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a b s t r a c t

The interpretation of auxiliary entities as boundary entities in previous non-manifold boundary
(NMB) representations may change a model’s intended topology and increase the complexity of the
corresponding data structure. In this paper, entities appearing in a modeling process are classified into
boundary and non-boundary entities. Non-boundary entities are usually embedded into embedding-
space entities. These embedding relationships are described by inclusion topology. To support inclusion
topology, a new mathematical framework—quasi-cell-complex, as well as a topological data structure—
Q -Complex, are proposed. Quasi-cell-complex is an extension of cell-complex with inclusion topology
supported. Q -Complex is an NMB representation, in which a new topological entity—embedder is created
for inclusion topology and zone/disk is adopted to capture the complete adjacencies around a vertex. Thus,
Q -Complex allows full adjacencies, incidence-ordering, and inclusion relationships to be derived, and the
efficiency of most basic queries is several times faster than most state-of-the-art NMB representations,
without increasing storage. Additionally, the benefits of inclusion topology for shapemodeling and feature
modeling are explored.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Explicit boundary representation (B-rep) schemes decompose
the boundary of a model into a set of cell entities and store
their adjacencies and incidence-ordering (i.e. ordering between
incident entities of a reference entity [1]) to accelerate traversal
algorithms.Non-manifold boundary (NMB) representations supply
a unified representation for the wireframe model, the surface
model, the solid model, and their mixtures. However, most NMB
representations treat all entities as boundary entities. This leads
to at least two observed defects: topological error and data
redundancy.

Treating all entities as boundary entities may erroneously alter
the model’s initial topology, leading to wrong design intent. As
shown in Fig. 1(a), the vertex on the top face of the cube will be
considered as an inner loop, similarly to the vertex at the bottom
face. The auxiliary edge, which is meant to be a construction line,
would be taken as a through hole. Thus, the genus of this cube in a
typical NMB data structure will be 1. This is inconsistent with the
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design intent to input a construction line as an auxiliary edgewhile
maintaining the topological integrity of the cube.

Likewise, the compactness of the data structuremay be affected
when treating non-boundary entities as boundary entities. For
example, the top face of the ring has only one outer boundary loop
(red in Fig. 1(b)). If six on-surface offset edges (blue) are added
to the face as construction lines for downstream applications, this
face will be decomposed into seven patches. Six of them will
each have an outer and an inner boundary loop. However, these
construction lines are only used to support the design process and
should not be treated as boundary entities.

To better support the use of auxiliary data in a computer-
aided-design process, which is necessary in NMB representations,
a simple scheme is to categorize all entities into boundary and non-
boundary entities. Boundary entities are the topological entities
which contribute to a model’s boundary; otherwise they are non-
boundary entities. Auxiliary data, which are often used to support
design operations, can be considered as a kind of non-boundary
entities, embedded in other entities. For example, the vertices A
and B (Fig. 1(a)) are embedded into the top and bottom faces
respectively, and the auxiliary edge E (Fig. 1(a)) is embedded
into the region bounded by the cube-faces. Thus, entities A, B,
and E are not part of the cube’s boundary and its topology is
preserved. Similarly, if the on-face edges (Fig. 1(b)) are considered
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Fig. 1. Treating non-boundary entities as boundary entities (a) leads to topological error and (b) complicates the representation of the ring’s top-face.
to be embedded into the top face, the compactness of the face
representation would be also preserved.

To provide an embedding solution for non-boundary entities,
a new mathematical framework—quasi-cell-complex as well as
an NMB data structure—Q -Complex are proposed. The above
mentioned embedding operation is formalized as inclusion
topology, i.e. the point set of one entity is a subset of the point
set of another entity. This differs from traditional cell-complexes
where entities have no overlap. Inclusion topology is supported by
quasi-cell-complex extended from cell-complex.

In order to represent quasi-cell-complex models, a new NMB
data structure—Q -Complex is proposed. In Q -Complex, a new
topological entity, embedder, is created for inclusion topology, and
zone/disk entities are adopted to capture the complete adjacency
around each vertex. Thus, Q -Complex allows full adjacency,
incidence-ordering, and inclusion relations to be derived. As such,
the efficiency of Q -Complex in handling most basic queries is
several times faster than most existing NMB representations.
Additionally, since only the frame of each face is stored, the
memory is also efficient inmost cases. In shapemodeling, inclusion
topology can help to prevent the model’s original topology from
being affected by massive non-boundary entities that are used
to support the construction of the model. In feature modeling,
inclusion topology can be used to capture the inter-feature
relations.

The rest of the paper is organized as follows. Section 2 reviews
the related work on data structures and mathematical models of
non-manifold representations. A new mathematical model with
inclusion topology—quasi-cell-complex is proposed in Section 3
and a hierarchical data structure—Q -Complex is presented in
Section 4. Analysis and comparison are given in Section 5.
Section 6 gives some potential applications of Q -Complex NMB
data structure to shape modeling and feature modeling. The
conclusion and future work are in Section 7.

2. Related work

In this section, background knowledge of mathematical models
and their representations is introduced and related research work
is reviewed.

2.1. Background

An abstract model of a physical object is a mathematical model,
which allows study of a valid model using specific mathematical
knowledge. A modeling space is a collection of abstract models.
A representation is a set of symbols with syntactical rules. The
collection of all syntactically correct representations is called a
representation space. A representation scheme can be defined
as a map or a function between the modeling space and the
representation space [2].

In geometric modeling, an abstract model can be either
manifold or non-manifold. A 2-manifold model M is a topological
space where every point p has a neighborhood which is
Table 1
Abbreviations of major topological data structure.

Abbr. Reference

RES Radial edge structure [6]
VBR Vertex-based boundary representation [7]
CES Coupling entity structure [8]
SGC Selective geometric complexes [9]
PES Partial edge structure [10]

topologically equivalent to an open disk [3,4]. Any model which
does not satisfy the above manifold property is called a non-
manifold model.

Cell-complex is a common mathematical model for manifold
or non-manifold models. It defines an abstract model as a finite
collection of n-cells and the cells are disjointed with each other.
An n-cell is a subset of n-dimensional space that is homeomorphic
to an n-dimensional open ball. The corresponding 0-cell, 1-cell, 2-
cell, and 3-cell are a vertex, edge, face, and region respectively. An
edge can be a curved line and a face may be non-planar [5].

To facilitate the following discussion, the major abbreviations
used in this paper are listed in Table 1.

2.2. Previous work on mathematical models

For manifold models, Requicha [2] introduced r-set as a
mathematicalmodel. An r-setmodel is a subset of Euclidian spaces,
R3. It is bounded, closed, regular, and semi-analytic. Another
similar mathematical model—the manifold solid, proposed by
Mantyla [11], can be understood as a special r-set with a
closed 2-manifold boundary. The r-set premise was extended by
Desaulniers and Stewart [12] to non-manifold r-sets. However,
the condition of regularity cannot be satisfied in non-manifold
geometric modeling.

There are usually twomethods to handle non-manifoldmodels,
from which two different mathematical models are developed.

The first mathematical model is based on cell-complex theory,
denoted as the cell-complex model, which adopts a finite number
of n-cells to cover the model boundary [5,13]. A cell-complex is a
collection of various dimensional cells. Thus, a valid cell-complex
model can have a mixture of wireframe, surface, and solid models.
Higher dimensional cells are bounded by lower dimensional cells.
Cells are glued together without overlapping. Simplicial-complex
is a special cell-complex where the faces are planar and the
edges are straight segments. The simplicial-complex model is
further extended to CW -complexes by Kase et al. [14] formultiple-
material situations,where ‘‘C ’’ stands for closure-finite and ‘‘W ’’ for
weak topology. Differently, Dicarlo et al. [15,16] provided a new
representation using a chain-complex under field computations.
A chain-complex model can be represented by a Hasse matrix
where Euler operations can be performed by multi-linear matrix
transformations. Thus, the topology, geometry, and physics may
coexist in a single formalized framework.

The other mathematical model is based on stratification
theory [17–19], denoted as the stratified model. Stratification
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theory decomposes a non-manifold model into a set of manifold
components, i.e., a partition of a large point set into subsets which
are various dimensional manifolds. These manifold components
are denoted as strata. Mathematically, a valid stratification for a
given model must fulfill three conditions: each stratum is a sub-
manifold; each sub-manifold is smooth; and the stratum number
is finite. Whitney stratification introduced by Gomes et al. [20] is
a generalization of finite CW -complexes and simplicial-complex.
In geometric modeling aspects, Whitney stratification is generally
equivalent to the cell-complex model [21].

One common problem of the cell-complex model or stratified
model is that all components are disjointed, i.e. not allowed to be
overlapped.

2.3. Previous work on NMB data structures

The various representation schemes for non-manifold models
can be classified into explicit and implicit schemes [18] that corre-
spond to cell-complex models and stratified models respectively.
Explicit schemes constitute a set of explicitly encoded strata plus
their adjacency and incidence-ordering. Implicit schemes usually
contain a set of strata and a set of functions to retrieve their topo-
logical relations. The cell-tuple structure [22], HC-Rep [17], and
DiX [18] captured the incidence and incidence-ordering informa-
tion of decomposed n-manifolds. In the combinatorial-map-based
schemes [23–25], the strata are dartswhich are oriented edges. The
cells are not explicitly represented, but can be obtained by func-
tions and a delegated dart of the cell. In this section, only explicit
NMB data structures are detailed since they aremost related to the
proposed Q -Complex data structure. Recent papers, such as com-
pact mesh representations [26–28] and simplicial-complex based
representations [29], provide additional information.

The topology in previous NMB representations usually relates
to the adjacency between all topological entities. This terminology
was first formally introduced in Weiler’s RES [6,30] and is used
in the following NMB representation, the VBR [7], CES [8], and
PES [10]. To handle more general models with mixed dimensional
entities and incomplete boundaries, Horvath’s research group
assumed phantom shells for wireframe and face group segments
in a model. These imaginary shells are connected with the
primary shell by new designed entities: join, spine, and palm [31].
Rossignac and O’Conner proposed the SGC data structure [9]
which is composed of finite collections of mutually disjointed
cells. SGC is topologically sufficient and storage efficient since
it uses a simple incidence graph. However, it has no incidence-
ordering information which is important to enhance the efficiency
of practical algorithms.

Considering the incidence-ordering information, Yamaguchi
and Kimura [8] identified three kinds of cyclic ordering among
adjacency entities: the loop cycle (ordering of edges within
a face), radial cycle (ordering of faces around an edge), and
disk cycle (ordering of edges around vertex). RES proposed a
set of use-entities, such as face-use, loop-use, edge-use, and
vertex-use, which are derived from the corresponding topological
entities: face, loop, edge, and vertex. These use-entities are useful
in capturing the adjacency relationship between them for the
complex non-manifold conditionwhich happens at vertices, edges,
and faces. However, the original design of RES is not storage
efficient. For example, if a face is decomposed into two face-uses,
the corresponding face boundary is also decomposed into two
identical copies. Thus, PES only stores entities’ frames to enhance
the storage efficiency, i.e., each face-use has no real boundary,
which is kept by the original face. In such a way, the PES can
save about 50% of storage compared to the RES. Both RES and PES
explicitly store the loop cycle and radial cycle.
The disk cycle around a non-manifold vertex is not handled
in the RES and PES representations, leading to ambiguity when
traversing around a non-manifold vertex. In order to overcome
this drawback, Gursoz, et al. [7] proposed the VBR, in which
the zone and disk topological entities are introduced to capture
the adjacency and incidence-ordering information in the vertex
neighborhood. VBR represents the three kinds of cycles explicitly
and supplies sufficient information to derive all adjacency and
incidence-ordering relationships. However, the VBR has an even
higher storage cost than the RES. The CES can also achieve the
same results by introducing six coupling entities to represent the
neighborhoods and boundaries of basic topological entities.

A common limitation of all those NMB data structures is that all
entities are considered as boundary entities. This problem is due to
the cell-complex mathematical model in which the intersection of
two arbitrary cells must be empty. That is, one entity is prohibited
from being contained by other entities. Otherwise, the contained-
entity will be considered as part of the boundary of the container-
entity abiding to the conditions of cell-complex mathematical
framework.

In this paper, inclusion topology, which allows one entity
to be embedded into another entity, is introduced to solve the
above mentioned problems which exist in most state-of-the-
art NMB representations. To support inclusion topology, a new
mathematical model—quasi-cell-complex and an efficient data
structure—Q -Complex are proposed.

3. Quasi-cell-complex

In this section, the definition of the quasi-cell-complex
mathematical model is given. A set of properties and the
Euler–Poincarê formula for the quasi-cell-complex model are also
explored.

3.1. Mathematical foundation

To make our discussion more precise, we start with some
definitions.

Definition 1 (Embedding Order). Embedding order is a total order
on the topological entity set T = {vertex, edge, loop, face, shell,
region, body}.

Total order is a binary relation which is transitive, anti-
symmetric, and total. Totality means that any element-pair of the
set T is mutually comparable. Thus, to compare two arbitrary
entities in T conveniently, each is assigned with an integer value,
denoted as the embedding order value (EOV), which is equal to the
maximal dimensionality. The EOV of a vertex is 0 since it is 0-cell;
an edge is 1; a face and a shell1 are 2; a region and a body are 3.

Definition 2 (Embedding Entity, Embedding-Space Entity, and Inclu-
sion). Embedding entity is a topological entity which is embedded
into another entity. Embedding-space entity is a topological entity
where an embedding entity is embedded. Inclusion is a relation
which indicates that the point set of an embedding entity is a sub-
set of the point set of an embedding-space entity.

For example, if the intersection of two topological entities e1
and e2 is e1, then e1 is called the embedding entity, e2 is called the
embedding-space entity, and the relationship between e1 and e2 is
described by an inclusion relation, which is denoted by the symbol
‘‘→’’.

1 A shell is a collection of faces, thus its maximal dimensionality is equal to the
dimensionality of a face.
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(a) eλ ∩ eµ = Ø. (b) eλ ∩ eµ = eµ . (c) eλ ∩ eµ = eλ .

Fig. 2. Difference between cell-complex and quasi-cell-complex: without affecting the topology of the embedding-space entity, cell-complex only covers case (a) and
quasi-cell-complex covers cases (a) to (c).
Remark 1. Inclusion is transitive since the embedding order is
transitive. That is, if e1 → e2 and e2 → e3, then e1 → e3.

Remark 2. When an entity is embedded, the EOV of the embed-
ding entity is not greater than that of the embedding-space entity.

Given an embedding entity, there may be more than one entity
acting as its embedding-space entities according to Remark 1.

Definition 3 (Direct Inclusion). For a given embedding entity, direct
inclusion is the inclusion between the embedding entity and the
one which has the smallest EOV among all its embedding-space
entities.

The cell-complex mathematical model [13] is restated as
follows.

Definition 4 (Cell-Complex). The cell-complex is defined as a finite
set of n-cells, denoted as C , satisfying three conditions (∧ is an
index set, [eλ] and deλ are the closure and dimensionality of cell
eλ):

I. C = {eλ|λ ∈ ∧}.
II. If deλ = n + 1 (λ ∈ ∧), then [eλ] − eλ ∈ Cn, where Cn

=

{eµ|deµ ≤ n, µ ∈ ∧}.
III. Suppose eλ, eµ ∈ C, λ ≠ µ, then eλ ∩ eµ = ∅.

The first condition means that a cell-complex is a collection of
n-cells. The second condition states that the boundary of a higher-
dimensional cell is composed of some lower-dimensional cells. The
third condition says that the intersection of any two cells from the
cell-complex is empty, as shown in Fig. 2(a).

Actually, inclusion topology is universal, e.g. a 2-manifold
can be considered as embedded in Euclidean space R3. Inclusion
topology allows an entity to be embedded into another entity. To
support this, the cell-complex mathematical model is extended.

Definition 5 (Quasi-Cell-Complex). The quasi-cell-complex is de-
fined as a finite set of n-cells, denoted asQ , satisfying the following
three conditions (∧ is an index set, [eλ] and deλ are the closure and
dimensionality of cell eλ):

I. Q = {eλ|λ ∈ ∧}.
II. If deλ = n + 1 (λ ∈ ∧), then [eλ] − eλ ∈ Q n, where Q n

=

{eµ|deµ ≤ n, µ ∈ ∧}.
III. Suppose eλ, eµ ∈ Q , λ ≠ µ, then eλneµ = ∅ or eλ or eµ.

The first and second conditions are the same as those of
Definition 4 with the exception of replacing the cell-complex
by quasi-cell-complex. The third condition is more distinct. The
relation between two arbitrary entities from quasi-cell-complex
can be one of the three cases: disjointed (Fig. 2(a)), entity eµ

embedded in eλ (Fig. 2(b)), or entity eλ embedded in eµ (Fig. 2(c)).
However, if these two entities are from cell-complex, theymust be
disjointed (only Fig. 2(a)).

The relationship between a cell-complex model and a quasi-
cell-complex model can be described by two theorems.
Fig. 3. A quasi-cell-complex (a) with e3 → e2 is converted into a cell-complex (b)
where e3 is an inner boundary of e′

2 .

Theorem 1. A quasi-cell-complex model can be converted into a cell-
complexmodel by treating the embedding entities as boundaries of the
embedding-space entity.

Proof. According to Definition 5, there are only two relation types
between all entity pairs in a quasi-cell-complex, i.e. disjointed
(Fig. 2(a)) or embedded (Fig. 2(b) and (c)). Thus, without loss of
generality, we can choose three entities {e1, e2, e3} from a quasi-
cell-complex Q , with e1 ∩ e2 = ∅, e1 ∩ e3 = ∅, and e3 → e2, as
shown in Fig. 3(a). That is, e1 has no overlap with e2 and e3, and e3
is embedded into e2. Then, supposing C is an empty cell-complex
initially, we only need to show that Q can be converted into a cell-
complex by treating e3 as a new boundary of e2, to generate a new
entity e′

2.
For the entity e1, it can be added to C directly. This is because

whatever entities ofQ (e2 or e3) are added into C , e1 always satisfies
the three conditions of Definition 4 since the intersection between
e1 and others is empty (e1 ∩ e2 = ∅ and e1 ∩ e3 = ∅).

For entities e2 and e3, an operator is needed to convert their
inclusion relation to separation. Since e3 → e2, then the point
set S3 of e3 is a subset of point set S2 of e2 (Definition 2 and
Remark 1). The new entity e′

2 is constructed by subtracting S3 from
S2. Then, e′

2 and e3 can be added to cell-complex C and condition I of
Definition 4 is satisfied naturally. Since e′

2 ∩ e3 = ∅, condition III of
Definition 4 is also satisfied. If S3 is a proper subset of S2, condition
II of Definition 4 is satisfied since the point set S ′

2 is equal to S2−S3.
If not, e.g. a vertex embedded into another vertex, the new entity
S ′

2 is an empty set and condition II of Definition 4 is also satisfied
since the topological dimension of an empty set is −1 (see p. 147
of Ref. [32]).

Therefore, as shown in Fig. 3(b), the model C = {e1, e′

2, e3}
is a valid cell-complex model converted from quasi-cell-complex
model Q . �

From Theorem 1 we know that the modeling spaces of quasi-
cell-complex and cell-complex are the same. The only difference is
the treatment of the embedding entities.

Theorem 2. A quasi-cell-complex model can be decomposed into a
set of cell-complex models.
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(a) Loop cycle. (b) Radial cycle. (c) Disk cycle.

Fig. 4. Three types of cycle in non-manifold topology.
Proof. Supposing there is a quasi-cell-complexmodelQ , we prove
this theorem by constructing a decomposition method.
Step 1. Create a new model C . Select an arbitrary unclassified cell e0
from the quasi-cell-complex. Add e0 to C and to a stack L. Then tag the
cell e0 as classified.
Step 2. Pop a cell es from stack L. Retrieve all the unclassified direct
adjacent cells,2 ADJs, of the cell es. Then cells in ADJs are tagged as
classified and added to model C and stack L.
Step 3. Repeat step 2 until the stack L is empty.
Step 4.While there still unclassified cells, repeat steps 1 to 3.

According to the construction steps and Theorem 1, each
newly created model C satisfies all the three conditions listed in
Definition 4. Thus, each newly created C is a valid cell-complex.
Thus, a quasi-cell-complex model can be decomposed into a set of
cell-complexes. �

Taking the quasi-cell-complex in Fig. 1(a) for example, it will be
decomposed into two cell-complexes. The cube is one cell-complex
and the auxiliary edge is the other.

3.2. Euler–Poincarê formula for quasi-cell-complex

Since quasi-cell-complex is an extension of cell-complex,
we recall the Euler–Poincarê formula for the cell-complex
mathematical model given by Masuda [13]:

v − e + (f − r) − (V − Vh + Vc) = C − Ch + Cc (1)

where v, e, f , r, V , Vh, Vc, C, Ch, and Cc are the numbers of vertices,
edges, faces, rings, volumes, holes through volumes, cavities
in volumes, cell complexes, holes through cell complexes, and
cavities in cell complexes, respectively. This formula can be derived
from the Euler–Poincarê formula for finite cell-complexes [32].

Theorem 3. The general Euler–Poincarê formula of Eq. (1) is also
correct for a quasi-cell-complex model.

Proof. Since a quasi-cell-complex model can be decomposed
into a set of cell-complexes (Theorem 2), then the general
Euler–Poincarê formula (Eq. (1)) can be applied to each cell-
complex independently. The superimposing of Eq. (1) is still a valid
equation. Therefore, the formula of Eq. (1) can also be applied to a
quasi-cell-complex model. �

Taking the quasi-cell-complex in Fig. 1(a) for example, if it is
considered as a cell-complex model, the entity numbers are v =

10, e = 13, f = 6, r = 2, V = 1, Vh = 1, C = 1, and Vc =

Ch = Cc = 0. If it is considered as a quasi-cell-complex model, the
entity numbers are v = 10, e = 13, f = 6, V = 1, C = 2,
and r = Vh = Vc = Ch = Cc = 0. In each of the cases, the
Euler–Poincarê formula Eq. (1) is satisfied.

2 In the nine adjacency relationships between vertex, edge, and face, only VV is
not direct adjacency since the adjacent vertices are not directly connected to the
reference vertex.
Fig. 5. Single vertex represented by a single dart while a wire edge is represented
by two darts.

4. Q -Complex data structure

In this section, a set of new topological entities is introduced
to support adjacencies, incidence-orderings, and inclusion topol-
ogy. Their relationships are organized into a hierarchical data
structure—Q -Complex.

4.1. Topological entities

In Q -Complex, the topological entities include body, region,
shell, face, pface, edge, vertex, zone, disk, dart, and embedder.
The definitions of zone, disk, dart, and embedder are detailed
below while others, with similar usages to previous B-reps, are
summarized in Table 2.

4.1.1. Dart
A dart is an edge-use by a face. It starts from a vertex and

points along an edge. It is oriented and has an orientation flag. The
flag is true if the dart’s orientation is coincident with the edge’s
orientation. Otherwise, it is false.

Dart is used to represent explicitly three kinds of cycle: loop
cycle, radial cycle, and disk cycle [8]. A loop cycle (Fig. 4(a)) is the
representation of the loop entity and consists of consecutive darts;
a radial cycle (Fig. 4(b)) represents the neighborhood of an edge
and consists of a cyclic list of darts of its incident faces; a disk
cycle (Fig. 4(c)) is the representation of the disk entity (detailed in
Section 4.1.3) and contains a cyclic order of darts of its incident
edges.

Special cases can also be represented by the dart entity. As
shown in Fig. 5, a single vertex consists of a single dart. A wire edge
includes two darts. A boundary edge also has two darts, only one
with face associated. For a non-manifold edge, the dart number is
the same as its incident face number. As shown in Fig. 4(b), the
number of darts for this edge is three.

Cusp defined in VBR [7] can also represent the three types of
cycle explicitly. The difference between cusp and dart is shown in
Fig. 6. The cusp is used as the boundary of face-use, and the dart is
used as the boundary of a face. Thus, the number of cusps is twice
that of darts. This is why we can save about 50% of total storage
size compared with the VBR.

Additionally, the dart and the p-edge entity defined in PES [10]
are similar in concept, but are different in implementation. A p-
edge is composed of a p-vertex, an edge, and an orientation flag.
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Fig. 6. (a) A cusp [33] is a boundary of face-use while (b) a dart is a boundary of a face.
Fig. 7. Zones and disks of the vertex neighborhood (green): (a) front view; (b) side view. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
A dart only has an orientation flag of its parent edge to reduce the
vertex redundancy, the two end-vertices are kept by the edge (see
Appendix for more details).

4.1.2. Embedder
Embedder is a topological entity to capture the inclusion

topology between an embedding entity and its direct embedding-
space entity. It contains two pointers, one is the embedding entity
and the other is the embedding-space entity (see Appendix).

Whether an entity should be considered as a boundary entity or
a non-boundary entity depends on the designer’s design intent. If
the designer intends to add some construction data, an embedding
operator will be called to make these auxiliary data non-boundary
entities, such as the vertex on the top face in Fig. 1. With inclusion
topology, the vertex is considered as an embedding entity and
the face as an embedding-space entity. Thus, in Q -Complex,
only an extra embedder is created to record the relationship
between this vertex and the top face. The topology of the face is
preserved and still equivalent to a disk. However, in previous NMB
representations, such as PES, the vertex is treated as a boundary
entity and represented by a single p-edge. A new loop is created and
acts as an inner boundary of the top face. This makes the top face
equivalent to a disk with a hole in it and its topology is changed.

4.1.3. Zone and disk
Zone and disk are adopted to capture the full topology

information around a vertex, manifold or non-manifold. Zone is
defined as a connected portion of the vertex neighborhood. The
vertex neighborhood (the green area shown in Fig. 7(b))is the
intersection between an open ball and the cell-complex which
contains the given vertex. The ball radius is infinitesimal and its
center is located at the given vertex. The vertex neighborhood is
partitioned into zones by the entities incident to this vertex. Each
zone is bounded by one or more disk-like boundaries, denoted as
disk, i.e. disk is the boundary of zone. As shown in Fig. 7(b), the
vertex neighborhood is portioned into zone1 and zone2, which are
bounded by disk1 and disk2 respectively.

The concepts of zone and disk are first introduced in VBR.
However, the content of disk in Q -Complex is more compact. In
VBR, each disk is a cyclic list of cusps. However, in Q -Complex, it is
represented by a cyclic list of darts emanating from this vertex. As
shown in Fig. 7(a), disk1 contains five darts and disk2 has the same
contents as disk1. They mate with each other. Each disk maintains
a _mate pointer (see code in Appendix). Thus, to save storage, only
disk1 contains a list of darts. If two neighboring disks are notmated
exactly with each other, each disk would have a full list of its
emanative darts.

4.2. Data structures

The hierarchical data structure to store all the abovementioned
topological entities, adjacencies, and incidence-orderings is shown
in Fig. 8. This data structure can represent non-manifold models
with non-boundary entities which comply with the quasi-cell-
complex model definition (Definition 5). Thus, it is named as Q -
Complex.

The functionalities of each entity inQ -Complex are summarized
in Table 2. More details about their implementation can be found
in the Appendix. Most parent entities have a pointer to one of
their child entities, whilemost child entities have a pointer to their
parent entity. All sibling entities are singly linked, except the loop
cycle and radial cyclewhere darts are doubly linked to enhance the
accessing operator’s efficiency.

Q -Complex takes advantage of both PES and VBR, i.e. only
frames are stored and zone-disks are used to capture the complete
adjacency around a vertex. However, Q -Complex differs from PES
and VBR in two major aspects.

First, Q -Complex supports inclusion topology. With inclusion
topology, boundary entities and non-boundary entities are treated
differently and their relations are captured by embedders.
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Fig. 8. Q -Complex data structure (the gray entities are those entities which can
act as embedding entities and embedding-space entities, with EOV at the right-top
corner).

Table 2
Summary of the basic topological entities in Q -Complex.

Entity Functions

Body A repository of cell entities which satisfy Definition 5, containingone
infinite region and an infinite shell at least.

Region A connected portion of space, having multiple boundaries.
Shell An oriented boundary of a region, consisting of a set of pfaces
Face A bounded portion of a surface, having multiple boundaries.
Pface A face-use without real boundary.
Loop A connected boundary of a face, consisting of a set of darts.
Edge A bounded portion of a curve, having two end vertices and

orientation.
Vertex A unique point in space.
Dart An oriented edge-use.
Zone A connected portion of vertex neighborhood, bounded by disks.
Disk Boundary of a zone, consisting of darts.
Embedder A topological entity supporting inclusion topology.

Although the embedding cases are complicated, they must satisfy
Definition 1 and Remark 2. Thus, the embedder is not shown
explicitly in the Q -Complex configuration. The entities which
can act as embedding entities and embedding-space entities are
shaded and their EOV is positioned at the right-top corner (Fig. 8).

Secondly, the storage of Q -Complex is only about 40% of that
of VBR.3 To reduce data redundancy, the boundary of pface (face-
use) and dart (edge-use) is not stored, which can be derived from
their parent face and edge implicitly. Thus, the number of loops and
darts is only half of that of VBR. Likewise, the content of disks is also
optimized by exploring the mating relation between neighboring
disks while each disk in VBR has a full cyclic list of cusps around
the reference vertex. The speed of traversing Q -Complex is faster
than that of PES since the three types of cycle are stored explicitly
in Q -Complex (see Section 5.2).

5. Analysis of Q -Complex data structure

Q -Complex is an explicit representation which explicitly stores
various dimensional cells and their mutual relations. The storage
and query efficiency of Q -Complex are analyzed and compared
with those of PES which is the most storage-efficient NMB data
structure.

To facilitate the discussion, the following symbols are adopted.
Let R denote the region, S the shell, F the face, L the loop, E the edge,
V the vertex, Fu the face-use, Lu the loop-use, Eu the edge-use, Pf
the pface, Pe the p-edge, Pv the p-vertex, Dt the dart, Z the zone,

3 The storage cost of VBR is published in PES, computed using the same method.
Dk the disk, Ed the embedder, Ai an A entity, {Ai} a set of A entities,
BAi the number of B entities adjacent to an Ai entity, and Ai → {Bi}

retrieval of all B entities adjacent to an Ai entity.

5.1. Topology analysis

In quasi-cell-complex, a model’s topology mainly concerns the
adjacencies, the incidence-orderings, and the inclusion among all
topological entities.

Q -Complex is a data structure that meets the adequacy
requirements as all the 36 adjacency relationships mentioned in
RES [6] can be derived from the configuration shown in Fig. 8.
Two close paths can be found in the configuration. One starts from
a vertex, and leads to its zones, its disks, all the darts around it,
and then back to the vertex. The other starts from the body, and
leads to its faces, pfaces, shells, regions, and back to the body. The
graph shown in Fig. 8 is connectedwith several bi-directional links.
For any two entities in this data structure, there is always a path
connecting them.

Q -Complex supplies full incidence-ordering information around
a non-manifold vertex or edge. As shown in Fig. 9(a), the non-
manifold vertex v1 is decomposed into several zones. Fig. 9(b)
shows a schematic view of the neighborhood of v1: z1 (blue)
bounded by the inner boundary of A, z2 bounded by the outer
boundary of A and C (yellow), z3 bounded by the inner boundary of
B (green), and z4 (red) bounded by the outer boundary of B and the
inner boundary of C . The neighboring zone of z3 is z4; the neighbor-
ing zones of z4 are z2 and z3. All such ordering information can be
derived from the zone-disk entities around a vertex (see the code in
Appendix). However, it fails PES. As shown in Fig. 9(c), v1 is only de-
composed into three p-vertices in PES. Each p-vertex has a pointer
to its parent vertex v1 and v1 only points to one of them. Thus, the
ordering between components A, B, and C is lost in PES.

Q -Complex supports inclusion topology while PES cannot.
Inclusion topology allows one entity to be embedded into another
entity. With inclusion topology, the original design intents can be
preserved, as with the auxiliary edge in Fig. 1(a). Thus, the model’s
global topological property, such as genus, is kept. With inclusion
topology, the relative position between components in quasi-cell-
complex can be stored. This is useful in feature modeling which
goes beyond solid modeling (see Section 6.2).

5.2. Query efficiency analysis

In order to evaluate the time efficiency of a data structure, the
response time of all basic query functions is an important criterion.
A query procedure returns all topological entities of a specific type
for a given reference entity. BAi is a query where Ai is the given
reference entity and it returns allB entitieswhich are adjacent toAi.

In existing explicit non-manifold B-rep, there are six common
basic topological entities: region, shell, face, loop, edge, and vertex.
Thus, there are in total 36 possible adjacency relationships. As
the matrix in Table 3 shows, the first column gives the reference
entities and the first row gives the adjacent entity set for each
reference entity.

The most important criterion for estimating the time cost of
a query is the number of records and field accesses since they
may require database access or at least a main memory access.
This evaluation method has been widely used in previous works
[10,34]. It is adopted to compare the efficiency between the PES
and Q -Complex data structures (note: it is allowed to visit an
entitymore than once during the traversal in a basic query function
unless otherwise stated).

The time complexity of basic query procedure FVi is detailed
to show the specific computation. FVi returns all adjacent faces
around the given vertex Vi. In Q -Complex, the vertex’s complete
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(a)
(b)

(c)

Fig. 9. Representation of a non-manifold vertex: (a–b) Q -Complex stores the order explicitly among components A, B, and C by zone-disk entities, while (c) PES fails.
Table 3
The number of field and record (in brackets) accesses for 36 basic queries of Q -Complex (left of the slash) and PES (right
of the slash) (red: Q -Complex slower than PES; blue: Q -Complex equal to PES; black: Q -Complex faster than PES).
Fig. 10. Query procedure for finding all adjacent faces for a given vertex.

adjacency information is described by zones and disks. The whole
procedure consists of three nested loops for zones, disks, and darts
(line 1 to line 3 of Fig. 10). For each dart in a loop, the _loop field of
a dart is accessed at line 4 to obtain the parent loop and the _face
field of a loop is accessed at line 6 to obtain the parent face at line 6.

Therefore, if ZVi, DkVi, and DtVi denote the numbers of zones
and disks around the reference vertex Vi, the total number of field
accesses Nf is

Nf =

ZVi
k=0


1 +

 DkZk

j=0
(1 + 3DtDkj)


=

 ZVi

k=0
(1 + DkZk + 3DtZk)

= (ZVi + DkVi + 3DtVi). (2)
Thus, the dominant term of this query procedure is 3DtVi since

the dart number around a vertex is usually several times the
number of zones and disks. Compared to 7DtVi (the dart number
is equal to the p-edge number) of the same query procedure in
PES, the query speed of Q -Complex is about two times faster than
that of PES because all the darts around the vertex are stored
explicitly. In addition, the p-face in PES has multiple child entity
types due to the special cases for on-surface vertex and on-surface
edge. However, they are considered as embedding entities when
inclusion topology is introduced.

The total number of record accesses can be counted in the same
manner. In the innermost loop, three records, dart, loop and face,
are accessed asmany times as thenumber of darts around the given
reference vertex. Thus, the dominant term of record accesses is
3DtVi. Compared to 4DtVi of the same query procedure in PES, the
time cost of this query procedure in Q -Complex is faster than that
in PES.

The counts of the field and record accesses for all 36 queries of
Q -Complex and PES are investigated and summarized in Table 3.
For comparison, the count of each adjacency query procedure of
PES andQ -Complex is expressed in the counting variables fromour
representation, except the adjacency relationships of shells and
regions which are expressed by counting variables from the RES.
This is because the corresponding variables of PES and Q -Complex
cannot be used as correct counts if a shell includes laminar faces.
This conversion is based on the relations of the topological entity
number among RES, PES, andQ -Complex: #(Fu) = #(Pf ), #(Eu) =

2 • #(Pe) = 2 • #(Dt), and #(Lu) = 2 • #(L).
As shown in Table 3, Q -Complex is faster than PES for 22

basic queries, slower for only 3 queries, and has the same speed
for the other 11 queries. When the vertex is a reference entity,
the accessing speed in Q -Complex is several times that in PES.
This is because PES only stores partial adjacency for a vertex
neighborhood.
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(a) Triangular mesh model. (b) Detailed view. (c) With 72 curves embedded.

Fig. 11. A ring model for storage comparison between PES and Q -Complex.
Fig. 12. The embedding curves shown in Fig. 11(c) are used for diamond setting in
(a) smooth display and (b) rendering with texture.

5.3. Storage analysis

The storage cost of Q -Complex is also compared with that of
PES. To facilitate the comparison, we adopt the same assumptions
as PES:

• The length of a pointer is four bytes. One byte is the minimum
storage unit. Thus, if there are multiple flags in one class and
their summation is less than one byte, their storage is counted
as one byte.

• Only topological data are counted. The attribute in each entity is
ignored, and the face/edge/vertex lists in the Body class are also
omitted since they are redundant data, used only for rendering.

• The storage estimation of eachdata structure is computedbased
on the original code.

With these assumptions, the total storage cost, S, of a data
structure,D, is calculated bymultiplying the number of each entity
type with the size of the corresponding entity type, and summing
them together. That is,

S(D) =


τi∈D

#(τi) · |τi| (3)

where τi is the ith entity type in data structure D; #(τi), |τi| are the
number and size of the entity type τi. For example, the size of the
Zone class (see the code in the Appendix) of Q -Complex is 12 bytes
since there are only three pointers.

In some cases, the number of each entity type τ can be
expressed as a function of the number of an entity using statistical
data, such as face. Then Eq. (2) can be rewritten as

S(D) =


τi∈D

Fi(f ) · |τi| (4)

where f is the face number in a model, the function Fi(f ) means
that the number of τi is a function of the face number.

The investigation byWilson [34] showed the numbers of loops,
edges, and vertices are approximately f , 3f , and 2f respectively.
Each loop contains about six edges and each vertex emanates three
edges. When the face number of a triangular mesh (abbr. Tri-mesh)
is large (usually greater than 10 k), the statistical numbers of loops,
edges, and vertices are f , 1.5f , and 0.5f respectively. That is each
loop contains three edges and each vertex has six incident edges.
Based on this observation, the storage cost of a data structure can
be expressed as a function of a single variable (according to Eq. (4)).
As shown in Table 4, the storage costs of PES and Q -Complex are
compared.

Q -Complex is not only faster than PES, but also more compact
in the case of a model with auxiliary data. Taking the ring model
(Fig. 11(a)) for example, normally, the storage cost of PES is about
89% that ofQ -Complex (shown in the 5th rowof Table 4). However,
when the 72 construction curves4 are added to this ring model, as
shown in Fig. 11(c), the storage of Q -Complex is less than that of
PES (computed from data in the 6th and 7th rows of Table 4).

Since the ring model is a triangular mesh, the intersection
between each embedding curve and the ring mesh model should
be computed for both PES and Q -Complex. As shown in the
detailed view in Fig. 11(b), line segments AB, BC, and CD are
the intersections between one curve and the underlying triangles
P1P2P3, P2P3P4, and P3P4P5. In PES, the ring mesh model is
re-triangulated according to the intersection. For example, the
triangle P1P2P3 is triangulated into three triangles P1AP3, ABP3, and
AP2B. Thus, the numbers of faces, edges, and vertices are increased
by two, four, and two respectively. The total entity number is
summarized in the 6th row of Table 4. In Q -Complex, the new
created entities are considered as embedding entities. Vertex A is
embedded in edge P1P2 and edge AB is embedded in face P1P2P3.
Thus, the face number is preserved. The newly created entity
number in Q -Complex is listed in the 7th row of Table 4.

6. Application of Q -Complex

The Q -Complex data structure is tested in a prototype system
JewelCADPro [35]. In JewelCADPro, Q -Complex serves as a non-
manifold topological data structure for B-rep. Since the inclusion
topology is supported, some new modeling features become
feasible in JewelCADPro and they are discussed in this section.

4 The ‘‘curve’’ term used in this paper except in Table 2 consists of connected line
segments which are embedded.
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Table 4
Storage comparison between PES and Q -Complex (the storage costs of Wilson and Tri-mesh are computed using Eq. (4), the others are computeda using Eq. (3)).

Number of Entities Size (bytes)
B/R/S F(L) E V Pf Pe Pv Dt Z(Dk) Ed PES Our

Wilson [33] 1/2/3 f 3f 2f 2f 6f 2f 6f 4f 0 68 + 303f 88 + 376f
Tri-mesh 1/2/3 f 1.5f 0.5f 2f 3f 0.5f 3f f 0 68 + 169.5f 88 + 195f
Fig. 11(a) 1/2/3 24,024 36,365 12,341 48,048 72,730 12,341 72,730 24,682 0 4101,417 4605,444
Fig. 11(c) (PES) 1/2/3 35,544 53,645 18,101 71,088 107,290 18,101 6054,057
Fig. 11(c) (Our) 1/2/3 24,024 42,125 18,101 48,048 84,250 36,202 11,520 5892,348
a Since Tri-mesh is 2-manifold and has six edges meeting a vertex, the size of normal-disk is 36 bytes, and mate-disk is 12 bytes.
Fig. 13. Embedding curves are used for shape control: (a) ‘‘C’’ is embedded in the cube’s front face; three characters ‘‘C ’’, ‘‘A’’, and ‘‘D’’ are displayed in (b) mesh mode and
in (c) smooth mode.
(a) Feature model. (b) Vertex-coincidence. (c) Vertex-inclusion.

Fig. 14. Feature relations are supported by inclusion topology in Q -Complex.
6.1. Shape modeling with Q -Complex

Since inclusion topology allows one entity to be embedded into
another entity, auxiliary data can be stored separately without
losing their relationships. This gives Q -Complex a significant
advantage in shape modeling with assistant data, such as shape
understanding by on-face iso-contours [36] and shape modeling
by control curves [37].

Fig. 12 shows an example where embedding curves are used
for diamond setting. The ring model has massive auxiliary entities
which are stored in Q -Complex as embedding entities (Fig. 11(c)).
The diamonds are positioned along the embedded curves. The
diamond size is controlled by the width between two neighboring
curves. The diamond orientation is determined by the underlying
triangle’s orientation. Such a task requires that the embedding
entities and embedding-space entities be easily retrieved. In Q -
Complex, the embedding entities, embedding-space entities, and
their inclusion relation are all stored explicitly. Thus, they can be
easily identified.

Fig. 13 is another examplewhere embedding curves are applied
to shape control. When a control curve is drawn, it is directly
stored in Q -Complex without the re-meshing step (Fig. 13(a)).
This is different from FiberMesh [38], where each newly created
control curve is used to remesh the model. The remesh operation
will reduce the efficiency of the drawing process. This is obvious
especially when the model is complex. In Q -Complex, the control
curve can be further edited by moving its handles (green points in
Fig. 13(a)). Additionally, the region of interest (ROI) area (blue area
displayed in Fig. 13(a)) of a control curve can be adjusted since Q -
Complex also stores the relationship between a control curve and
its embedding-space faces. Using this technique, three characters
‘‘C ’’, ‘‘A’’, and ‘‘D’’ are constructed on a cube using these embedding
curves, as shown in Fig. 13(b) and (c).

6.2. Feature modeling with Q -Complex

Feature modeling is an advanced technique going beyond solid
modeling since it integrates geometrical and semantic information
across different engineering domains to support product life-cycle
modeling [39]. Feature modeling can benefit from Q -Complex if
it is adopted to represent the geometric data of a feature model.
Besides a feature’s geometric information, feature relation is
another important aspect in featuremodeling, such as coincidence,
touch, intersection, and inclusion. All these feature relations can be
well represented by the inclusion topology inQ -Complex. No extra
structures need to be added.

As shown in Fig. 14(a), a feature model FM , represented by
Q -Complex, consists of two simple cubical features A and B. The
relative position between feature A and feature B can be captured
by inclusion topology. In Fig. 14(b), vertex A_v1 of feature A
coincides with face B_f1 of feature B; this can be stored by creating
an embedder. The _entity field of this embedder points to vertex
A_v1 of feature A and the _space field points to face B_f1 of feature
B. The embedder is held by face B_f1. Thus, the touch relation
between feature A and feature B is described as an inclusion
relation between vertex A_v1 and face B_f1.

In Fig. 14(c), vertex A_v1 of feature A is contained by the cube-
region of feature B. Similarly, a new embedder is created, whose
_entity field points to vertex A_v1 of feature A and _space field
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points to the cube-region of feature B. The embedder is held by
the cube-region. Thus, the partial containment relation between
feature A and feature B is described as an inclusion relation
between the vertex A_v1 and the cube region of feature B.

7. Conclusion and future work

This paper introduced inclusion topology to preserve a model’s
original topology and keep the simplicity of the original data
structure, without sacrificing storage. Inclusion topology allows
one entity to be embedded into another entity. To support this,
a mathematical framework—quasi-cell-complex was proposed
which is an extension of the classical cell-complex framework. The
major difference between the quasi-cell-complex model and the
cell-complexmodel is that the former treats non-boundary entities
as embedding entities while the latter considers them as boundary
entities. However, a quasi-cell-complexmodel can be converted or
decomposed into cell-complexes.

Furthermore, a new data structure—Q -Complex, was proposed
to represent the quasi-cell-complex model. Q -Complex is an NMB
data structure. The topological entity—embedder is proposed for
inclusion topology; zone/disk is adopted to capture the complete
adjacencies around a vertex, and darts are used to represent
edge-use. Thus, adjacency, incidence-ordering, and inclusion can
be derived from Q -Complex, and its efficiency for most basic
queries is several times faster than the efficient data structure
PES, without increasing storage. These distinct features make
Q -Complex an attractive data structure when compared with
corresponding state-of-the-art NMB data structures. In addition,
by supporting inclusion topology, Q -Complex not only preserves
the design intent topology of shape models, but also captures the
inter-feature relations in feature modeling.

There are still many aspects that deserve to be studied in
the future. Firstly, high-level operations like offsetting operations
as well as a set of low-level topological operators like Euler
operators need to be designed and implemented to facilitate
the modeling process and to guarantee the integrity of the Q -
Complex model. Compared to the existing data structures, more
steps are needed to maintain the topology because the inclusion
topology is additionally stored inQ -Complex [40]. Secondly, a data
exchange interface should be designed to exchange data between
Q -Complex and other CAD software. Thirdly, a complete geometric
modeling system based on Q -Complex with its applications to
shape modeling and feature modeling is also our future work.
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Appendix. Implementation of Q -Complex with classes in C++

typedef std::vector ⟨Face∗⟩ FaceList
typedef std::vector ⟨Edge∗⟩ EdgeList
typedef std::vector ⟨Vertex∗⟩ VertexList
typedef std::vector ⟨Dart∗⟩ DartList
class Entity
{
Attribute *_attribute;
}
class Body: public Entity
{
Body *_next; //next body
Region *_region; //one of the regions in this body
FaceList facelist; //list of face pointers
EdgeList edgelist; //list of edge pointers
VertexList vertexlist; //list of vertex pointers
}
class Region: public Entity
{
Body *_body; //parent body
Region *_next; //next region in the parent body
Shell *_shell; //one of the shells in this region
Embedder *_embedder; //one of the embedders
}
class Shell: public Entity
{
Region *_region; //parent region
Shell *_next; //next shell in the parent region
Pface *_pface; //one of the pfaces in this shell
}
class Face: public Entity
{
Pface *_pface; //one of the pfaces of this face
Loop *_loop; //one of the loops of this face
Embedder *_embedder; //one of the embedders
}
class Pface: public Entity
{
Face *_face; //parent face
Shell *_shell; //parent shell
Pface *_next; //next pface in parent shell
Pface *_mate; //next pface in parent face
}
class Loop: public Entity
{
Face *_face; //parent face
Loop *_next; //next loop in parent face
Dart *_dart; //one of the darts in this loop
}
class Edge: public Entity
{
Dart *_dart; //one of the edge darts
Vertex *_start; //start vertex
Vertex *_end; //end vertex
Embedder *_embedder; //one of the embedders
}
class Vertex: public Entity
{
Zone *_zone; //oen of the zones around this vertex
Embedder *_embedder; //one of the embedders
}
class Zone: public Entity
{
Vertex *_vertex; //parent vertex
Zone *_next; //next zone in parent vertex
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Disk *_disk; //one of the disks in this zone
}
class Disk: public Entity
{
Zone *_zone; //parent zone
Disk *_mate; //mate disk
Disk *_next; //next disk in the parent zone
DartList dartList; //a list of dart pointers
}
class Dart: public Entity
{
Orient orient; //1: has the same direction as parent edge
Edge *_edge; //parent edge
Loop *_loop; //parent loop
Dart *_prev_radial; //previous dart in radial order
Dart *_next_radial; //next dart in radial order
Dart *_prev_loop; //previous dart in parent loop
Dart *_next_loop; //next dart in parent loop
}
class Embedder: public Entity
{
Entity *_entity; //embedded entity
Entity *_space; //embedding-space entity
Embedder *_next; //next embedder in this embedding-space

entity
}
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