
Maximal intersection of spherical polygons by an arc

with applications to 4-axis machining

Kai Tang*, Yong-Jin Liu

Deptartment of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China

Received 3 October 2002; received in revised form 6 March 2003; accepted 7 March 2003

Abstract

Many geometric optimization problems in CAD/CAM can be reduced to a maximal intersection problem on the sphere: given a set of N

simple spherical polygons on the unit sphere and a real number constant L # 2p; find an arc of length L on the unit sphere that intersects as

many spherical polygons as possible. Past results can only solve this maximization problem for two very restricted special cases: the arc must

be either a great circle or a semi-great circle. In this paper, a simple and deterministic algorithm based on domain partitioning is presented for

solving this maximal arc intersection problem in the general case when the number L is arbitrary. The algorithm is made possible by reducing

the domain of the arcs to a continuous sub-space in R2 and then establishing a quotient space partitioning in this sub-space based on a

congruence relation. The number of the constituting congruent sub-regions in this quotient space partitioning is shown to have an upper-

bound OðE3Þ; where E is the total number of edges on the polygons. The proposed algorithm has a worst-case upper bound OðMEÞ on its

running time, where M is an output-sensitive number and is bounded by O(E3). Examples including two realistic tests for 4-axis NC

machining are presented.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Spherical polygons; Maximal intersection; Free form surface machining; Domain partitioning; Computational geometry

1. Introduction

This paper studies the following geometrical optimiz-

ation problem, referred to as the maximal arc intersection

problem: given N simple spherical polygons on the unit

sphere S that can overlap each other, and a real number

L # 2p; find a great arc of length L on S that intersects a

maximal number of the given spherical polygons. Through-

out this paper, the term great arc refers to a segment of a

great circle and is abbreviated as arc. In Fig. 1, an example

of this optimization problem is given.

There is a number of industrial applications of this

optimization problem; among them a particular one is the

minimization of work-piece set-ups in 4-axis surface

machining. Fig. 2(a) shows a schematic picture of a 4-axis

numerically controlled (NC) machine. The tool moves in

three principal directions X;Y ;Z and the work table rotates

about a fourth axis which is usually parallel to one of

the three principal axes (x-axis in this case). A set-up refers

to a placement of the part on the worktable with a fixed

orientation with respect to the tool and the worktable. The

minimization of set-ups then refers to the careful selection

of set-ups so that the entire part surface can be correctly

machined without any gouging and with as few set-ups as

possible. To put this minimization problem in a more

computational viable format, the part surface is usually first

partitioned into a number of faces f1; f2;…; fN ; with each

face fi associated with a set of directions, called accessible

orientations, along which the tool can access any point on

the face without interfering with other faces. The set of

accessible orientations of face fi is best represented as a

spherical polygon Vi on the Gaussian sphere (i.e. the unit

sphere S;), called the visibility map [8,9]. For a particular

set-up of the machine, the orientations of the tool as

provided by the rotation of the work table form an arc of

length ur on S; where ur is the allowable range of rotation

angle of the fourth axis which is at most p (notice that the

work table is usually flat). Obviously, as illustrated by

Fig. 2(b), the face fi is accessible (machinable) in a set-up

if and only if the representative arc of that set-up and

0010-4485/03/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0010-4485(03)00042-3

Computer-Aided Design 35 (2003) 1269–1285

www.elsevier.com/locate/cad

* Corresponding author.

E-mail addresses: mektang@ust.hk (K.Tang); liuyj@ust.hk (Y. -J.

Liu).

http://www.elsevier.com/locate/cad

the visibility map Vi have at least one common point. To

minimize the number of set-ups is then equivalent to finding

a minimum set of arcs (of length ur) such that any fi is

intersected by at least one of the arcs. Since this

minimization is easily seen to be NP-hard [10], heuristic

alternatives have been sought to search for near-optimal

solutions. Among them a promising one is the iterative

greedy approach: at each iteration, an arc (of length ur) is

sought that intersects a maximum number of the given Vi;

these intersected Vi are then removed from the set of

visibility maps for the next iteration; the iteration continues

until the set of visibility maps becomes empty. Obviously, at

each iteration, it is exactly the maximal arc intersection

problem.

2. Prior work and contribution of this paper

Due to the difficulty of the search domain being a

continuous sub-region in S; earlier work can only solve the

maximum arc intersection problem in a very restricted form:

the length of the arc must be either exactly 2p; i.e. a great

circle, or exactly p; i.e. a semi-circle. If the arc length is

limited to 2p; Tang et al. [13] used the central projection

technique to transform the problem from the sphere to the

plane and devised an OðNE log EÞ algorithm to solve

the problem based on the partitioning scheme, where E is

the total number of edges on the given N spherical polygons.

Utilizing the idea of duality transformation [1,2], later

Gupta et al. [11] presented an algorithm that runs in OðE2Þ

time. If the arc length is limited to p; based on both central

projection [6] and duality transformation, Tang et al. [14]

were able to give an OððE þ IwbÞ
2NÞ time algorithm that

finds a semi-circle on S intersecting the maximal number of

the given spherical polygons, where Iwb is the number of

intersections between the edges of the image polygons

under central projection of the spherical polygons belonging

to the upper- and lower-sphere, respectively.

From the practical point of view, as already alluded

earlier, the allowable range of rotation ur is always strictly

less than p; therefore the prior results do not provide the

desired optimal solution. In terms of theoretical signifi-

cance, an exact algorithmic solution handling the most

general case of an arbitrary arc other than a semi-circle or

great circle will further the research and solve this spherical

optimization problem. This paper achieves this objective.

Specifically, a simple and deterministic algorithm is

presented that finds an exact solution to the maximal arc

intersection problem for an arbitrary arc length L: This

solution is important both from application point of view [8]

and from computational geometry point of view [4].

The paper is organized as follows. In Sections 3 and 4,

for a clear description of the algorithm, we first offer

detailed geometric analyses and the algorithmic solution to

the analogue of the maximal arc intersection problem in the

plane: find a line segment of a specified length L that

intersects a maximal number of the given polygons in the

plane. We then in Section 5 show how the algorithm

developed for the planar case can be transformed to the

spherical domain. A set of experiments, including two

examples in NC machining, are presented in Section 6 to

demonstrate the algorithm. Finally, we conclude the paper

in Section 7 with a discussion on some future research

topics.

Fig. 1. Maximal intersection of spherical polygons by an arc of fixed length;

the optimal arc is shown in blue color.

Fig. 2. (a) A 4-axis NC machine; (b) visibility maps.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851270

3. Analytic structure in the plane

We first consider the counter-part of the maximum arc

intersection problem in the plane: given a set of simple

polygons in the plane and a constant real number L; how

to find a line segment s of length L that intersects a

maximum number of the polygons? Fig. 3 shows such an

example. That we analyze the problem first in the plane

but not on the sphere is due to an obvious consideration:

it is usually easier and more discernable to describe

geometrical entities and relationships in the plane than in

the spherical domain. By first conducting the analysis and

solving the problem in the plane and then providing a

rigorous one-to-one mapping of the structure of the

solution from the plane to the sphere, our original

problem on the sphere is readily solved. In this section,

we conduct the analysis on the geometrical and combi-

natorial structure of the problem in the plane, while its

algorithmic details are left to Section 4.

Let sðp; uÞ represent an arbitrary line segment of length L

in the plane, where p is one end point of the segment and u is

the angle measured counter-clockwise from the þx-axis to

the vector pointing from p to the other end point of the

segment. The number of the polygons intersected by sðp; uÞ

will be called its size. We begin with a simple observation.

Lemma 1. If an s(p,u) has size k, then there exists an s

(p 0,u), with one of its two end points lying on an edge of a

polygon, whose size is at least k.

Proof. Without loss of generality, suppose sðp; uÞ intersects

polygons P1;P2;…;Pk: One can then translate sðp; uÞ in the

u direction until one of its two ends touches an edge of some

polygon Pi: The new line segment sðp0; uÞ either intersects

the same set of polygons as s ðp; uÞ if Pi is one of

{P1;P2;…;Pk} or k þ 1 polygons otherwise. A

With Lemma 1, the search domain thus has been reduced

to those sðp; uÞ whose end points lie on some edges of

polygons. We will say sðp; uÞ sits on an edge e if p [e:

Consider an arbitrary edge e of a polygon whose length is h.

Without loss of generality, suppose this edge has an

inclination angle of 0 degree, that is, it lies on the x-axis,

and its left end point is the origin of the coordinate system.

Any point p on e can be expressed uniquely as p ¼ ðt; 0Þ;

ð0 # t # hÞ: Consequently, an sðp; uÞ : p [e is a function

sðt; uÞ of two parameters t and u with a range of ½0; h� and

½0; 2p� respectively. For the purpose of clearer discussion,

and also to better suit the need of easy conversion from the

plane to the sphere, the ½0; 2p� range for u is divided into

two halves ½0;p� and ½p; 2p� and they will be dealt with

separately. The analysis now becomes: how to partition the

t 2 u domain ½0; h� £ ½0;p� into a finite number of sub-

regions so that each of these sub-regions bears a similar

solution structure.

3.1. Characteristic and eigen lists

Consider a point ðt; 0Þ : t [½0; h� and its relationship

with an arbitrary line segment u with respect to an sðt; uÞ:

Since the range for u is limited to ½0;p�; the segment u is

assumed to lie entirely in the half-space y $ 0: (If an

edge of a polygon crosses the x-axis, only its portion

above the x-axis will be considered.) We say that u

covers point ðt; 0Þ (or point t for brevity) if there is at

least one point q [u such that the distance between

the two points q and ðt; 0Þ is less than or equal to L: The

covering set of t then refers to the set of the edges of

the polygons that cover t. To a u that covers t; let su be

the subset in R such that if an sðt; uÞ intersects u then

u [su; and vice versa. Due to the linearity of u; it can

be easily seen that su must be in the form of a closed

interval ½ui; uo� in R. ½ui; uo� will be referred to as the

covering interval of u at parameter t, and ui and uo the

bounding angles. In addition, ui will be called the in-

angle and uo the out-angle of the interval.

Now, let u1; u2;…; um be the covering set of t: One can

sort the in-angles and out-angles of their covering intervals

into an ordered list of 2m numbers {u1; u2;…; u2m}: This list

will be defined to be the characteristic list of t, denoted as

ClðtÞ: By definition of a covering interval, for any interval

½ui; uiþ1� ði ¼ 1;…; 2m 2 1Þ; all the sðt; uÞ : u [ðui; uiþ1Þ

intersect the same set of line segments. Consequently, the

list {u1; u2;…; u2m} introduces another list of 2m 2 1 sets

{j1; j2;…; j2m21}; where each ji is the set of line segments

that any sðt; uÞ : u [ðui; uiþ1Þ
1 intersects. This second list at

t will be defined as the eigen list of t, with the notation EiðtÞ:

In Fig. 4, an example is given to illustrate these two lists. As

we will see next, although list ClðtÞ completely determines

list EiðtÞ; it is the latter that solely decides the structure of

the solution space which is the key in discretizing the search

domain.

3.2. Analyses of critical points

Given two different points t and t0; their characteristic

lists ClðtÞ and Clðt0Þ are different. On the other hand, their

eigen lists EiðtÞ and Eiðt0Þ may or may not be identical to

Fig. 3. Maximal intersection of polygons by a line segment s of fixed length.

1 We purposely avert the boundary case of sðt; uiÞ: It can be easily shown

however that the set of line segments that sðt; uiÞ intersects is either ji or

jiþ1:

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1271

each other. Since two identical EiðtÞ and Eiðt0Þ give identical

structure of solutions, we investigate under what conditions

can two lists EiðtÞ and Eiðt0Þ be identical to each other. Let’s

define below a congruence relation between two points t and

t0 based on their eigen lists.

Congruence. Two points t and t0 are said to be congruent to

each other if and only if their eigen lists EiðtÞ and Eiðt0Þ are

identical to each other.

Next, let’s consider the ‘difference’ between two charac-

teristic list ClðtÞ and Clðt0Þ: Unlike EiðtÞ; however, since a

ClðtÞ contains structure information more than just identi-

fiers, such as in-angles and out-angles, a quantitative and

structural measure is needed to describe the similarity

between ClðtÞ and Clðt0Þ: The following definition is in

order.

Equivalence. Two characteristic lists ClðtÞ ¼

{u1; u2;…; u2m} and Clðt0Þ ¼ {f1;f2;…;f2n} are said to

be equivalent to each other if and only if the following two

conditions are both satisfied:

(1) t and t0 have the same covering set (which means

m ¼ n), and (2) ui is the in-angle (out-angle) of the

covering interval at t of a line segment u if and only if

fi is the in-angle (out-angle) of the covering interval at t0

of the same line segment u; for i ¼ 1; 2;…;m:

It is conceivable that for a small perturbation d in t; the

two characteristic list ClðtÞ and Clðt þ dÞ should be

equivalent to each other; however, there are certain critical

points at which the nature of the characteristic list changes

suddenly. We consider under what circumstances such

changes occur. They are categorized into six cases under

two types, based on the way the two conditions in the

definition of equivalence relation are affected.

3.2.1. Type I. Emerging or disappearing of a covering line

segment

This type of change refers to the situation when the

covering interval of a line segment u enters or leaves a ClðtÞ;

or in other words, when equivalence condition (1) is

becoming unsatisfied. Geometrically, due to the linearity of

u; this means that there must exist a positive real number s

such that u either covers ½t 2 s; t� and does not cover any

point in ðt; h� or covers ½t; t þ s� but none of ½0; tÞ: This

geometrical observation implies the circular exclusion

property: t is a type I critical point due to u if and only if

the circle of radius L and centering at t intersects a single

point of u and contains no point of u in its interior. Referring

to Fig. 5, there can only be two cases for such a circle: it

either touches an interior point of u (Fig. 5(a)) or passes

through an end point of u and excludes the rest of u: Both

cases can be identified geometrically. In the first case, t is

Fig. 4. Characteristic and eigen lists.

Fig. 5. Type I critical points.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851272

the sole intersection point, if it exists, between the interval

½0; h� (on the x-axis) and the offset of u; as shown in Fig.

5(a), where the offset distance is L: The latter case can also

be easily identified by intersecting the interval ½0; h� with

the circle of radius L and centering at an end point of u; as in

Fig. 5(b) (notice that only t1 is a type I point, but not t2).

3.2.2. Type II. Order change of covering intervals

This second type pertains to the circumstance when

equivalence condition (2) is about to be jeopardized.

Because a bounding angle in a ClðtÞ; which is the slope

angle of a vector from t to either a line segment’s endpoint

or a circle-line intersection point, is a continuous and

smooth function of t between critical points, a critical point t

pertaining to condition (2) should be the one at which two

bounding angles, each belonging to a different covering

interval, become coincidental. In other words, t is a type II

critical point if in its characteristic list ClðtÞ ¼

{u1; u2;…; u2m} there are two identical bounding angles

ui ¼ uiþ1 for some i and they belong to different covering

intervals. The only exception to the above assertion is the

degenerate case when one end point of a line segment u lies

on the edge e; in this case the two bounding angles of u

changes drastically when crossing the point. Depending on

the contributing sources to the critical point, four sub-types

are further defined.

3.2.2.1. Type IIa. Common interior point case. This first

sub-type refers to the case when a type II critical point is

contributed by a single point. Suppose two line segments u

and u0 intersect each other at a point p. Let t be a point in the

interval ½0; h� whose distance to p is the length L; if it exists.

Ignoring the degenerate case when the line segment

½p; ðt; 0Þ� is perpendicular to one of u or u0; there must

exist t1 , t and t2 . t such that both u and u0 cover ½t1; t�

and ½t; t2�. Referring to Fig. 6, the two adjacent bounding

angles in Clðt1Þ; each belonging to u and u0; respectively,

will switch their order in the characteristic list Clðt2Þ: In

Appendix A, a formal proof is given on this switching of

order. Computationally, t is obtained by intersecting the

circle centering at p and of radius L with the line segment

½ð0; 0Þ; ðh; 0Þ�; at most two such critical points exist for a

common point p:

3.2.2.2. Type IIb. Interior point þ end point case. In this

scenario, the critical point is contributed by one interior

point of u and one end point of u0: As illustrated in Fig. 7, in

a neighborhood of t clear of other critical points, two

bounding angles, one belonging to u and the other belonging

to u0; will switch their order in the characteristic list when at

different sides of t: Its proof is similar to that of type IIa and

is omitted here.

Geometrically, t is determined by locating an interior

point p on u such that the distance between p and point ðt; 0Þ

Fig. 6. Type IIa critical point.

Fig. 7. Type IIb critical point.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1273

is L and one end point of u0 lies in the interior of the line

segment between p and ðt; 0Þ: Let ðx0; y0Þ and ðx1; y1Þ be the

two end points of u and ðx0; y0Þ be the end point of u0 in

interest. The following two degree-2 equations establish this

geometrical relationship:

ðx0ð1 2 vÞ þ x1v 2 tÞ2 þ ðy0ð1 2 vÞ þ y1vÞ2 ¼ L2

ðx0ð1 2 vÞ þ x1v 2 tÞ=ðy0ð1 2 vÞ þ y1vÞ

¼ ðx0ð1 2 vÞ þ x1v 2 x0Þ=ðy0ð1 2 vÞ þ y1v 2 y0Þ:

The solution to the above two equations for the two

variables v and t, with their ranges limited to ½0; 1� and ½0; h�

respectively, will give out at most two type IIb critical

points.

3.2.2.3. Type IIc. End point þ end point case. This sub-type

of continuous bounding angles case covers the special

configuration when a line through the end points of two

different line segments u and u0 intersects the segment ½0; h�;

as shown in Fig. 8. Notice that for a t to qualify to be a type

IIc point, besides being collinear with the end points of u

and u0; it needs further to satisfy the distance constraint: the

distances from ðt; 0Þ to the two end points should both be no

greater than L: We omit the proof of the order switching of

the bounding angles in this case, as it is similar to that of

type IIa which is given in Appendix A.

3.2.2.4. Type IId. End point degenerate case. This last type

corresponds to the special situation when an end point of a

line segment u falls on the edge e: (Note that if the original u

strictly intersects e; it is cut by the line y ¼ 0 into two

halves.) Fig. 9 shows an example exemplifying the effect of

this critical point on the characteristic list. As revealed in the

example, the bounding angles of u changes drastically from

{u1; u4} to {f3;f4} after crossing the critical point t:

3.3. Congruent partitioning

Let {t1; t2;…; tN} be the critical points on the edge

½ð0; 0Þ; ðh; 0Þ� as contributed by the edges of the N given

polygons, sorted from left to right. Since the equivalence

relation among characteristic lists implies the congruence

relation of the corresponding points on the edge

½ð0; 0Þ; ðh; 0Þ�;the list{t1; t2;…; tn} partitions the edge into

N þ 1 congruent intervals ðti; tiþ1Þ; i ¼ 0; 1; 2;…; n; with

t0 ¼ 0 and tnþ1 ¼ h: As an illustration, Fig. 10 depicts such

a partitioning for a set of four line segments. By definition,

any two points p and q in a congruent interval will have an

identical eigen lists, i.e. EiðpÞ ¼ EiðqÞ: Two points p and q

are said to have the same solution structure in the sense that

if there is a line segment sðp; uÞ for some u [½0;p� that

intersects a subset K of the polygons then there must exist

some u0 [½0;p� such that the segment sðq; u0Þ intersects the

same K; and vice versa. Though not very obvious, it can be

shown that all the points in an open congruent interval will

have a same solution structure. Consequently, a congruent

interval can be represented by an arbitrary point in it.

A deeper insight of this congruent partitioning leads to the

concept of the quotient space partitioning [7] in the t 2 u

space. As already discussed earlier, in an interval ðtj; tjþ1Þ;

Fig. 8. Type IIc critical point.

Fig. 9. Type IId critical point t:

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851274

the characteristic list ClðtÞ ¼ {u1; u2;…; u2m} is continuous

in t; that is, every ui is a continuous function of t; i.e. a smooth

curve uiðtÞ: These smooth curves uiðtÞ together with lines

t ¼ tj ðj ¼ 1; 2;…; nÞ then form a partitioning of the t –u

space in the domain ½0; h� £ ½0;p�; as schematically

illustrated in Fig. 11(a). This is a quotient space partitioning

in the sense that for any two points ðt; uÞ and ðt0; u0Þ belonging

to a same sub-region in the partitioning, the sizes of sðt; uÞ and

sðt0; u0Þ are equal to each other. As a result, each sub-region

can be represented by an arbitrary point in it and a dual graph

(also called the Reeb graph, cf. [7]) can be established: every

node in the graph represents a unique sub-region in the

partitioning and two nodes are connected by an edge if the

corresponding sub-regions are neighbors. For instance, Fig.

11(b) depicts the Reeb graph of the quotient space

partitioning in Fig. 11(a). We do not explicitly build this

Reeb graph though. The task instead now becomes how to

design an efficient algorithm to implicitly traverse this Reeb

graph so that a node with the maximal size can be identified.

This is the task of the next section.

4. Algorithmic details in the plane

With the congruent partitioning relation defined and

established on an edge, the next task is to design simple and

efficient algorithms to find a maximal intersecting line

segment based on the congruent relation. The first and also

the crucial step is to have a simple and proper data structure

for a characteristic list ClðpÞ: Let {e1; e2;…; eE} be the edges

on the N given polygons P1; P2;…;PN : For simplicity of

discussion, let us assume that ClðpÞ is in the general state,

that is, no bounding angles in ClðpÞ are the same, and p lies

on only one edge, say e1: A ClðpÞ is represented by an array

Cl_array½1 : m� of records of five fields each. An element

Cl_array½i�ð1 # i # mÞ carries the following information:

Cl_array½i�:angle: the value of the corresponding bounding

angle; Cl_array½i�:type: a tag that indicates if the

bounding angle is ‘in’ or ‘out’; Cl_array½i�:edge: an

integer that identifies the covering edge, e.g. 4 means

the covering edge is e4; Cl_array½i�:polygon: an integer

identifying the polygon that the covering edge

belongs to; and finally Cl_array½i�:number: an integer

which is the number of polygons that any line segment

sðt; uÞ : u [ðCl_array½i�:angle, Cl_array½i þ 1�:angle)

intersects. The algorithm given below outlines how a

characteristic list ClðpÞ is constructed. Without loss of

generality, assume that edge e1 is collinear with the x-axis.

In the routine, we use Cirðp;LÞ to denote the upper semi-

circle with the center at p and of radius L; a utility function

Poly_IdðeiÞ is also used which returns the ID of the polygon

to which the edge ei belongs.

Algorithm Characteristic_list ðpÞ

Begin

Step 1.

m ¼ 0;

Step 2.

For i ¼ 2 to E do begin

j ˆ the portion of the line of ei inside the semi-circle

Cirðp;LÞ;

If j –Null then begin

sˆ ei > j;

end

If s –Null then begin

m ¼ m þ 1;

Cl_array [M].angle ˆ the inclination angle of the

vector from point p to the first end point of s;

Cl_array [M þ 1].angle ˆ the inclination angle of

the vector from point p to the second end point of s;

If Cl_array [M].angle . Cl_array [M þ 1].angle then

Fig. 10. Congruent partitioning on an edge.

Fig. 11. A quotient space partitioning and its corresponding Reeb graph.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1275

Switch Cl_array[M].angle with Cl_array

[M þ 1�.angle;

Cl_array[M].type ˆ “in”;

Cl_array[M þ 1].type ˆ “out“;

Cl_array [M].edge ˆ Cl_array[M þ 1].edge ˆ ei;

Cl_array[M].polygon ˆ

Cl_array[M þ 1].polygon ˆ Poly_IdðeiÞ;

Cl_array[M].number ˆ

Cl_array[M þ 1].number ˆ 0;

m ˆ m þ 1;

End;

End;

Step 3.

Sort the array Cl_array ½1 : M� in ascending order

according to the “angle” field;

Step 4.1.

For i ¼ 1 to N do begin

If (Pi strictly contains the point p) then begin

Poly_register[i] ˆ 1;

current_number ˆ current_number þ 1;

End

Else

Poly_register[i] ˆ 0;

End;

Step 4.2.

Poly_register [Poly_Id(e1)] ˆ 1;

current_number ˆ current_number þ 1;

Step 5.

For i ¼ 1 to M 2 1 do begin

If Cl_array[i].type ¼ “in” then begin

If Poly_register[Cl_array[i].polygon] ¼ 0 then

current_number ˆ current_number þ 1;

Cl_array[i].number ˆ current_number;

Poly_register[Cl_array[i].polygon] ˆ

Poly_register[Cl_array[i].polygon] þ 1;

End

Else begin

Poly_register[Cl_array[i].polygon] ˆ

Poly_register[Cl_array[i].polygon] 2 1;

If Poly_register [Cl_array[i].polygon] ¼ 0 then

current_number ˆ current_number 2 1;

Cl_array[i].number ˆ current_number;

End;

End;

End.

In the above algorithm, at Step 2, each edge ei is checked

to see if it intersects the upper semi-disc of radius L

centering at p: If yes, the portion of ei inside this semi-disc

(which is a line segment denoted by s in Step 2) will

contribute two entries to the array Cl_array; each by an end

point of s; they are appended to Cl_array with their 5-fields

records {angle, type, edge, polygon, number} set or

initialized accordingly. The entries in the array Cl_array

are then sorted based on their angle fields, at Step 3. Since a

polygon can have more than one edge covering point p; and

also counting those polygons that strictly contain p; a

register Poly_register is maintained for each and every

polygon. Basically, Poly_register[i] stores the number of

edges of polygon Pi that are ‘intersected’ by the current

interval (Cl_array[i].angle, Cl_array[i þ 1].angle) when

processed in Step 5; with an additional “1” added if Pi

contains point p (either on the boundary or in the interior).

At Step 4.1, Poly_register for every polygon Pi is

initialized: it is set to “1” if Pi strictly contains the point

p; or “0” otherwise. At Step 4.2 the Poly_register that

corresponds to the polygon of edge e1 is then set to 1, since p

sits on e1: The variable current_number is the number of

polygons that the current interval (Cl_array[i].angle,

Cl_array[i þ 1].angle) (when processed in Step 5) ‘inter-

sects’. Initially, before the first angle Cl_array[1], curren-

t_number should be set to account only for those polygons

that contain p (on the boundary or in the interior); this

is done at Step 4. Actually, this initial value of curren-

t_number has an important meaning: it is the number

of polygons that any sðp; uÞ : u [½0;Cl_array½1�Þ<
(Cl_array½m�:angle, p] intersects.

When processing a bounding angle Cl_array[i] in Step 5,

we first increment or decrement by one the register

Poly_register of the edge identified by Cl_array[i].edge,

depending on whether it is an “in” or “out” edge. The

number Cl_array[i].number is then updated from

the previous interval Cl_array [i].number (which is also

the value of the variable current_number) only if Poly_-

register changes from 0 to 1 or vice versa. This combined

usage of the two variables current_number and Poly_-

register ensures that the number of intersected polygons is

properly counted.

Let smaxðpÞ denote a line segment sðp; u0Þ with u0

belonging to one of the constituent intervals in ClðpÞ that

has the largest “number” value. The lemma 2 below is in

order.

Lemma 2. It takes OðE þ m log mÞ time and OðEÞ space to

construct the characteristic list Cl(p) and find the line

segment smaxðpÞ; with m being the number of covering

intervals at p which is at most 2(E 2 1).

Proof. By examining the ‘number’ field of the Cl_array

in ClðpÞ; the smaxðpÞ can be readily identified. Step 2 is

easily seen to take O(E) time. The sorting operation at

Step 3 is Oðm log mÞ: The dominant operation of Step 4

is at Step 4.1 which can be achieved by a linear scanning

of all the edges in regarding to the point p; hence

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851276

requiring O(E) time. The loop at Step 5 is trivially seen

to take linear O(m) time. The proof for the space

requirement is omitted. A

Next, let {c1; c2;…; cn} be the congruent intervals

induced by the critical points on an edge e: By definition

of the congruence, in any ci; for all the points p [ci; smaxðpÞ

intersects the same number of polygons. Suffice it to say, if

we pick an arbitrary point pi for ci; i ¼ 1; 2;…; n; and select

among them the smaxðpkÞ that intersects the largest number

of polygons, then the line segment s ¼ smaxðpkÞ should be a

solution to our maximum intersection problem when the

search domain t £ u is restricted to ½0; h� £ ½0;p� on edge e

(which is assumed to be on the x-axis and have length h). To

cover the other half of u; i.e. ½p; 2p� we can reverse the

direction of the y-axis and apply the same process on edge e

to find another line segment s0 that is the solution in the

search domain t £ u ¼ ½0; h� £ ½p; 2p�: Obviously, the one

of s and s0 that intersects a larger number of polygons must

be a solution to the maximum intersection problem for the

search domain t £ u ¼ ½0; h� £ ½0; 2p�: The following

lemma summarizes this result.

Lemma 3. To a given arbitrary edge e, it takes O(E3 log E)

time and O(E2) space to find a line segment s of length L

among all the line segments of length L that sit on e such

that s intersects a maximal number of the polygons.

Proof. It is not hard to show that the maximal number of

type I critical points that an edge can contribute to e is 2,

and the number of any of the four type II critical points that

a pair of edges can contribute is at most 4. Therefore, there

are O(E2) critical points on e which need to be sorted to

obtain the congruent partitioning. Since it takes a constant

time to calculate a critical point (referring to Figs. 5–9)

and consider that all the intersection points between the

edges of the polygons can be obtained in O(E2) time, the

O(E2) congruent intervals can thus be computed in

O(E2 log E) time. For each congruent interval, we need

to construct a ClðpÞ to find the line segment smaxðpÞ which

takes OðE log EÞ time according to Lemma 2. Therefore

OðE3 log EÞ time is needed to go through all the congruent

intervals and find the best solution smaxðpÞ: Again, the

analysis for the space requirement is omitted. A

It is natural to inquire if the upper-bound OðE3 log EÞ in

Lemma 3 can be improved. Observing that the difference

between the sizes of smaxðpÞ : p [ci and smaxðp
0Þ : p0 [ciþ1

for any two adjacent congruent intervals ci and ciþ1 in an

edge e is at most one, it is inviting to ask whether the

characteristic record for an congruent interval ciþ1 can be

obtained by incrementally updating the characteristic list of

the previous congruent interval ci: Let t0 be a type I critical

point due to an edge u that separates ciþ1 from ci; t1 and t2 be

two points in ci and ciþ1 respectively. Suppose that Clðt1Þ ¼

{u1ðtÞ; u2ðtÞ;…; umðtÞ}lt¼t1
each uiðtÞ being a continuous

function of t [½t1; t2�: (Note that the crossing of t0 by t does

not effect uiðtÞ; since they are not contributed by u:) To get

Clðt2Þ from Clðt1Þ; we need to insert the covering interval of

u at t2 into the list {u1ðt2Þ; u2ðt2Þ;…; umðt2Þ}: Evaluating u

iðt2Þ; i ¼ 1; 2; ;…;m; takes a total of O(m) time, which is at

most O(E); inserting an interval into the sorted list

{u1ðt2Þ; u2ðt2Þ;…; umðt2Þ} requires only Oðlog mÞ time, by

using a balanced binary search tree. Once inserted, the other

data such as the ‘number’ field of the new interval in Clðt2Þ

can be readily derived from the data of its preceding interval

in the list. Therefore, it only takes O(m) time to obtain Clðt2Þ

from Clðt1Þ: Considering that m is usually much smaller than

E; this is a not small saving from the tight OðE þ m log mÞ

bound if Clðt2Þ is constructed from scratch (notice that

algorithm Characteristic_list(p) has a lower bound of VðEÞ

due to Step 2). Similar analyses can also be conducted on

type IIa, type IIb, and type IIc critical points. The lemma

given below summarizes these analyses (Lemma 4).

Lemma 4. For a given arbitrary edge e; it takes OðE2 þ n

log n þ
Pn

i¼2 mi þ keE log EÞ time to find a line segment s of

length L among all the line segments of length L that sit on e

such that s intersects a maximal number of the polygons,

where n is the number of congruent intervals on e which is

bounded by O(E2), mi is the number of edges that cover the

ith congruent interval which is at most E 2 3; and ke is the

number of type IId critical points on e which is bounded by

O(E).

Proof. Referring to the proof of Lemma 3, it takes

OðE2 þ n log nÞ time to establish the n congruent intervals

on e: After constructing the characteristic record for the first

congruent interval which takes OðE þ m1 log m1Þ # OðE

log EÞ time, the characteristic record for the ith congruent

interval can be obtained from that of the preceding

congruent interval in O(mi) time. The last item in the

expression, keE log E; is due to the type IId critical points

where a new characteristic list has to be built from scratch

due to the drastic change of some bounding angles. A

Finally, by applying Lemma 4 to every edge, we can

identify an edge e among all the E edges and a point p on e

such that smaxðpÞ intersects a maximal number of polygons.

Because of Lemma 1, it is immediately concluded that

smaxðpÞ is also an solution to our maximum intersection

problem. The theorem below summarizes this final result.

Theorem 1. Given a set of polygons in the plane with a total

of E edges and a real number L; we can in OðE3 þ M �

log M þ EM þ IE log EÞ time and OðE2Þ space find a line

segment of length L that intersects a maximal number of the

polygons, where M is the number of critical points on all the

edges of the polygons and is bounded by OðE3Þ; and I is the

number of intersections between the edges of different

polygons and is less than E £ ðE 2 1Þ:

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1277

Proof. The time requirement due to the first three items in

the expression OðE2 þ n log n þ
Pn

i¼2 mi þ keE log EÞ for a

single edge is easily seen to be OðE3 þ M log M þ EMÞ: As

for the last item keE log E; a sum over all the edges leads to

OðIE log EÞ: A

It is very important to point out that, in deriving the

upper-bound OðE3 þ M log M þ EM þ IE log EÞ in Theo-

rem 1, it is assumed that an edge can have OðE2Þ critical

points and a ClðtÞ can have OðEÞ covering edges. This is

however a gross worst case estimate. On average, due to the

limited lengths of the edges and L; also depending on the

distribution of the edges, the number of critical points on an

edge should be much less than the upper-bound OðE2Þ; so is

the size of a ClðtÞ: Actually, in our experiments presented in

Section 6, the total number of critical points on the E edges

is found to be more or less in the order of OðEN2Þ; where N

is the number of polygons which is usually much smaller

than E: A rigorous analysis on the average case is however

needed to verify the above bound, which though is beyond

the scope of this paper.

5. Conversion from plane to sphere

It is straightforward to convert the idea of congruent

partitioning as described in Sections 3 and 4 from the plane

to the spherical domain. When converting to the sphere, a

line segment becomes an arc and a circle changes to a small

circle on the sphere. An arc whose one end point lies on an

edge e of a spherical polygon is now a function sðt; uÞ; where

t is a real number specifying the point on e and u is the angle

between e and sðt; uÞ on the tangent plane at t: All the

analyses of the critical points in the plane can be easily

shown to also hold on the sphere. For example, a Type Ia

critical point p on an edge e due to another edge u now

identifies with the existence of another point q on u such that

the arc between p and q is perpendicular to u and has the

length equal to the given number L: We however must pay

special attention to certain properties unique to the sphere

only; this is reflected in the ways on how a characteristic list

is constructed and how a critical point is identified.

5.1. Structure of ClðpÞ

Although the basic structure of a ClðpÞ on the sphere is

similar to that in the plane, some special treatments need to

be introduced due to certain spherical properties. Without

loss of generality, suppose the point p is at the north pole

(0,0,1). The analogy of the disc of radius L in the plane is a

cap on the sphere with its center at p; called the covering cap

at p; where the small circle that defines the cap is made of

those points whose spherical distance to p is L: When L $

p; this cap becomes the entire sphere. Let u1; u2;…; uk be

the intersections between this cap and the edges of the

polygons. The orthogonal projections of these k arcs in

the z ¼ 1 plane are k partial quadric curves. The 2k ordered

supporting rays from p to these k curves then form the

characteristic list ClðpÞ: (Notice that each such curve of

degree two can have only two supporting rays.) An

illustrative example is given in Fig. 12.

5.2. Calculation of critical points

When computing a critical point on the sphere, it is noted

that the identification of any of the six types of the critical

points is equivalent to finding roots of a system of

polynomial equations of degree at most 2 in x; y; and z: As

an example, referring to Fig. 13(a), assuming that edge u lies

in the z ¼ 0 plane, the possible Type Ia critical points that u

can contribute to another edge e are determined by the roots

of the following system of four equations:

x2 þ y2 ¼ Cos2ðLÞ

z ¼ ^SinðLÞ

x2 þ y2 þ z2 ¼ 1

ax þ by þ cz ¼ 0;

where L is the given length of the arc, the first two equations

define the small circle that is orthogonally L-distance away

from u on the sphere, and the last two equations define the

edge e with ða; b; cÞ being the normal vector of the plane of

e: It is observed that, due to the non-linearity of the

equations, more critical points may emerge. For instance,

while in the plane an edge u can contribute at most one Type

Ia point to another edge e; two such points could be

contributed if it is on the sphere, as demonstrated by

Fig. 13(b).

Another special situation, this time a beneficial one, is

associated with the length L of the arc. While there is no

such parallel analogy in the plane on L; the special number

p enjoys a very nice property on the sphere: if L $ p; then

only Type IIc and Type IId critical points can exist. This

assertion directly results from the fact that, when L $ p; the

covering cap at any point on the sphere is the sphere itself

and hence covers all the edges. Since the calculation of a

Type IIc or Type IId critical point is independent of L; we

Fig. 12. Characteristic list on the sphere.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851278

only need to consider the case of L , p when critical points

are calculated. Observing that, when L , p; to an edge e all

the arcs sðt; uÞ : t [e and u [½0;p� lie within one hemi-

sphere, we introduce a homogeneous representation for a

hemisphere based on the well-known central projection so

that the calculation of the critical points can be formulated

by the vector algebra, which is found particularly suitable

for programming. In Appendix B, a detailed description of

this homogeneous representation as well as an example of

calculating the Type Ia critical points are provided.

6. Implementation and experiments

The proposed algorithm has been implemented on the

VCþþ platform. In the presence of round-off errors or

degenerate cases, the following considerations are taken

into account:

Fig. 13. Type Ia points on the sphere.

Fig. 14. Test results on some regular patterns (the yellow line is the

solution).

Fig. 15. Test results on an irregular pattern.

Fig. 16. A mechanical part composed of free-form surfaces and regular

patches.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1279

Round-off error and stability. Since the computer stores

numbers with a finite precision, round-off error is inevitable

and we adopt the standard routines in [12], for solving all the

derived formulae to identify critical points. These routines

are designed to bound the round-off error accumulation and

thus to stabilize the algorithm.

Degeneracies and robustness. In our case degeneracy

occurs when several polygons share a common vertex or an

edge (cf. spherical polygons in Fig. 20). Since our algorithm

is edge-oriented, to deal with these degenerate cases, we

preprocess the spherical polygons with line (arc) segment

intersection detection to build a doubly connected edge list

[5] in the spherical domain. With this data structure, the

complete topological information, i.e. the edge-vertex-face

relationship is readily obtained. The line segment intersec-

tion detection can be performed in an output-sensitive

fashion [5]: given n line segments, its time complexity is

Oðn log n þ I log nÞ; where I is the number of intersection

points of the n segments.

For demonstration purpose, we first test the algorithm on

some simple and artificial patterns on the sphere. Then two

tests on some realistic mechanical parts composed of free-

form surfaces are performed. In the first experiment, as

shown in Fig. 14, tests on some regular patterns with

different arc lengths are performed. Next, the algorithm is

tested on several irregular patterns with different arc

lengths; the results are shown in Fig. 1 and 15.

Finally, we apply the proposed algorithm to two

mechanical parts composed of free-form surfaces and

regular patches, as displayed in Figs. 16 and 20 (the part

surface does not include the bottom flat face). In Fig. 16, the

free-form surfaces of the part are grouped into six faces

based on some optimization or manufacturing criteria (e.g.

certain region on the surface of the part may be required to

be cut in a single machining operation), whose (simplified)

visibility polygons are depicted in Fig. 17. After applying

the proposed algorithm with arc length equal to 2.1 radian

Fig. 17. The simplified approximation of the visibility maps of the free-form part in Fig. 16.

Fig. 18. One solution for the visibility maps shown in Fig. 17.

Fig. 19. The semi-finished part after the first setup (the gray color indicates the unmachined surface).

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851280

Fig. 20. Another mechanical part and its solution to the maximum intersection problem; the spherical polygons exhibit degeneracies.

Table 1

Running time data for all the tests presented in the paper. The proposed algorithm is implemented using Visual Cþþ on a PC with a Pentium III 500 MHz

processor, 256MB RAM, 12GB hard disk and the operation system is Microsoft Windows 2000

Figure no. in which the model represented

Fig. 1 Poly.

No. 6 Ed.

No. 41

Fig. 14 a

and b

Poly. No.

4 Edge.

No. 16

Fig. 14c Poly.

No. 6 Ed.,

No. 24

Fig. 14d Poly.

No. 7 Ed.,

No. 28

Fig. 15 Poly.

No. 6 Ed.,

No. 37

Fig. 18 Poly.

No. 6 Ed.,

No. 30

Fig. 20 Poly.

No. 8 Ed.,

No. 51

a b a b

Running

time (s)

58 4 5 7 7 22 49 25 57

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1281

(120 degree), its is found that only four spherical polygons

can be intersected at the same time, and thus, at least two

setups are needed to machine this part on a 4-axis machine

with a ur of 120 degree. One representative solution arc is

shown in Fig. 18, and the semi-finished part after this setup

is displayed in Fig. 19.

We test our program on dozens of spherical cases, of

which the running times of all the cases presented in this

paper are summarized in Table 1. It should be pointed

out however that this table only serves to be a reference;

as already mentioned earlier, a rigorous average case

analysis and experiments on large collections of

spherical polygons are required if an accurate upper

bound on the average running time bound is to be

established.

7. Conclusion

The primary goal of this paper is to design a deterministic

algorithm for solving an important geometric optimization

problem: given a set of possibly overlapping spherical

polygons on the unit sphere and an arbitrary real number

constant L # 2p; find an arc of length L on the unit sphere

that intersects as many spherical polygons as possible. To

search for a globally optimal solution to this problem, an

elaborate congruent partition scheme is proposed by means

of exploiting the analytic structure of the solution space with

characteristic and eigen lists. Based on the analyses of

critical points classification, a simple algorithm with OðE4Þ

time and OðE2Þ space is presented that finds an optimal

solution, where E is the total number of edges on the

polygons. The proposed algorithm is implemented and

experiments with various test patterns are presented for

verification purpose.

From theoretical point of view, this paper contributes

by offering an exact algorithmic solution to this geometric

optimization problem with an arbitrary L—past best

results can only handle the two very restrictive special

cases of L ¼ p and 2p: In terms of practical significance,

by allowing the length L to be less than p; the presented

algorithm helps find a setup for the workpiece that admits

the maximal machining area on a four-axis NC machining

whose allowable rotation angular range of the worktable

is usually strictly less than 1808.

The algorithm nevertheless has room to improve.

First, all the geometric concepts in the paper, such as the

characteristic list and congruence relation, are based on

individual edges of the polygons but not polygons

themselves; the algorithm does not take into account

the fact that all the edges on a same polygon will not

contribute any critical points to each other. Secondly, it

should be further asked whether the fact that our

polygons are simple could improve the computational

efficiency (e.g. divide a polygon first into its convex

components). Last but not the least, we need to run the

program on large collections of samples (with more

degenerate cases), in order to test its efficiency and

robustness.

Appendix A. The proof of order switch in Cl(t) at a type

IIa critical point

A type IIa critical point t is formed when the intersection

point p between two line segments u and u0 has an L distance

from t: Consider the general case that neither u nor u0 is

perpendicular to the line through p and t:

Without loss of generality, suppose the slope angle a of

the line through p and t is greater than p=2; as shown in

Fig. A(a). Suppose the distances from p to t1 and t2 are

lp 2 t1l and lp 2 t2l; respectively, and suppose the

distances from t1; t2 to t are j and z; respectively, with j

and z arbitrarily small. By triangle inequality, it is readily

to seen that b , a , g; L 2 j , lp 2 t1l , L and L ,

lp 2 t2l , L þ z: At t1; since L 2 j , lp 2 t1l , L with an

arbitrarily small j; the out-angle uuo of u at t1 satisfies

uuo . b and the in-angle uu0i of u0 at t1 satisfies uu0i , b:

Therefore, at t1 we have

uu0i , b , uuo:

At t2; since L , lp 2 t2l , L þ z with an arbitrarily small

z; the out-angle wuo of u at t2 satisfies wuo , g and the in-

angle wu0i of u0 at t1 satisfies wu0i . g: Hence, at t2;

wu0i . g . wuo:

Fig. A.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851282

Therefore, the order of in- and out-angles of u0 and u

switches when t is crossed.

The only degenerate case to the above assertion is when

the angle a is exactly p=2; in which the order of the

bounding angles in the characteristic list does not change,

i.e. the two characteristic lists Clðt1Þ ¼ {uui; uuo; uu0i; uu0o}

and Clðt2Þ ¼ {wui;wuo;wu0i;wu0o} are equivalent to each

other. Meanwhile, the point t becomes an isolated point at

which ClðtÞ ¼ {hui;huo ¼ uu0i; uu0o}: Actually the point t in

this case is a false critical point. However, indistinguishing

this degeneration from the above general case does not

affect the performance of the algorithm.

Appendix B. Homogeneous representation for

calculation on S21

Consider the case with the arc length is less than p: By

half space partitioning, up to rotation, only those arc edges

lying in the upper hemisphere S2þ (the hemisphere of S2

corresponding to x3 $ 0) can possibly contribute critical

points to an arc edge e when the u-domain of arcs sðt; uÞ is

limited to ½0;p�: We begin by defining an extension of the

central projection [3,4] using a 2D projective

planeP2 ¼ R3 2 ð0; 0; 0ÞT:

Definition 1. Extended central projection F and its inverse

map j
Denote a point in S2þ by a unit vector ðx1; x2; x3Þ

T in R3 with

the constraints x2
1 þ x2

2 þ x2
3 ¼ 1 and x3 $ 0: The extended

central projection is defined to be the map

Fðx1; x2; x3Þ ¼ ðx1; x2; x3Þ : S2þ ! P2
;

where the points in P2 are represented in homogeneous

coordinates x ¼ ðx1; x2; x3Þ:The inverse map of F is

defined as

jðx1; x2; x3Þ ¼ signðx3Þ
x1

kxk
;

x2

kxk
;

x3

kxk

� �
: P2 ! S2þ

:

Two nice properties of the projection F are noted without

proof [3], as illustrated by Fig. B.

Lemma 5. The projection F establishes a one-to-one and

onto mapping between points in S2þ and points in P2: In

particular, the points on the equator in S2þ are mapped to

the ideal points (x1; x2; 0) (i.e. points at infinity) in P2: The

projection F also establishes a one-to-one and onto

mapping between great circles in S2 (except for the

equator, semi-circles in S2þ) and lines in P2: In particular,

the great circle on the equator in S2þ is mapped to the line

at infinity, denoted by homogeneous vector l1 ¼ ð0; 0; 1ÞT;

in P2:

Lemma 6. The projection F maps a simple spherical

polygon in S2þ to a simple polygon in P2: Conversely,

the inverse of F maps a simple polygon in P2 to a

simple spherical polygon in S2þ:

Since the proposed algorithm is edge-based, only three

elementary calculations are required. We formulate these

calculations in P2 with the notion of homogeneous

representation, which simplifies the formulae by vector

algebra and is particularly suitable for programming. By

Lemma 5, the formulae presented below are identical both

in the spherical version in S2þ and in the planar version in

P2: In the following, all geometric entities are represented

by column vectors, ‘·’ and ‘ £ ’ stand for the dot and cross

product, respectively.

Calculation rule I. The incidence relationship between

points and lines

Since

(1) all the points on the equator G in S2þ are collinear on

the line at infinity in P2; and

(2) a line in S2þ 2 G is a semi-circle and any two distinct

points a; b [S2þ 2 G uniquely determine a semi-

circle,

By Lemma 5, the projection F is a collineation, i.e. it

preserves the collinearity. In P2; given the homogeneous

Fig. B. The extended central projection F.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1283

representations of points, i.e. x ¼ ðx1; x2; x3Þ
T; and of lines,

i.e. l ¼ ðl1; l2; l3Þ
T; we have the following observations:

(1) the point x lies on the line l if and only if xT·l ¼ 0;

(2) given two lines l and l0; the intersection point of these

two lines is x ¼ l £ l0; in particular, two parallel lines,

l ¼ ðl1; l2; l3Þ
T and l0 ¼ ðl1; l2; l

0
3Þ

T; are intersected at an

ideal point (a point at infinity), i.e. x ¼ ðl2;2l1; 0Þ
T; and

(3) by duality between the points and lines in P2; any two

distinct points x and x0 uniquely determine a line l ¼

x £ x0; in particular, all ideal points lie on the line at

infinity, l1 ¼ ð0; 0; 1ÞT:

Calculation rule II. The spherical distance between two

points in P2:

If the space P2 is associated with the standard Euclidean

metric, the projection F will not preserve the distance, angle

and area. Noting that the spherical distance between two

points x; x0 [S2þ is arccosðxT·x0Þ [½0;p�; we define a

distance function in P2 to be

dða;bÞ ¼ arccosðjðaÞT·jðbÞÞ [½0;p�

where a and b are two points in P2: It is trivial to prove that

the function dð·; ·Þ : P2 £ P2 ! R is a metric and we omit the

proof here. Equipped with the metric space ðP2; dÞ; by

Lemma 5, the projection F : S2þ ! P2 is an isometry, i.e. it

preserves the distance.

Calculation rule III. The angle between two lines

We define an angle measure in P2 such that the angle

measured between two lines in P2 is identical to the

spherical angle measured between two semi-circles in S2þ:

Given two lines l and l0 in P2; the angle (measured in radian)

between l and l0 is defined as

a1ðl; l
0Þ ¼ arccosðjðlÞT·jðl0ÞÞ [½0;p�

or

a2ðl; l
0Þ ¼ p2 arccosðjðlÞT·jðl0ÞÞ [½0;p�

The choice of a1 or a2 is dependent on the orientation of

lines l and l0: This identity with the spherical angle in S2þ

can be readily proved by the duality between points and

lines in P2:

Finally, we conclude by showing how the three

calculation rules are used in calculating a type Ia critical

point. To detect a type Ia critical point, one frequently used

routine in the proposed algorithm is as follows. Given a line

l determined by two distinct points a; b [P2 and a third

point p [P2 not lying in l;

(1) find the point q lying in l such that the line l0

determined by p and q is perpendicular to l; and

(2) find the spherical distance between point p and line l:

By rule I, l ¼ a £ b; l0 ¼ p £ q; and qT·l ¼ 0: Since l

and l0 are perpendicular to each other, by rule III, lT·

l0 ¼ 0) ða £ bÞT·ðp £ qÞ ¼ 0: Then q is the solution of the

linear equation system

ða £ bÞT·q ¼ 0

ða £ bÞT·ðp £ qÞ ¼ 0

(
) q ¼ ða £ bÞ £ ðða £ bÞ £ pÞ

The last identity is obtained by using the scalar triple

product

½A;B;C� ¼ AT·ðB £ CÞ ¼ BT·ðC £ AÞ ¼ CT £ ðA £ BÞ

Finally, by rule II, the spherical distance between p and line

l is

dðp;qÞ ¼ arccosðjðpÞT·jðqÞÞ [½0;p�:

References

[1] Brown KQ. Geometric transformation for fast geometric algorithms.

PhD Dissertation. Department of Computer Science, Carnegie Mellon

University; 1979.

[2] Chazelle B, Guibas LJ, Lee DT. The power of geometric duality. BIT

1985;25:76–90.

[3] Chen LL, Woo T. Computational geometry on the sphere with

applications to automated machining. Trans ASME J Mech Des 1992;

114:288–95.

[4] DasGupta B, Roychowdhury VP. In: Du D-Z, Sun J, editors. Two

geometric optimization problems. New advances in optimization and

approximation, Dordecht: Kluwer; 1994. p. 30–57.

[5] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O.

Computational geometry. Berlin: Springer; 1998.

[6] do Carmo MP. Differential geometry for curves and surfaces.

Englewood Cliffs, NJ: Prentice-Hall; 1976.

[7] Fomenko AT, Kunii TL. Topological modeling for visualization.

Berlin: Springer; 1997.

[8] Gan JG. Spherical algorithms for setup orientations of workpieces

with sculptured surfaces. PhD Dissertation. Ann Arbor, MI: Depart-

ment of Industrial and Operations Engineering, University of

Michigan; 1990.

[9] Gan JG, Woo TC, Tang K. Spherical maps: their construction,

properties, and approximation, Trans. ASME J Mech Des 1994;116:

357–63.

[10] Garey MR, Johnson DS. Computers and intractability. San Francisco:

Freeman; 1979.

[11] Gupta P, Janardan R, Majhi J, Woo T. Efficient geometric algorithms

for workpiece orientation in 4- and 5-axis NC machining. Comput-

Aided Des 1996;28(8):577–87.

[12] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical

recipes in C þ þ : the art of scientific computing, 2nd ed.

Cambridge: Cambridge University Press; 2002.

[13] Tang K, Woo T, Gan J. Maximum intersection of spherical polygons

and workpiece orientation for 4- and 5-axis machining. Trans ASME J

Mech Des 1992;114:477–85.

[14] Tang K, Chen LL, Chou SY. Optimal workpiece setups for 4-axis

numerical control machining based on machinability. Comput Indus

1998;37:27–41.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–12851284

Kai Tang is currently a faculty member in the

Department of Mechanical Engineering at

Hong Kong University of Science and Tech-

nology. Before joining HKUST in 2001, he

had worked many years in the CAD/CAM and

IT industries. His research interests concen-

trate on designing efficient and practical

algorithms for solving real world compu-

tational, geometric, and numerical problems.

Dr Tang received PhD in Computer Engineer-

ing from the University of Michigan in 1990,

MSc in Information and Control Engineering

in 1986 also from the University of Michigan, and BSc in Mechanical

Engineering from Nanjing Institute of Technology in China in 1982.

Yong-Jin Liu is currently a PhD student at

Hong Kong University of Science and Tech-

nology (HKUST). He enrolled Tianjin Uni-

versity in 1994, exempted from entrance

examination by receiving national high school

student mathematics and physics competition

awards. After receiving his B.Eng. in

Mechano-Electronic Engineering, he enrolled

HKUST in 1998, exempted from entrance

examination with recommendation of the

Ministry of Education, P.R. China. He

received his MPhil degree in 1999 in Mech-

anical Engineering at HKUST. His research interests include geometric

modeling, design automation and optimization, computer graphics.

K. Tang, Y.-J. Liu / Computer-Aided Design 35 (2003) 1269–1285 1285

	Maximal intersection of spherical polygons by an arc with applications to 4-axis machining
	Introduction
	Prior work and contribution of this paper
	Analytic structure in the plane
	Characteristic and eigen lists
	Analyses of critical points
	Congruent partitioning

	Algorithmic details in the plane
	Conversion from plane to sphere
	Structure of &f;Cl(p)&/f;
	Calculation of critical points

	Implementation and experiments
	Conclusion
	The proof of order switch in Cl(t) at a type IIa critical point
	Homogeneous representation for calculation on S2+
	References

