
Computer-Aided Design 39 (2007) 719–731
www.elsevier.com/locate/cad
Modeling dynamic developable meshes by the Hamilton principle

Yong-Jin Liua,∗, Kai Tangb, Ajay Jonejac

a Department of Computer Science and Technology, Tsinghua University, Beijing, PR China
b Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, China

c Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Hong Kong, China

Received 28 April 2006; accepted 27 February 2007

Abstract

In this paper, a new dynamic developable surface model is proposed. The proposed model represents developable surfaces using triangle
meshes. A novel algorithm is proposed to introduce the Hamilton principle into these meshes such that the resulting developable model is
dynamic, i.e., it can offer a time-dependent continuous path to deform the model. Applications with examples are presented; these show that the
proposed technique can model buckled developable surfaces well, and can offer physically-realistic animations of deformed developable surfaces.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Developable surface; Hamilton principle; Physical-based simulation
1. Introduction

A developable surface is a surface that can be flattened into a
plane without stretching or tearing. Developable surfaces have
found rich applications in industries such as manufacturing
sheet-metal and plate-metal for aircraft skins, ship hulls and
automobiles; and bending paper, leather, plywood and fabric
over a variety of products, including furniture, boxes and other
containers.

Because of their wide use in industry, developable
surfaces have received considerable attention in computer
aided geometric design. Most of existing work exploits the
characterizations and properties for free-form surfaces to be
developable. Notably two classes of approaches exist: the first
uses the primal representation of surfaces [2,3,19,7], and the
second uses the dual representation of surfaces [6,15,22]. The
primal representation uses a tensor product surface of degree
(1, n), and usually solves nonlinear characterizing equations
to guarantee developability. A developable surface can also be
viewed as the envelope of a one-parameter family of tangent
planes, and thus can be treated as a curve in a dual projective
3-space. Given this dual representation, some interpolation
∗ Corresponding author. Tel.: +86 10 62780807.
E-mail addresses: liuyongjin@tsinghua.edu.cn (Y.-J. Liu),

mektang@ust.hk (K. Tang), joneja@ust.hk (A. Joneja).

0010-4485/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2007.02.013
and approximation algorithms can be computed efficiently.
However, interactively designing a developable surface in the
dual projective space is not intuitive, and it could be difficult
to handle the singularities and points at infinity in projective
space.

All the above discussed developable surfaces are smooth,
i.e., they have no sharp creases, or only have singularities along
the line of striction. Frey [13] discusses an important class of
developable surfaces that are buckled, i.e., the surface exhibits
creases of finite length or localized singular points. For an
example, when folding thin-sheet material such as paper into
boxes or other similar containers along straight-line creases,
the resulting surface is developable, but not smooth across the
crease lines. Modeling crumpled paper is well known to be a
difficult problem [18,1]. As a practical and efficient solution,
Frey [12,13] shows how to approximate buckled surfaces
by developable three-dimensional triangulation and discusses
some interesting insights.

In this paper, we present an algorithm that also uses triangle
meshes to model developable surface. Based on triangle
meshes, we make a step further by introducing the Hamilton
principle into the model such that the resulting developable
mesh is dynamic. Besides its novelty in algorithm design, we
believe that the perspective offered in this paper, which clearly
departs from most existing work, can offer distinct advantages
in computer aided design. For example, the paper model used

http://www.elsevier.com/locate/cad
mailto:liuyongjin@tsinghua.edu.cn
mailto:mektang@ust.hk
mailto:joneja@ust.hk
http://dx.doi.org/10.1016/j.cad.2007.02.013

720 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731
in origami is clearly developable. However, due to shape
complexity, it is not clear from a designer’s point of view how
a paper model can be folded by a single square planar paper.
Computational origami is a new branch of computer science
[8], and recently the field has grown significantly [9]. Dynamic
developable meshes shed light on a potential solution to these
fascinating puzzles. Dynamic developable meshes can also find
applications in printer design by the computer simulation of
a paper jam process. Detailed applications of our dynamic
developable model are presented in Section 6.

2. Dynamic developable model

Our proposed dynamic developable model is a triangle mesh
M = (V, E,F) with the sets of vertices V , edges E and faces
F , which is treated as a rigid multi-body system: each vertex
vi ∈ V is associated with a mass mi , and each edge ei ∈ E
is treated as a weightless rigid rod; thus, each triangular face
fi ∈ F can only be moved rigidly in order to offer the desired
developability to the surface modelM.

Consider a piece of surface M consisting of nV particles,
subject to given geometric constraints and otherwise influenced
by forces which are functions only of the positions of the
particles. Let the force acting upon the i th particle at (xi , yi , zi)

of the system have the Cartesian components (f i
x , f i

y , f i
z).

Here we consider the type of force system – conservative
system – for which there exists a single scalar function V =

V (x1, y1, z1, . . . , xnV , ynV , znV) from which the 3nV force
components can be derived as

f i
x = −

∂V
∂xi

, f i
y = −

∂V
∂yi

, f i
z = −

∂V
∂zi

,

i = 1, 2, . . . , nV . (1)

The function V is called the potential energy of the system.
The nonconservative system is discussed in Section 5.

The kinetic energy of a particle vi is defined as 1
2 mi (ẋ2

i +

ẏ2
i + ż2

i).
1 Given a system of nV particles, its kinetic energy is

T =
1
2

nV∑
i=1

mi (ẋ2
i + ẏ2

i + ż2
i). (2)

The geometric constraints upon a mesh model M are
partitioned into two classes: external and internal constraints.
The external geometric constraints consist in the confinement
of certain particles to given positions, curves or surfaces.
Since the proposed model is a triangulated particle system, the
internal constraints maintain the constancy of the length of
each mesh edge, which are treated as weightless rigid rods.
The internal constraints are completely specified by the nE
consistent and independent equations

‖v0
j − v1

j ‖
2
e j =(v0

j ,v
1
j)

= l j , j = 1, 2, . . . , nE (3)

where l j > 0 is the square of constant length of edge e j .
1 In this paper, the superior dot is employed to indicate differentiation with
respect to the time variable t .
2.1. System coordinates and Hamilton principle

Subject to constraints (3), the particle representation of the
developable surfaceM is a holonomic system with (3nV −nE)
degrees of freedom (DOFs). It is more convenient to introduce
a set of n = 3nV − nE independent variables q1, q2, . . . , qn
through which the positions of all nV particles are fully and
uniquely determined. That is, the equations of constraints (3)
can be in effect replaced by an equivalent system of 3nV
equationsxi = xi (q1, q2, . . . , qn),

yi = yi (q1, q2, . . . , qn),

zi = zi (q1, q2, . . . , qn),

i = 1, 2, . . . , nV . (4)

The variables q1, q2, . . . , qn are called system coordinates,2

where xi , yi , zi are absolute coordinates. Using the system (4),
the potential energy V can be expressed solely in terms of
the system coordinates V = V (q1, q2, . . . , qn). To express
the kinetic energy (2) in terms of the system coordinates, we
differentiate each of the equations (4) w.r.t. time:

ẋi =

n∑
k=1

∂xi

∂qk
q̇k, ẏi =

n∑
k=1

∂yi

∂qk
q̇k, żi =

n∑
k=1

∂zi

∂qk
q̇k .

(5)

By expressing potential and kinetic energies solely in
terms of q1, q2, . . . , qn , q̇1, q̇2, . . . , q̇n , the Lagrangian of the
developable modelM is defined as

L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n) = T − V . (6)

The principle of Hamilton [5] reads that the actual motion of
a system with Lagrangian L is such as to render the Hamilton’s
integral

I =

∫ t2

t1
Ldt (7)

an extremum with respect to continuously twice-differentiable
functions q1(t), q2(t), . . . , qn(t), where t1 and t2 are two
arbitrary instants of time. From Hamilton’s principle, the
calculus of variations [25] shows that the system coordinates
describing the motion of the developable surface M must
satisfy the system of Euler–Lagrange equations

∂L
∂qi

−
d
dt

(
∂L
∂q̇i

)
= 0, i = 1, 2, . . . , n. (8)

The system (8), known as Lagrange’s equations of motion, con-
stitutes a set of n second-order ordinary differential equations,
whose solution yields the functions q1(t), q2(t), . . . , qn(t).

2.2. Mesh resolution vs. degrees of freedom

The number n of system coordinates counts for the DOFs
of the developable model. Consider a surface M. We can
2 The word system coordinate has other names in the engineering literature,
including generalized coordinate and Lagrangian coordinate.

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 721
Fig. 1. Mesh refinement with 1–4 splitting rule.
model it by using meshes with different resolutions. For a
particular example, we can model surfaces with finer resolution
by refining a coarse mesh using the 1–4 splitting rules, as
shown in Fig. 1. Intuitively, fine meshes can offer more DOFs
than those in coarse meshes. Below, we rigorously affirm this
property.

Lemma 1. Given a developable surface M modeled by a
triangle mesh as a rigid multi-body system, by applying
the 1–4 splitting rule, at any i (>0)th refinement step, the DOFs
of the next level fine meshMi+1 satisfies the relation

DOFi+1
= DOFi

+ ni
∂E

where ni
∂E is the number of boundary edges inMi .

Proof. Consider the surface M = (V, E,F) developing into a
plane that has nV vertices, nE edges and nF faces, respectively.
Denote its set of boundary edges (each of which is incident
to a single face) by ∂E with cardinality n∂E . We have n∂E =

2nE − 3nF . The Descartes–Euler formula holds

nV + n′

F − nE = 2 ⇒ nV + nF − nE = 1 (9)

where n′

F = nF + 1 counts the unbounded region in the plane
by adding 1. By applying 1–4 splitting rules to a mesh Mi

towardsMi+1, we have
ni+1
F = 4ni

F
ni+1
V = ni

V + ni
E

ni+1
E = 2ni

E + 3ni
F

and

DOFi+1
= 3ni+1

V − ni+1
E = (3ni

V − ni
E) + (2ni

E − 3ni
F)

= DOFi
+ ni

∂E . �

The DOFs of a developable model can be further classified
to be either external or internal. Obviously, the whole model
can be rigidly moved in the space R3; we count these six
DOFs as external DOFs. The remaining DOFs of the model are
considered as internal DOFs. Refer to Fig. 2. The left model
consists of a single triangle and has only six (external) DOFs,
i.e., it can only move rigidly in space. The right model has
seven DOFs: in addition to the six external DOFs, there is
an internal DOF, i.e., the rotating (folding) between the two
triangles around their shared edge.

2.3. Mesh pattern vs. folding directions

Consider the mesh refinement pattern shown in Fig. 1.
As illustrated in Fig. 3, the resulting meshes can only fold
Fig. 2. External vs. internal degrees of freedom.

horizontally, perpendicularly or along the diagonal direction
from lower-right to upper-left, but not along the diagonal
direction from lower-left to upper-right. We regard this mesh
pattern as anisotropic. To achieve a uniform distribution of
folding directions, we use an isotropic mesh refinement pattern,
as shown in Fig. 4, for our developable surface model. The
following result then holds:

Lemma 2. Given a developable surface M modeled by an
isotropic triangle mesh, at any i (>0)th refinement step, the
DOFs of the next level fine meshMi+1 satisfy the relation

DOFi+1
= 2DOFi

− 3, with DOF0
= 11.

Proof. The refinement rules for the isotropic mesh in Fig. 4 can
be written as follows. For the upper row of Fig. 4,

ni+1
R f = 4ni

R f ,

ni+1
∂ Re = 2ni

∂ Re, n0
∂ Re = n0

Re

ni+1
I Re = 2ni

I Re + 4ni
R f , n0

I Re = 0

where nR f , nRe represent the rectangle’s faces and edges,
respectively, and n∂ Re, n I Re represent the boundary and interior
rectangle edges, respectively. For the lower row of Fig. 4,{

ni+1
F = 8ni+1

R f

ni+1
E = 2ni+1

Re + 8ni+1
R f .

With Eq. (9) and noting that nRe = n∂ Re + n I Re, we have:

DOFi+1
= 2ni+1

E − 3ni+1
F + 3 = 4ni+1

Re − 8ni+1
R f + 3

= 8ni
Re − 16ni

R f + 3 = 2DOFi
− 3. �

2.4. Compatibility condition for the developable model

By enforcing the constraints (3) on the isotropic surface
model, each triangle of the mesh can only move rigidly in space.
Consider any two triangles that share a common edge e. Refer
to Fig. 5. Let (α(e), β(e), γ (e)) be the angle triple associated
to one endpoint of e. The superscript “0” is used to indicate the
initial (rest) state, and the superscript “t” indicates the state at

722 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731
Fig. 3. One of the possible folding directions inherent in the pattern shown in Fig. 1.

Fig. 4. Isotropic mesh generation and refinement.
Fig. 5. Compatibility condition of the developable model.

time t . Due to the rigid motion of each triangle, two triangles
incident to the edge e can only rotate relatively around e. It is
immediately seen that the following geometric constraint must
be satisfied:

γ t (e) ≤ α(e) + β(e) = γ 0(e). (10)

For each internal edge, there are two angle triples correspond-
ing to the two endpoints of that edge; e.g. (α, β, γ) and
(α′, β ′, γ ′) in Fig. 5. These two triples are equivalent, in the
sense that if one triple satisfies relation (10), the other will sat-
isfy (10) automatically.
To present the following theorem, we need the concept of an
abstract graph.

Definition. An abstract graph is a pair (V, E) where V is a
finite set and E is a set of unordered pairs of distinct elements of
V. Thus, an element of E is of the form {v, w}, where v, w ∈ V
and v 6= w. The elements of V are called vertices, and the
element {v, w} of E is called the edge joining v and w.

Definition. Let (V, E) be an abstract graph. A realization of
(V, E) is a set of points in a real vector space Rn , one point for
each vertex, together with straight segments joining precisely
those pairs of points which correspond to edges. The points
are vertices and the segments edges; the realization is called a
geometric graph. It is required that two intersection conditions
hold:

(1) Two edges meet, if at all, in a common endpoint;
(2) No vertex lies on an edge except at one of its endpoints.

For more properties about abstract and geometric graphs, the
reader is referred to the textbook [14].

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 723
Fig. 6. Basic geometric relations.
Fig. 7. A degenerate case of the configuration shown in Fig. 6(c).

Let M be the abstract graph of a developable surface model
M. The following result holds:

Theorem 1. Given a developable surface model M with a
valid initial planar state in R2, its abstract graph M has a valid
realizationM(t) in R3 at time t, i.e., satisfying the edge length
constraints in Eq. (3), if and only if for every edge e in M, a
valid angle triple (α(e), β(e), γ (e)) can be assigned such that
the relation (10) is satisfied.

Proof. That the necessary condition for Theorem 1 holds is
readily seen. The sufficient condition is proved in Section 3.2.

�

The importance of Theorem 1 is that, if the local
compatibility condition by relation (10) holds everywhere, then
a valid global realization of the abstract developable model
exists.

3. Details of the algorithm

3.1. Basic geometric relations

Consider a valid realization of a developable model which,
by Theorem 1, satisfies relation (10) for all internal edges. Refer
to Fig. 6:

(a) Given a vertex v with a known position in R3, it needs two
system coordinates, i.e., two spherical coordinates, to locate
an incident edge of v (Ref. Fig. 6(a)). Note that the edge
length is pre-specified in the model’s initial state in R2;

(b) Given an edge with known positions of both endpoints, it
needs one system coordinate to locate an incident triangle
(Ref. Fig. 6(b));
(c) Given two adjacent triangles sharing a common edge, the
position of one vertex incident to the common edge is
uniquely determined if the positions of the other three
vertices are known (Ref. Fig. 6(c)); no system coordinates
are needed — this configuration is always valid by
Theorem 1, i.e., relation (10) holds. Refer to Fig. 7. A
degenerate case of this configuration exists: if the angle γ

is exactly π , one system coordinate should be assigned (see
also Fig. 15). However, due to floating point computation
being used and the dynamic model numerically evolving
with a small time step, symbolic perturbation schemes [10]
can be applied to remove this kind of degeneracy. Details
are presented in [20].

3.2. Proof of the sufficient condition for Theorem 1

Notation. The abstract developable model can be written as an
undirected graph M = (V(M), E(M)), where V and E are finite
sets with E = {(v, w) ∈ V × V : v 6= w}. A subgraph of a
graph M is a graph H = (V(H), E(H)) with V(H) ⊆ V(M)

and E(H) ⊆ E(M). The front of a subgraph H is a vertex set
F(H) ⊆ V(M) \ V(H) which satisfies ∀v ∈ F(H), there is a
vertex w ∈ V(H) such that (v, w) ∈ E(M).

The strategy we use for this proof is to show that if
the condition in Theorem 1 is satisfied, then we can always
specify a set of independent system coordinates such that the
positions of the particles of the model are uniquely determined.
The process of system coordinates assignment is as follows.
Without loss of generality, we start at the left-upper corner
vertex vlu of the model. Refer to Fig. 8(a). Three system
coordinates are needed to specify the location of vlu . Let H =

{vlu}. The system coordinates assignment takes the following
order:

Step 1 Find F(H);
Step 2 Assign the positions of the front F(H);
Step 3 H = H

⋃
F(H);

Step 4 If H 6= V(M), go to step 1.

724 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731
(a) Front propagation.

(b) The process of system coordinates assignment.

Fig. 8. The proof of Theorem 1.
To assign system coordinates to a given front F(H), the step
2 consists of the following substeps (Ref. Fig. 8(b)):

2a Set F ′
= F(H);

2b while F ′
6= ∅, do

2ba In F ′, identify the configuration shown in Fig. 6(c) to
specify the positions of vertices without assigning more
system coordinates, remove the identified vertices from F ′

and goto step 2b. If no vertices are identified, goto step
2bb;

2bb In F ′, identify the configuration shown in Fig. 6(b) to
specify the position of one vertex which is assigned to one
system coordinate, remove the identified vertex from F ′

and goto step 2b. If no vertices are identified, goto step
2bc;

2bc In F ′, identify the configuration of Fig. 6(a) to specify a
position of one vertex which is assigned to two system
coordinates, remove the identified vertex fromF ′ and goto
step 2b;

Since: (i) the front F(H) completely separates the surface
model M into disjoint components; and (ii) assigning system
coordinates to F(H) can only have three cases shown in Fig. 6,
the validity of the presented process in Fig. 8 is readily seen.
3.3. System coordinates assignment

System coordinates play a vital role in dynamic developable
models. If a set of system coordinates (Ref. Eq. (4)) can be
assigned, the Lagrangian of the surface model (Ref. Eq. (6)) is
readily obtained, and the system of Euler–Lagrange equations
(8) characterizes the dynamic process. The choice of a set
of system coordinates for the description of a surface model
subject to given constraints, is not unique. Akin to the different
bases of a vector space Rn , they are isomorphically equivalent,
and the number of such coordinates is definite: it is the number
of DOFs.

In the following, we present a detailed algorithm for system
coordinates assignment for a developable model subject to a
single external point constraint. The situation becomes much
more complicated if multiple external point constraints (MEPC
for short) exist, since some subsets of MEPC may over-
constrain or violate portions of the surface model. For a
clear and concise explanation of the mechanism of dynamic
simulation on the developable model, we only address the
single constraint case here, and we will present the non-trivial
extension to the MEPC case in the sequel Liu et al. [20].

The proof in Section 3.2 already suggests the following
algorithm to assign the system coordinates. Consider a
developable model M subject to a single external point

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 725
constraint that can be located in any node ofM. Let the location
of the external point constraint be vext and H = {vext}. Denote
the 1-ring neighbors of a vertex v as the vertices connecting to
v by edges. The algorithm of system coordinate assignment can
be summarized as follows:

Algorithm: sys coord assnmt single

1. Mark all vertices in M by 0;
2. Mark all vertices in H by 1;
3. while F(H) 6= ∅, do
3.1. Set F ′

= F(H);
3.2. while F(H) 6= ∅, do
3.2.1. max cstr = 0;
3.2.2. for every vertex v in F(H)do
3.2.2.1. cstr = the number of vertices marked “1” in the

1-ring neighbors of v;
3.2.2.2. if cstr > max cstr
3.2.2.2.1. max cstr = cstr ; max v = v;
3.2.3. if max cstr = 3
3.2.3.1. assign configuration shown in Fig. 6(c)

to max v;
3.2.4. else if max cstr = 2
3.2.4.1. assign configuration shown in Fig. 6(b)

to max v;
3.2.5. else if max cstr = 1
3.2.5.1. assign configuration shown in Fig. 6(a)

to max v;
3.2.6. mark max v by “1” and remove max vfrom F(H);
3.3. Set F(H) be all vertices marked “0” in the 1-ring

neighbors of F ′.

3.4. Generation of the system (4)

Algorithm sys coord assnmt single assigns system
coordinates by propagating the front F(H). The key is that in
the loop of Step 3.2, the system coordinate assignment rules can
be written down in a progressive manner, i.e., for Step 3.2.3.1,

vunknown = f (vknown1, vknown2, vknown3) (11)

for Step 3.2.4.1,

vunknown = g(vknown1, vknown2, qassigned) (12)

for Step 3.2.5.1,

vunknown = h(vknown, qassigned1, qassigned2) (13)

where f, g, h are vector-valued functions characterizing the
configurations in Fig. 6(c), (b) and (a), respectively. For a
clear explanation, we write down a simple example (upon a
consistent reordering of vertices):

v1 = h(vext, q1, q2)

v2 = g(vext, v1, q3)

v3 = g(vext, v2, q4)

· · · · · · · · · .

if we keep substituting known vertex positions in terms
of system coordinates into unknown vertex position functions
Fig. 9. System coordinate specification by function g.

from the upper rows to lower rows, the system of Eqs. (4) is
readily obtained:

v1 = h(vext, q1, q2)

v2 = g(vext, h(vext, q1, q2), q3)

v3 = g(vext, g(vext, h(vext, q1, q2), q3), q4)

· · · · · · · · · .

(14)

3.5. Linear approximation of system (4)

The function h in Eq. (13) is trigonometric in terms of
spherical coordinates, while functions f, g in Eqs. (11) and
(12) are compound trigonometric and radical functions in a
complex form. Consider the function g, for example. Refer to
Fig. 9. Given a triangle T = {vI, vII, vIII}, let the superscript
“0” denote its initial state in R2 and “t” its time-t state. Now
given one edge {vI, vII} known at time t , we want to use a
system coordinate qassigned to uniquely locate the position vIII.
The function g can be determined as follows:

(1) Calculate the angle θ between the two vectors v0
II − v0

I and
vt

II − vt
I ;

(2) Calculate and normalize the rotation axis r = (v0
II − v0

I) ×

(vt
II − vt

I);
(3) Rotate the triangle around the axis r to align vector v0

II − v0
I

coinciding with vector vt
II − vt

I . Denote the four Euler
parameters by

θ0 = cos
θ

2
, θ1 = r1 sin

θ

2
, θ2 = r2 sin

θ

2
,

θ3 = r3 sin
θ

2

where r = (r1, r2, r3)
T , and the rotation of vector v around

r with angle θ is given by

v′
= A(θ)v

(4) Given a value q for qassigned, for the case shown in Fig. 9,
rotate the triangle around the axis vt

II − vt
I (subject to

normalization):

vt
III = g(vt

I , v
t
II, q) = A(q)A(θ)(v0

III − v0
I) + vt

I

where

A(θ) =

1 − 2(θ2)
2

− 2(θ3)
2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)

2(θ1θ2 + θ0θ3) 1 − 2(θ1)
2

− 2(θ3)
2 2(θ2θ3 − θ0θ1)

2(θ1θ3 − θ0θ2) 2(θ2θ3 + θ0θ1) 1 − 2(θ1)
2

− 2(θ2)
2

 .

To simplify the above formulation, noting that a small time
step 1t is used in the numerical integration, we precompute

726 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731
∂ f
∂v

,
∂g
∂v

,
∂g
∂q , ∂h

∂v
, ∂h

∂q and use first-order approximations for the
functions f, g, h:

vt
= f (vt

I , v
t
II, v

t
III)

= f (vt−1t
I + ∆vI, v

t−1t
II + ∆vII, v

t−1t
III + ∆vIII)

= vt−1t
+

∂ f
∂vI

∆vI +
∂ f
∂vII

∆vII +
∂ f

∂vIII
∆vIII

+ high order terms

vt
= g(vt

I , v
t
II, q t) = g(vt−1t

I + ∆vI, v
t−1t
II

+∆vII, q t−1t
+ ∆q)

= vt−1t
+

∂g
∂vI

∆vI +
∂g
∂vII

∆vII +
∂g
∂q

∆q

+ high order terms
vt

= h(vt
I , q t

1, q t
2)

= vt−1t
+

∂h
∂vI

∆vI +
∂h
∂q1

∆q1 +
∂h
∂q2

∆q2

+ high order terms.

(15)

Accordingly, the system (14) becomes a set of linear
homogeneous functions of q1, q2, . . ., which makes the
following numerical integration much easier to implement.

4. Numerical integration

The dynamic simulation of our developable model is
governed by the system of Euler–Lagrange equations (8), which
consists of n second-order ODEs. Rather than directly solving
this system of equations, we can introduce a set of auxiliary
variables called system momenta [25]:

pi =
∂T
∂ q̇i

, i = 1, . . . , n. (16)

By Eqs. (2) and (5), the kinetic energy T is a quadratic form in
terms of q̇i . Then in Eq. (16), each pi is a linear homogeneous
function of q̇1, . . . , q̇n . Conversely, due to the positive definite
characteristic of the energy T , the solution of the n equations
in (16) must yield each q̇i as a linear homogeneous function
of p1, . . . , pn . Upon substituting each q̇i in T in terms of
p1, . . . , pn, q1, . . . , qn , the Hamiltonian H of the system is
defined as

H(q1, . . . , qn, p1, . . . , pn) = T + V . (17)

That is, the Hamiltonian of a system is the total energy
(including both potential and kinetic energy) of the system.
Since T is a homogeneous function of order 2 in terms of
q̇1, . . . , q̇n , by Euler’s homogeneous function theorem, we have

2T =

n∑
i=1

q̇i
∂T
∂ q̇i

=

n∑
i=1

pi q̇i

and with Eq. (6), the following is immediately obtained:

H = 2T − (T − V) =

n∑
i=1

pi q̇i − L
∂ H
∂p j

= q̇ j +

n∑
i=1

∂ q̇i

∂p j

(
pi −

∂T
∂q̇i

)
= q̇ j , j = 1, . . . , n. (18)

It can be shown [25] that in terms of the Hamiltonian,
applying Hamilton’s principle which renders the integral (7) an
extremum leads to the Hamilton equations of motion (together
with identities (18)):

ṗi = −
∂ H
∂qi

, q̇i =
∂ H
∂pi

, i = 1, 2, . . . , n. (19)

The system (19) constitutes 2n first-order ordinary differential
equations, and is much easier to solve numerically than the
original system (8). Given a valid initial state of the system,
after determining the Hamiltonian function H , the motion of
the system can be efficiently obtained by the simple forward
Euler method:

pi (t + ∆t) = pi (t) −
∂ H(t)
∂qi (t)

1t

qi (t + 1t) = qi (t) +
∂ H(t)
∂pi (t)

1t
i = 1, 2, . . . , n. (20)

We emphasize that the system (19) is highly non-linear and
even discontinuous, due to the collision forces possibly applied
at any time in a complex virtual environment. Consequently it
is difficult to use an implicit numerical method like in Baraff
and Witkin [4] to solve it.

4.1. Fast and stable numerical solutions

To formulate ∂ H
∂qi

and ∂ H
∂pi

in system (19), substitute Eq. (4)
into (2):

T =
1
2

nV∑
i=1

mi

×

(n∑
k=1

∂xi

∂qk
q̇k

)2

+

(
n∑

k=1

∂yi

∂qk
q̇k

)2

+

(
n∑

k=1

∂zi

∂qk
q̇k

)2
 .

Then Eq. (16) becomes

p j =
∂T
∂ q̇ j

=

n∑
k=1

{
nV∑
i=1

mi

[
∂xi

∂qk

∂xi

∂q j
+

∂yi

∂qk

∂yi

∂q j

+
∂zi

∂qk

∂zi

∂q j

]}
q̇k, j = 1, . . . , n. (21)

Known from Cramer’s rule, the system of Eqs. (21) has a
unique solution that expresses each q̇ j as a linear homogeneous
function of p1, . . . , pn . We have

∂ H
∂p j

=

n∑
i=1

∂T
∂q̇i

∂ q̇i

∂p j
=

n∑
i=1

pi
∂ q̇i

∂p j

∂ H
∂q j

=
∂V
∂q j

+
∂T
∂q j

+

n∑
i=1

∂T
∂q̇i

∂ q̇i

∂q j
.

(22)

A considerable simplification can be achieved if the first
order approximation (15) of system (14) is applied: since
each function xi , yi , zi is a linear homogeneous function of

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 727
q1, q2, . . . , qn , all terms of ∂xi
∂q j

,
∂yi
∂q j

,
∂zi
∂q j

, i, j = 1, . . . , n, are
constants, and system (22) is reduced to

∂ H
∂p j

=

n∑
i=1

pi
∂ q̇i

∂p j

∂ H
∂q j

=
∂V
∂q j

= g
nV∑
i=1

mi
∂zi

∂q j
.

To evaluate ∂q̇i
∂p j

, i = 1, . . . , n, we first calculate the coefficients
in system (21)

c jk =

nV∑
i=1

mi

[
∂xi

∂qk

∂xi

∂q j
+

∂yi

∂qk

∂yi

∂q j
+

∂zi

∂qk

∂zi

∂q j

]
,

j, k = 1, . . . , n

at time t . Then the linear function q̇i of p1, . . . , pn , by solving
system (21), can be expressed as q̇i =

D∗i
D , where

D =

∣∣∣∣∣∣∣
c11 c12 · · · c1n
...

...
. . .

...

cn1 cn2 · · · cnn

∣∣∣∣∣∣∣
and

D∗i =

∣∣∣∣∣∣∣
c11 · · · c1(i−1) p1 c1(i+1) · · · c1n
...

. . .
...

...
...

. . .
...

cn1 · · · cn(i−1) pn cn(i+1) · · · cnn

∣∣∣∣∣∣∣ .
It is immediately seen that

∂q̇i

∂p j
= (−1)i+ j M j i

D
,

where Mi j is the minor of D formed by eliminating row j and
column i from D. To evaluate the determinant of a matrix,
recall that the determinant of an LU decomposed matrix is
just the product of the diagonal elements; then the determinant
evaluation can be efficiently achieved by performing the LU
decomposition [23].

4.2. Numerical stability with an adaptive time step

The time step 1t is critical to ensure numerical stability in
the scheme (20). To find a desired time step, a classical way
with an explicit method is to view pi (t) and qi (t) as functions
of time t and expand them as Taylor series. By Eq. (19), we
have

pi (t + 1t) = pi (t) −
∂ H(t)
∂qi (t)

1t − O
(

12t
2

d
dt

(
∂ H
∂qi

))
qi (t + 1t) = qi (t) +

∂ H(t)
∂pi (t)

1t + O
(

12t
2

d
dt

(
∂ H
∂pi

))
i = 1, 2, . . . , n. (23)

Compared to the scheme (20), the accumulation of the error
terms in (23) is bounded by

12t
2

d
dt

n∑
i=1

(
∂ H
∂qi

+
∂ H
∂pi

)
≤

12t
2δ

d(∆H)

dt
(24)
Fig. 10. Performance summary: all tests are performed on PC with a Pentium
III processor running at 937 MHz operating under Microsoft Windows XP.

where δ = arg mini {qi (t +1t)−qi (t), pi (t +1t)− pi (t), i =

1, . . . , n}. Note that the Hamiltonian H is the total energy of
a conservative system and thus, during simulation, ∆H should
be zero in an ideal situation. If |∆H | increases in the numerical
process, this non-physical variation is due to the error terms
in (23), and can be controlled by decreasing the time step 1t .
More precisely, referring to the bound in (24), the time step
should be inversely proportional to the square root of the change
of Hamiltonian. To achieve numerical stability and efficiency
with a low computational overhead, similar to that achieved in
Joukhadar and Laugier [17], the basic idea is to monitor the
value of ∆H at each time step, and to choose the largest time
step which satisfies ∆H < ε for a (small) pre-specified value ε.

5. Extension to non-conservative system

Although we have not implemented this aspect, we mention
that our dynamic model can be extended naturally to a non-
conservative system. For a non-conservative extension, we
resort to the knowledge of the Hamilton’s principle for a non-
conservative system of particles [5]. To count non-conservative
forces, the basic idea is to define generalized forces Qk :

Qk = −
∂V ∗

∂qk

and the integral (7) becomes

I ∗
=

∫ t2

t1
(T + Qkqk) dt

where δW = Qkδqk is called the virtual work. Due to the lim-
ited scope of this paper, we will present the detailed formulation
for non-conservative systems in a following up paper.

6. Applications

We have implemented the algorithms described in Sections 3
and 4. Examples illustrating the cases with both single and
multiple external point constraints are presented below. In
all experiments, the scene is set up by comparing to the
real world: the mesh size of paper (or cloth) is proportional
to the true size of real paper (or cloth); the mass of each
mesh vertex is proportional to the true unit mass of paper (or
cloth); the gravitational acceleration is set as 9.8. We use the
dynamic bounding volume hierarchy method to handle collision

728 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731
Fig. 11. Crumpled paper simulation usingM1: the paper is holding on the left-upper corner.

Fig. 12. Crumpled paper simulation usingM2.
detection, including self-intersection. Rather than adding the
viscosity at each vertex to simulate damping force that could
result in a non-conservative system, we add this damping force
to the velocity and we find that this simple scheme can produce
good, physically plausible behaviors of the objects. Fig. 10
summarizes the performance of all our simulation results.

6.1. Crumpled paper simulation

The design and fabrication of three dimensional shape
models made by paper-like sheet materials has received
increasing attention, both in computer aided design [11] and
in computer graphics [21]. Here we show two examples using a
single external point constraint with different mesh resolutions.
Fig. 11 shows an example of a piece of paperM1 holding on the
left-upper corner. Fig. 12 shows the same process using a finer
mesh M2. Two notes follow. First, clearly the fine mesh looks
softer than the coarse mesh; this agrees with our statement in
Lemma 2 that a finer mesh can offer more DOFs. Secondly, as
predicted by Amar and Pomeau [1], the crumpling of a piece
of paper should “leave permanent marks, very localized and

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 729
Fig. 13. Buckled developable surface simulation in sheet metal stamping.

Fig. 14. A rectangular plastic tablecloth draped over a rectangular table usingM2.
with a typical crescent shape”; our experimental results meet
this requirement very well.

6.2. Sheet metal stamping

Sheet metal stamping encompasses the wide range of metal-
forming operations that bend, or reshape metal without creating
chips. The press provides the power that transforms the sheet
metal. Specially designed dies determine the final product. In
Fig. 13 a square die is used, and it punches upwards. The
animation sequence shows clearly how the buckled developable
surface is formed.

6.3. Cloth simulation

Cloth modeling has been extensively studied in textile
mechanics and engineering communities, as well as by the
computer graphics community [16,24]. Two major challenges
exist. Firstly, cloth has the macroscopic property of negligibly
small strain along with large displacement. Secondly, cloth
frequently exhibits plenty of microscopic structures, e.g., folds
and wrinkles. Since cloth in most cases undergoes large
displacements with negligibly small strains at macro-level, we
can use the developability of our dynamic model to characterize
large displacements without stretching. If the developable
model is refined sufficiently, the resulting dynamic mesh can
model cloth structures at the micro-level.

In Figs. 14 and 15 we show two plastic tablecloth draping
simulations, each with two different resolutions. In Fig. 14,
we simulate a rectangular cloth over a rectangular table and
we observe clearly the principal folds formed, from the table
corners to the corresponding cloth corners. This property is
further verified in the example shown in Fig. 15, in which we
simulate an octagonal cloth draping over an octagonal table. If

730 Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731

3 Akin to raste
necessarily convex
Fig. 15. An octagonal plastic tablecloth model draped over an octagonal table.
we simulate an n-gonal cloth draping over an n-gonal3 table by
refining the mesh and letting n → ∞, we will get the result of
a round cloth draping over a round table; in this case, we can
infer that uniform folding patterns will occur.

7. Conclusion

Many industrial applications require the free form surfaces
used in computer aided design not only to be developable but
rizing a circle over a mesh, the resulting n-gon is not
.

also to have the property of being dynamic. Towards this end, in
this paper we present a study on dynamic developable surface
models using the Hamilton principle. By adopting triangle
meshes as the underlying surface representation, similarly
to Frey [13] our proposed technique can model buckled
developable surfaces. The detailed dynamization mechanism,
as well as practical numerical computation, are analyzed in
depth with the aid of system coordinates. This mechanism we
use is quite different from most existing work on developable
surfaces, and shows an interesting new way for modeling
developable surfaces.

Y.-J. Liu et al. / Computer-Aided Design 39 (2007) 719–731 731
Acknowledgements

The first author was supported by the National Natural
Science Foundation of China (Project Number 60603085),
the National High Technology Research and Development
Program of China (Project Number 2006AA01Z304) and the
National Basic Research Program of China (Project Number
2006CB303104).

References

[1] Amar MB, Pomeau Y. Crumpled paper. Proceedings of the Royal Society
of London. Series A 1997;453:729–55.

[2] Aumann G. Interpolation with developable Bezier patches. Computer
Aided Geometric Design 1991;8:409–20.

[3] Aumann G. A simple algorithm for designing developable Bezier
surfaces. Computer Aided Geometric Design 2003;20:601–19.

[4] Baraff D, Witkin A. Large steps in cloth simulation. In: Proceedings of
SIGGRAPH’98. 1998. p. 43–54.

[5] Bedford A. Hamilton’s principle in continuum mechanics. Pitman
Advanced Publishing Program; 1985.

[6] Bodduluri R, Ravani B. Design of developable surfaces using duality
between plane and point geometries. Computer-Aided Design 1993;25:
621–32.

[7] Chu C, Sequin CH. Developable Bezier patches: Properties and design.
Computer-Aided Design 2002;34:511–27.

[8] Cipra BA. In the fold: Origami meets mathematics. SIAM News 2001;
34(8).

[9] Demaine ED, Demaine ML. Recent results in computational origami. In:
Proc. 3rd inter. meeting of origami science, math and education. 2001. p.
3–16.

[10] Edelsbrunner H, Mucke E. Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on
Graphics 1990;9:66–104.

[11] Elber G. Model fabrication using surface layout projection. Computer-
Aided Design 1995;27:283–91.

[12] Frey WH. Boundary triangulations approximating developable surfaces
that interpolate a close space curve. International Journal of Foundations
of Computer Science 2002;13:285–302.

[13] Frey WH. Modeling buckled developable surface by triangulation.
Computer-Aided Design 2004;36:299–313.

[14] Giblin PJ. Graphs, surfaces and homology. Chapman and Hall; 1981.
[15] Hoschek J, Pottmann H. Interpolation and approximation with

developable surfaces. In: Dahlen M, Lyche T, Schumaker LL, editors.
Mathematical methods for curves and surfaces. 1995. p. 255–64.

[16] House DH, Breen DE. Cloth modeling and animation. A.K. Peters; 2000.
[17] Joukhadar A, Laugier C. Adaptive time step for fast converging dynamic

simulation system. In: Proc. of IEEE RSJ int. conf. on intelligent robots
and systems. 1996. p. 418–24.

[18] Kergosien YL, Gotoga H, Kunii TL. Bending and creasing virtual paper.
IEEE Computer Graph Applications 1994;14:40–8.

[19] Lang J, Roschel O. Developable (1, n)-Bezier surface. Computer Aided
Geometric Design 1992;9:291–8.

[20] Liu YJ, Tang K, Joneja A. Modeling dynamic developable meshes II:
Detailed algorithmic implementation. Manuscript. 2007 [in preparation].

[21] Mitani J, Suzuki H. Making papercraft toys from meshes using strip-based
approximate unfolding. ACM Transactions on Graphics 2004;23:259–63.

[22] Pottmann H, Farin G. Developable rational Bezier and B-spline surfaces.
Computer Aided Geometric Design 1995;12:513–31.

[23] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes
in C++. Cambridge University Press; 2002.

[24] Volino P, Magnenat-Thalmann N. Virtual clothing: Theory and practice.
Springer; 2000.

[25] Weinstock R. Calculus of variations: With applications to physics and
engineering. Dover Publishers; 1974.

	Modeling dynamic developable meshes by the Hamilton principle
	Introduction
	Dynamic developable model
	System coordinates and Hamilton principle
	Mesh resolution vs. degrees of freedom
	Mesh pattern vs. folding directions
	Compatibility condition for the developable model

	Details of the algorithm
	Basic geometric relations
	Proof of the sufficient condition for Theorem 1
	System coordinates assignment
	Generation of the system (4)
	Linear approximation of system (4)

	Numerical integration
	Fast and stable numerical solutions
	Numerical stability with an adaptive time step

	Extension to non-conservative system
	Applications
	Crumpled paper simulation
	Sheet metal stamping
	Cloth simulation

	Conclusion
	Acknowledgements
	References

