

edges can be merged into one set of wedges on an edge at the final stage (Properties

1 and 2).

• Step 3. Based on the correctness of Step 2, we prove that at the wedge propagation

stage, wedges can be propagated and updated using an edge-based data structure

(Properties 3 and 4).

The merit of wedge merging at Step 2 is to save data storage for geodesic path inquiries.

The merit of wedge propagation using an edge-based data structure at Step 3 is to reduce

the number of unnecessary wedges to be propagated at the wedge propagation stage, and

thus speed up the MMP algorithm.

Property 1. The set of wedges on an edge, by merging the wedges on two incident half-

edges at the final stage with intersection updating using rules C1 and C2, offer a correct

1D subdivision on all edges in T .
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Figure 5: A paradox of 2D face subdivision induced from 1D edge subdivision using
wedges.
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Figure 6: Proof of Property 2: r lies inside the wedge (a) or sit on the boundary of the
wedge (b) or sit on a saddle vertex (c).

Proof. Refer to Figure 4. Based on the correctness of the MMP algorithm [9], at the

final stage the wedges on two incident half-edges he1 and he2 completely cover the two

half-edges exhaustively and semi-mutual exclusively. Then merging these wedges on he1

and he2 into one set of wedges on edge e completely cover e. For any point q on an edge

in T , its shortest path to source p is clearly indicated by a wedge containing q on that

edge. For any point q inside a triangle t in T , its shortest path pq to source p /∈ t must

cross t. Let the intersection point of pq and t be r. Since pq is a shortest path, pr must

be a shortest path too. Then r is properly covered by a wedge which indicates the short

path pr.

The exact geodesic metric on T relies on a 2D subdivision as illustrated in Figure 2.

However, a complete covering of 1D edges in T using wedges may not induce a complete

2D subdivision of triangles in T . Figure 5 shows such an example. Let wa, wb, wc, wd

denote the wedges with assigned saddle vertices a, b, c, d, respectively. For 1D subdivision

on the edges, edge e1 is completely covered by wedges (wa, wb, wc, wd), e2 by (wa, wd), e3

by (wb, wc, wd). For the induced 2D subdivision inside the triangle, there is a vacuum area

(shown in white color in Figure 5 left) which is not covered by any wedges. To answer

this puzzle, the following property is in order.
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Figure 7: Proof of Property 3: an edge-based wedge wf at the final stage (shown in blue
color) is updated by a wedge wu (shown in yellow color) during the edge-based wedge
propagation process.

Property 2. The 1D subdivision on edges in T , resulted from merging wedges on half edges

at the final stage, induces a correct 2D subdivision inside all triangles in T . Furthermore,

each planar 2D subdivision area induced from a wedge wv is star-shaped with respect to

the assigned saddle vertex v in the same plane.

Proof. Assume that a vacuum area exists inside the triangle t from the induced 2D sub-

division, as shown in Figure 5. Let q be a point inside this vacuum area. Without loss

of generality, assume that the source p is outside t. The shortest path from p to q must

intersect the boundary edges of t and let r be the intersection point. Since the edges are

completely covered by wedges, point r must be inside a wedge wi or in the boundary of

wi, as shown in Figure 6. By assumption, q cannot be in the extended line from i to r.

So in the cases shown in Figure 6, the shortest path from p to q at point r form an angle

which is not equal to π in the unfolded plane. If r is not a mesh vertex, then a shortcut

must exist that offers a shorter path (Figure 6(a) and (b)), a contradiction. If r is a vertex

(Figure 6(c)), then r is a saddle vertex and q is star-shaped with respect to r.

Property 3. At the wedge propagation stage, the wedges on two incident half-edges can

be merged into one set of wedges on an edge. I.e., the resulting edge-based wedges at the

final stage induce a correct 2D subdivision (and a correct geodesic metric structure) inside

all triangles in T .

Proof. Based on Property 2, the edge-based wedges at the final stage by merging half-edge-

based wedges induce a correct 2D subdivision in T . If Property 3 does not hold, there

exists at least one wedge in the edge-based wedges at the final stage which is modified

or removed during the edge-based wedge propagation process. Let wf be such a wedge

(shown in blue in Figure 7) at the final stage. If wf is updated (modified or deleted) by
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a wedge wu during the edge-based wedge propagation process, let q be a point sitting on

the updated area (green point in 7). The updating means that the path from q to source

p through wedge wu is shorter than the path through wedge wf . However, since wf is a

wedge existing at the final stage, the path from q to source p through wedge wf should be

shortest, a contradiction.

In addition to its theoretical value, we found that Property 3 is very useful in practice,

since in our experiments more than 29% unnecessary wedges can be pruned during the

edge-based wedge propagation process and the MMP algorithm is speeded up by reducing

44% running time on average. More details are presented in Section 5.

The 2D subdivision structure inferred from edge-based wedge information offers a

geodesic metric d : T × T → R. Let A be a nonempty subset of T . The geodesic distance

function for a point x ∈ T to A is defined as dA(x) = infy∈A d(x, y), which found a wide

range of applications in industry [21, 22]. We conclude this section with the following

property.

Property 4. Assume A is a nonempty subset of T . The map x 7→ dA(x), x ∈ T , is

uniformly Lipschitz continuous in T , i.e.,

∀x, y ∈ T, |dA(x)− dA(y)| ≤ d(x, y)

Proof. Let x, y, z be three arbitrary points in T . Denote xz, xy, yz as the shortest paths

that from x to z, x to y, y to z in T , respectively. Since xz is the shortest path between

x and z, we have d(x, z) ≤ d(x, y) + d(y, z). Now, ∀z ∈ A,∀x, y ∈ T , let z∗ ∈ A such that

infz∈A d(y, z) = d(y, z∗). Without loss of generality, let dA(x) ≥ dA(y). Then dA(x) =

infz∈A d(x, z) ≤ d(x, z∗) ≤ d(x, y) + d(y, z∗) = d(x, y) + dA(y).

4 Edge-based wedge intersection updating

We have shown that the wedges on half edges can be merged for each edge in T at the

wedge propagation stage and the exact geodesic metric still holds at the final stage. These

properties (Properties 1-4) have two merits for practical applications:

• Unnecessary wedges are pruned efficiently during the wedge propagation process and

the MMP algorithm is speeded up;

• For an existing CAD system which use classic edge-based data structures, the sys-

tem need not change to a half-edge data structure for adding a new exact geodesic

function, but just use the existing edge-based data structure.
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Figure 8: Example 1. Middle: on edge e3 = (v5, v6), source point v0 contributes two
wedges w1 and w2 (shown in blue color). Right: on edge e2 = (v5, v7), source point v0
contributes two wedges w3 and w4 (shown in red color).

Compared to the half-edge data structure, special attentions must be paid for edge-

based wedge intersection at the wedge propagation stage. We start with the following

example.

Example 1. Figure 8 shows a symmetric mesh model. The vertices’ positions are

v0 = (0.5, 0.5, 1.5), v1 = (0, 0, 1), v2 = (1, 0, 1), v3 = (1, 1, 1), v4 = (1, 1, 0), v5 = (1, 0, 0),

v6 = (0, 0, 0) and v7 = (0.5, 0.5,−0.5). The source point is at v0. Let △ijk denote the

triangle formed by vertices i, j, k. Consider edges e2 = (v5, v7) and e3 = (v5, v6). On e3,

source v0 contributes two wedges w1, w2:

• w1 goes through △v0v1v2, △v1v6v2, △v2v6v5.

• w2 goes through △v0v2v3, △v2v4v3, △v2v5v4, △v2v6v5.

On e2, source v0 contributes two wedges w3, w4:

• w3 goes through △v0v1v2, △v1v6v2, △v2v6v5, △v5v6v7.

• w4 goes through △v0v2v3, △v2v4v3, △v2v5v4, △v4v5v7.

It is readily seen that in this example,

• The intersection of w1 and w2 on e3 is in the case C1, for which Equation (1) has

no solution in the intersection region δ.

• The intersection of w3 and w4 on e2 is in the case C2, for which Equation (1) has

an infinite number of solutions in δ.

Definition 2. At the wedge propagation stage, for a wedge w = (b0, b1, d0, d1, σ, τ) at an

edge e, w is called correct if w offers a true geodesic metric for the interval (b0, b1) at e.
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In the Surazhsky et al.’s implementation [12] of the MMP algorithm, for any moment

at the wedge propagation stage, there are some wedges existed on the edges and those

wedges to be propagated are stored in a priority queue Q. The priority queue Q sorts

the wedges to be propagated by their shortest distances back to the source point. Each

time the first wedge in Q is popped off and propagated outward across a triangle face. If

a wedge wp is propagated to produce a new wedge wc, we denote wp = Parent(wc) and

wc = Child(wp). The following property is readily seen.

Property 5. At the wedge propagation stage, if the longest geodesic distance in an ex-

isting wedge we is shorter than the shortest geodesic distance in the first wedge wf in the

propagation priority queue Q, then we is correct. This property is true for both half-edge

and edge-based data structures.

Proof. Since the propagation of wf to Child(wf ) will increase the shortest geodesic dis-

tance in Child(wf ) to the source point, Child(wf ) cannot update we. Meanwhile, after

popping off and propagation of wf , the new wedges that enter into Q can never has

their shortest geodesic distances shorter than the shortest geodesic distance in wf . That

completes the proof.

We find Property 5 is valuable in practice. For previous implementations of the MMP

algorithm, to find the geodesic path from one inquiry point q to the source point p, the

wedge propagation has to be completely performed over the entire mesh surface. Based

on Property 5, once we determine there is a wedge that covers q and is correct, the wedge

propagation process can be terminated and accordingly the MMP algorithm is performed

in an on-the-fly fashion. This on-the-fly fashion is particularly efficient for those inquiry

points near the source p.

For the number of solutions of Equation (1) in the intersection region δ, we have the

following property.

Property 6. In the intersection region δ of two intersected wedges w1 and w2 at the

wedge propagation stage, the number of solutions of Equation (1) can be zero, one, two or

infinite. If both Parent(w1) and Parent(w2) are correct and the number of solutions is

two or infinite, the two assigned saddle vertices of wedges w1 and w2 must be from different

sides of the edge.

Proof. If the intersection of two wedges is in the case C1, then Equation (1) has no solution

in δ. For the case C2, the existence of one single solution is given in [12] and the existence

12
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Figure 9: The relation of hyperbola and wedges’ saddle vertices. The solution of Equation
(1) is the intersection of a branch of hyperbola with the edge, where the wedges’ saddle
vertices are treated as the foci of the hyperbola (left). Two solutions exist where two
saddle vertices lie in different sides of the edge (middle) or lie in the same side of the edge
(right).

v1 v2 v1 v2 v1 v2

Figure 10: Proof of Property 6. Left: the update of two intersected wedges w1 and w2 for
the case shown in Figure 9 right. Middle: The shortest path from the saddle vertex V1 to
the source point p goes through the saddle vertex V2. Right: The shortest path from the
saddle vertex V1 to the source point p does not go through the saddle vertex V2

of infinite solutions is given in Example 1. There are two possibilities of existing two

solutions of Equation (1) in δ. The first case is that two assigned saddle vertices of w1

and w2 lie in the different sides of the edge (Figure 9 middle) and the second case is two

assigned saddle vertices in the same side of the edge (Figure 9 right). Both cases can occur

at the wedge propagation stage. Below we prove that if both Parent(w1) and Parent(w2)

are correct, the second case does not exist. For the second case, the update of wedges can

only be the case shown in Figure 10 left. Let v1 and v2 be the saddle vertices of w1 and

w2, respectively. Since Parent(w1) is correct, the shortest path from v1 back to the source

is indicated by Parent(w1). If this shortest path from v1 passes through v2 as shown in

Figure 10 middle, let this path intersects the branch of hyperbola at the point I. For any

point r lying in segment v1I of the path, r has a shorter path from r to the source by

going through v2 than the path from r to the source through v1. However, since r lies on

the left hand of the branch of hyperbola, the path from r to the source through v1 should

13
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Figure 11: Proof of Property 7: a and b are two assigned saddle vertices of two intersected
correct wedges wa and wb, respectively, and cd is a shortcut of path r(b) + rx.

be shorter than the path r to the source through v2, a contradiction. So the shortest

path from v1 to the source cannot pass through v2, but intersect the wedge Parent(w2)

as shown in Figure 10 right. However, since the shortest paths cannot intersect (see the

proof of Property 7), this case does not exist neither. So if the number of solutions is two

and Parent(w1) and Parent(w2) are correct, the two assigned saddle vertices of wedges

w1 and w2 must be from different sides of the edge.

If the number of solutions is infinite, Then either the two wedges are identical or the

hyperbola solution degenerates to a bisector (that coincides with the mesh edge) between

two assigned saddle vertices. The fist case cannot occur at the wedge propagation stage.

For the second case, the two assigned saddle vertices lie in the different sides of the

edge.

In the proof of Property 6, we use the following property.

Property 7. Two correct wedges cannot intersect.

Proof. Let a and b be two assigned saddle vertices of correct wedges wa and wb, respective-

ly. If wa and wb intersects, let r be a point inside the intersection area as shown in Figure

11. Denote the shortest path distance from source p to r through a by r(a), and r(b) is

similarly defined for the saddle vertex b. In the wedge wa, we extend the line segment

ar to some point x which is also in the intersection area. If r(a) = r(b), then there are

two equal-distance shortest paths from p to x, i.e., r(a) + rx = r(b) + rx. However, since

both r and x are interior points in the nonempty intersection area wa ∩wb, there exists a

shortcut (shown in line segment cd in Figure 11) in the path r(b) + rx; thus contradicts

to the assumption r(a) + rx is a shortest path. Now without loss of generality, assume

r(a) > r(b). In the wedge wa, we extend the line segment ar to a point q which is inside

wa but not in wb. Then the inequality r(a) + rq > r(b) + rq means q(a) in wa is not a

shortest path distance; a contradiction.

14



5 Experimental results

We have proved several properties which show the MMP algorithm [9] can be performed

in an edge-based data structure and the original MMP algorithm can be improved in the

following three aspects:

• On-the-fly implementation. If the user specifies any two points p and q on the mesh

and running the MMP algorithm by propagating wedges initialized from p, the MMP

algorithm needs not to be run over the entire mesh surface: According to Property

5, once a correct wedge covers q, the MMP algorithm can be terminated.

• Time efficiency. According to Property 3, at the wedge propagation stage, the wedges

on two incident half-edges can be merged into one set of wedges on an edge. Then

some unnecessary wedges can be efficiently pruned during the propagation process

and thus the algorithm is speeded up. Our experiments show that using edge-based

data structure reduces 44% running time on average when compared to using half-

edge data structure.

• Space efficiency. According to Properties 2 and 3, less wedges are stored in an

edge-based data structure when compared to those wedges stored in half-edge data

structures. Our experiments show that at the wedge propagation stage, the number

of total produced wedges is reduced by 29% on average, and at the final stage, the

number of stored wedges is reduced by 34% on average.

Below we present the experiments and summarize the experimental results, which

demonstrate the time and space efficiency achieved by using the edge-based data structure.

5.1 Benchmark test models

To test the robustness and stability of coding of geodesic metric computation on T , we

build a set of benchmark models utilizing visibility graphs [15]. Refer to Figure12 (a) and

(b). Given a set S of disjoint polygonal obstacles in a plane, the visibility graph V G(S)

of S is defined as follows: its nodes are the vertices of S and there is a line connecting

two nodes v and w if they can see each other. Given two points p, q in S with n nodes,

V G(S ∪ {p, q}) can be constructed in O(n2 log n) and the shortest path between p, q can

be found in O(n logn) time [15].

We use the shortest planar paths computed from visibility graphs as the ground truth

to construct the benchmark models. Let the obstacles S be bounded in a sufficient large
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p

q

(a) (b)

(c) (d)

(e) (f)

Figure 12: The benchmark model utilizing visibility graphs. (a) A set of obstacles and two
source points p, q inside a rectangle. (b) The visibility graph of (a) and the shortest path
between p and q. (c) A Triangulation of (a). (d) The benchmark triangle mesh model by
lifting each planar obstacle as a polygonal cylinder with a sufficient height. (e, f) Two
different views of the shortest path between p and q in the benchmark model, computed
by the presented geodesic metric algorithm. The distance field on the model is colored by
one-to-one mapping the geodesic distance to an index color map.

rectangle R (Figure 12(a)). A triangulation of p, q,R and the boundaries of S can be

constructed in O(n log n) time (Figure 12(c)). At the place of each obstacle, a polygonal

cylinder is lifted and sewed with the planar triangulation along the obstacle’s boundary

(Figure 12(d)). If the height of obstacle cylinders is sufficient high, the shortest path

between p and q will not climb the cylinders; instead, the shortest path will go around

the boundary of planar obstacles (Figure 12(e) and (f)). We use both convex and concave

obstacles in the benchmark models. By using mesh refinement and simplification, the

number of triangles in the benchmark models can be adjusted.
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(a) A non-uniform sphere model (c) A non-uniform eight model 

    

(b) A uniform sphere model after remeshing (d) A uniform eight model after remeshing 

    

(e) A non-uniform teapot model (f) A uniform teapot model 

 

 

 
Figure 13: Test models with moderate triangle numbers: sphere (genus-0), teapot (genus-
1) and 8-shape (genus-2) models. Each model is shown with two versions: non-uniform
and uniform. The distance field on models is shown using color index.

5.2 Comparison of half-edge and edge-based data structures

We have implemented the geodesic metric algorithm on the platform of Visual C++.net

in Microsoft Window operating system. The code is available at 2. We test the code with

the following models:

• Ten benchmark models in various complexities: the number of obstacles ranged from

10 to 100 and the number of triangles ranged from 1k to 20k.

• Ten 3D engineering models with moderate triangle numbers (2k to 20k). These

models are with various complexities in both geometry (i.e., different curvature dis-

tributions) and topology (i.e., different genus numbers). Each model is provided

with two types: uniform and non-uniform. Figure 13 shows three examples: On

each model, a geodesic path is presented with source point shown in green and tar-

2http://cg.cs.tsinghua.edu.cn/people/∼Yongjin/Yongjin.htm
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(a) An angel model (b) A girl head model 

 

Figure 14: Two large 3D models: an angel and a girl head model. The angel model
has 181,148 triangles and 543,444 edges. The girl head model has 384,902 triangles and
1,154,706 edges. On each model, a geodesic path is presented with source point shown
in green and target point shown in yellow. By mapping the geodesic distances to a color
index, the distance field on each model is also shown with colors.

get point shown in yellow. By mapping the geodesic distances to a color index, the

distance field on each model is also shown with colors.

• Five large 3D mesh models (>150k triangles). All models are bounded in a 1.0 ×

1.0× 1.0 cubes. Figure 14 shows two examples.

We randomly sample source points on models and compare the geodesic distances

output from following three methods:

• the shortest paths utilizing the visibility graphs (only applicable for benchmark

models).

• The GeodesicLib implementation 3 provided by the authors in [12].

• Our implementation using an edge-based data structure.

3http://www.cs.technion.ac.il/∼vitus/geolib.html
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XXXXXXXXXXX
Face No. Edge No. l(e) σ[l(e)] maxe l(e) mine l(e)

Non-uniform eight 2022 6,066 0.079710 0.032766 0.260810 0.020274

Uniform eight 2022 6,066 0.068804 0.007349 0.103375 0.042040

Non-uniform sphere 3996 11,988 0.089625 0.044386 0.369710 0.001317

Uniform sphere 4074 12,222 0.085278 0.007969 0.148602 0.073768

Non-uniform teapot 11666 34,998 0.044716 0.027207 0.571824 0.000994

Uniform teapot 11667 35,001 0.042054 0.012402 0.103145 0.002287

Angel 181147 543,444 0.007005 0.002620 0.086559 0.000011

Girl head 384902 1,154,706 0.007360 0.002791 0.082696 0.000001

Table 1: The statistic data of test models shown in Figures 13 and 14. All these models
are normalized in a 1.0 × 1.0 × 1.0 cube: l(e) is the average edge length of each model,
σ[l(e)] is the standard deviation of l(e) which gives a measure of the uniformness of the
model, maxe l(e) is the maximal edge length in the model, and mine l(e) is the minimal
edge length in the model.

Our test results show that among more than one hundred thousands of computed

geodesic values, the results output from three methods are the same upon the floating

point machine precision. These results experimentally demonstrate that the coding of our

edge-based wedge intersection is correct.

Since the GeodesicLib for the implementation [12] outputs geodesic paths in a text file

without the wedge information, below we use our implementation of the MMP algorithm

to compare the performance between edge-based and half-edge data structures. The per-

formance data given below are all tested with an off-the-shelf PC with INTEL I7-2600K

CPU, running at 3.40GHz with 4GB RAM.

To evaluate the statistic data of wedge information, we use the 3D engineering models

shown in Figure 13 that are presented in two formats: non-uniform and uniform. The

statistic data of these mesh models is summarized in Table 1, which also include the

two large models shown in Figure 14. All models are normalized in a 1.0 × 1.0 × 1.0

cube. In Table 1, by regarding the length of each edge in a mesh model as a random

variable, the statistic data includes the mean l(e) of l(e) (i.e., the average edge length),

the standard deviation σ[l(e)] (which gives a measure of the edge uniformness in the

model), the maximal edge length maxe l(e) in the model and the minimal edge length

mine l(e) in the model.

We first compare the space efficiency between half-edge and edge-based data structures,

using two measures:

• The number of total wedges produced at the wedge propagation stage. It gives

the upper bound of storage for running the MMP algorithm. Table 2 summarizes

19



Wedges produced at the wedge propagation stage Percentage of
Half-edge structure Edge-based structure wedge reduction

Non-uniform eight 21059 12643 40.0%

Uniform eight 19289 11809 38.8%

Non-uniform sphere 117045 101227 13.5%

Uniform sphere 116253 103108 11.3%

Non-uniform teapot 172111 129810 24.6%

Uniform teapot 165996 128409 22.6%

Angel 1530506 935655 38.9%

Girl head 3271066 1972283 39.7%

Table 2: The comparison of the number of total wedges produced at the wedge propagation
stage for using half-edge and edge-based data structures. These data is generated by
averaging on the data over 100 trials, each time a random point on the model is selected
to initialize the MMP algorithm.

The number of wedges existed at the final stage Percentage of
Half-edge structure Edge-based structure wedge reduction

Non-uniform eight 11846 6481 45.3%

Uniform eight 11513 6578 42.9%

Non-uniform sphere 53167 43539 18.1%

Uniform sphere 53371 44468 16.7%

Non-uniform teapot 80732 55866 30.8%

Uniform teapot 76830 58304 24.1%

Angel 947923 504873 46.7%

Girl head 1995957 1056117 47.1%

Table 3: The comparison of the number of wedges existed at the final stage for using
half-edge and edge-based data structures. These data is generated by averaging on the
data over 100 trials, each time a random point on the model is selected to initialize the
MMP algorithm.

this type of data for eight models listed in Table 1. These data shows that using

edge-based data structure can on average reduce 29% wedges produced at the wedge

propagation stage, when compared to the use of half-edge data structure.

• The number of wedges existed at the final stage. It gives the upper bound of storage

for computing geodesic paths using the MMP algorithm. Table 3 summarizes this

type of data for eight models listed in Table 1. These data shows that using edge-

based data structure can on average reduce 34% wedges existed at the final stage,

when compared to the use of half-edge data structure.

Secondly we compare the time efficiency between half-edge and edge-based data struc-

tures, using the measure of running time that is spent for all wedge computation and

propagation. Table 4 summarizes this type of data for eight models listed in Table 1.

These data shows that using edge-based data structure can on average reduce 44% run-
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Running time of the MMP algorithm (Sec.) Percentage of
Half-edge structure Edge-based structure time reduction

Non-uniform eight 0.03976 0.01985 50.1%

Uniform eight 0.03533 0.01756 50.3%

Non-uniform sphere 0.18345 0.11741 36.0%

Uniform sphere 0.17651 0.11464 35.1%

Non-uniform teapot 0.30973 0.17957 42.0%

Uniform teapot 0.28969 0.16996 41.3%

Angel 3.06657 1.57997 48.5%

Girl head 6.70950 3.47284 48.2%

Table 4: The comparison of running time spent for all wedge computation and propagation,
for using half-edge and edge-based data structures. These data is generated by averaging
on the data over 100 trials, each time a random point on the model is selected to initialize
the MMP algorithm.

ning time of the MMP algorithm, when compared to the use of half-edge data structure.

6 Conclusions

Previous work [9, 10, 12, 13] that computes the exact geodesic metric on a 2-manifold

mesh T is only applicable in half-edge data structures. In this paper, we show that the

computation of exact geodesic metric is also applicable in edge-based data structures. A

direct merit is that some existing CAD systems which use edge-based data structures [19]

can simply add a new function for computing exact geodesic without changing the kernel

completely to a half-edge data structure. We also show that edge-based implementation of

the MMP algorithm can achieve three merits: (1) To find the geodesic path between any

two points on T , the MMP algorithm can be run in an on-the-fly fashion; (2) unnecessary

wedges can be efficiently pruned during the edge-based wedge propagation process and

the MMP algorithm is speeded up; (3) Less wedges need to be stored for establishing the

exact geodesic metric on T and thus improving the space efficiency. Experimental results

are presented showing that when compared to the half-edge data structure, the edge-based

implementation can reduce 44% running time and 29% storage on average.
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