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Abstract

In this paper, we present a feature-based free-form shape modelling technique based on solving a fundamental

problem of reconstructing the depth information from 2D sketch planes. First, to mathematically define the problem

with the human perception, the proposed technique (1) formulates the 2D shaded regions on sketches by a hybrid thin

plate surface model that can exhibit controlled continuity over the recovered 3D surface and (2) formulates the 1D

salient open free-form curves and salient corners as linear sketch constraints. The 3D free-form shape from sketch

planes is then achieved by solving a linearly constrained quadratic optimization problem which unifies both 2D region-

based and 1D contour-based shape information over 2D sketches. Secondly, to solve the formulated optimization

problem with an interactive-rate performance, a fast and stable numerical engine is proposed with a rigorous proof that

for our specially formulated problem, system decomposition with reduced computational cost is always possible.

Stability, accuracy and efficiency are studied in depth for the proposed numerical engine. Finally a prototype system

utilizing the proposed technique is presented with two applications that demonstrate the usefulness and effectiveness of

the proposed technique.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In traditional media such as images and videos, three-

dimensional (3D) information of the free-form object is

encoded in two-dimensional (2D) information due to the

projection on the 2D Euclidean planes. The 2D plane is

also the most convenient platform for interactive free-

form shape design through sketching by artists. There-

fore, recovering the depth information from 2D planes
e front matter r 2005 Elsevier Ltd. All rights reserve
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can find rich applications in computer vision and

computer graphics (CV/CG) and has been considered

as a fundamental problem in CV/CG [1–4]. Many

automatic approaches to this problem are known [3],

e.g., the shape from X techniques (X stands for stereo,

shading, texture, focus/defocus, optical flow, etc.) How-

ever, each of these automatic approaches has its own

special application environment with various assump-

tions (or limitations).

In this paper we consider the general case that scarcely

mild information is provided as input. An example is

illustrated in Fig. 1. Obviously, fully automatical

techniques such as shape from shading would fail in

such situations. To offer a practical solution to this
d.
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Fig. 1. 2D sketch-based shape modelling.
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dilemma, we propose an interactive technique with an

optimal real-time performance. The proposed technique

can be used in diverse CV/CG applications, which varied

from variational visible surface modelling [4,5], texture

mapping [6,7], image repair/inpainting [1,2], to single-

image-based modelling and rendering [8,9]. In Section 6,

two of these applications with examples are presented to

demonstrate the usefulness and effectiveness of the

proposed technique.

To develop a universal technique with user interven-

tion, the fundamental depth-recovery problem can be

generally stated as follows.

Depth-recovery problem: Given a set of user-specified,

arbitrarily located, parameterized features ðxiðtÞ; yiðtÞ;
FiðtÞÞ, where ðxi; yiÞ 2 O � R2, find a smooth Monge

patch Mðx; yÞ ¼ ðx; y; zðx; yÞÞ � R3 with variously con-

trolled continuities, which takes the given properties Fi

at ðxi ; yiÞ.

1.1. Related work

The general statement of the depth-recovery problem can

be regarded as a variation of the scattered data modelling

problem [10], whereas most classical scattered data inter-

polating techniques found piecewise continuous functions,

splines in particular, fit to the scattered data [11]. From

practical point of view, nowadays, discrete representation

with values1 only at regular grids is widely used for shape

description with computers [12]; we note that recently an

elegant computational model using the language of

geometric algebra is developed for computer graphics

applications with polygonal meshes [13]. In this paper we

adopt a quadrilateral mesh for shape description and

deduce a fast numerical solution to the depth-recovery

problem that explicitly avoids computing any continuous

function; instead, only values at regular grids are recovered.
1Here value includes not only depth information but also

other scalar properties.
The reconstruction of surface depth values from a

planar region with arbitrarily located (i.e., frequently

non-uniformed) interpolating data has been shown in

[14] to be an ill-posed problem in terms of solution

existence, uniqueness and continuous dependence on

input data [15]. Motivated by Terzopoulos’ pioneer

work [14,4], we adapt his controlled-continuity surface

model with linear constraints to solve a regularized and

thus well-posed depth-recovery problem. The minimiza-

tion to the resulting variational model with our specified

linear constraints does not have, in general, an analytic

solution. Thus it is necessary to discretize the continuous

model such that high-speed computer solution is

possible. The discretization can be done either in

solution space (e.g., using the finite element methods)

or in application data domain (e.g., using the finite

difference methods). In this study we apply the latter

technique to discretize the Terzopoulos’ controlled-

continuity model in [14] as a quadratic functional.

An extension of Terzopoulos’ work is recently

presented in [5] in which five types of point/curve

features and their linear discretization on regular meshes

are proposed. Since only the thin plate functional is used

in [5] for smoothness constraint, as discussed in Section

3 of this paper, the surface model with thin-plate

functional alone shows a property of strong bending

stiffness, and thus, the so-called fairing curve constraint

in [5] has to be applied to ‘‘soften’’ this surface stiffness.

In this paper we also define and discretize a set of point/

curve features in linear form. By applying the Lagrange

multiplier method to minimize a quadratic func-

tional with linear constraints, we can transform the

general depth-recovery problem to a mathematically

well defined linearly constrained quadratic optimization

problem.

The linearly constrained quadratic optimization re-

quires solving a large sparse linear system. In computer

vision and computer graphics community, iterative

numerical methods are widely used to solve large sparse
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linear systems [16,17,5]. In this paper, by drawing

observations from the special structures inherent in the

linear system stemmed from our formulation of the

depth-recovery problem, we show that a fast direct

method with robustness and predictable behavior is

possible.

Similar to us, Mallet [7] proposed a discrete smooth

interpolation technique to model shapes over regular

grids by minimizing quadratic functional with con-

strained features. Recently, this discrete interpolation

method is applied to a novel texture mapping technique

[6]. The major difference between Mallet’s method and

ours lies in that, for constraint modelling, Mallet directly

removes redundant degrees of freedom from a quadratic

minimization formulation, whereas we model the con-

straints with Lagrange multipliers. It is worth noting

that since no boundary conditions are applied in

Mallet’s method, his formulation may possibly lead to

a singular system. Further, the iterative method used in

[7] depends both on a good initial guess and on the

chosen iterative strategy. As a comparison, in our

proposed technique, we devise a fast and efficient direct

method for numerical computation.

1.2. Contributions of this paper

As a summary, the following contributions are made

in this paper:
�
 To simulate and interpret the human perception, we

propose a hierarchy of linear features for sketch-

based free-form shape modelling. By using a finite

difference discretization and applying the Lagrange

multiplier method for the constraint modelling, we

formulate and solve the general depth-recovery

problem by minimizing a linearly constrained quad-

ratic functional.
�
 An efficient direct method is proposed to solve a

special linear system resulting from our formulation

of the constrained quadratic optimization. By ex-

ploiting the special structures inherent in the linear

system at hand, the proposed numerical engine is

shown to be fast, stable and accurate.

2. Overview of the proposed method

The general depth-recovery problem is well known to

be mathematically ill-posed [15,14]. Knowledge of visual

perception can help regularize the model with stable

solutions. Two general kinds of psychophysical object-

detector models exist [3]. The first is a regional binding

(or grouping for similarity) type of models that involves a

comparison of any given texture (or luminance) element

with its neighbors to find whether they are the same, so

as to identify an area of relatively homogeneous texture
(or luminance). The second kind of models, known as

salient curves/corners detection (or boundary detection),

identify relatively large differences between neighboring

elements by sharp spatial gradient.

In the proposed method, to simulate human percep-

tion with user intervention, in Section 3, we formulate

the 2D regional binding information using a hybrid thin-

plate surface model with controlled continuities, and in

Section 4, we propose a hierarchy of linear features to

characterize the 1D salient curve/corner information. In

Section 5, we show that the depth values of sketch planes

and thus the 3D free-form shape can be achieved by

solving a linearly constrained quadratic optimization

problem. An interesting observation is drawn from the

special structures stemmed from the formulation of our

specified optimization problem, from which we prove

that system decomposition with dramatic reduction in

computational cost is always possible. Noting that the

special structure is only inherent in our formulation of

the depth-recovery problem, this actually leads to a

fast numerical engine with an interactive-rate perfor-

mance that cannot be achieved by the standard

numerical engines used in the most general case. To

demonstrate the effectiveness and usefulness of the

proposed method, two diverse applications are pre-

sented in Section 6. Finally our concluding remark is

presented in Section 7.
3. A hybrid thin-plate surface model

In the proposed method, to characterize the regional

binding information in the sketch plane with various

continuity properties, we use a variation of the

Terzopoulos’ hybrid thin-plate model [4] given by

SðzÞ ¼
1

2

ZZ
O
ftðx; yÞðz2xx þ 2z2xy þ z2yyÞ

þ ½1
 tðx; yÞ�ðz2x þ z2yÞgdxdy, ð1Þ

where zðx; yÞ is a surface function, O ¼ ðx; yÞ � R2

describes an interested region in the sketch plane and

tðx; yÞ is a weighting function whose range is ½0; 1�. Note
that
�
 Minimization of limtðx;yÞ!0SðzÞ locally characterizes

a membrane spline, i.e., a C0 surface (more

accurately, a piecewise C1 surface). Since the

membrane is assumed to be so flexible as to give no

resistance to bending, the work of deformation must

be entirely owing to the change of the membrane’s

area. Thus under membrane energy, the surface is

deformed sharply around the point feature con-

straints and is decayed with ripples (cf. Fig. 2b).
�
 Minimization of limtðx;yÞ!1SðzÞ locally characterizes

a thin-plate spline, i.e., a C1 surface with continuous
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Fig. 2. Different shape characterization by adjusting the weighting parameter function tðx; yÞ. In (b) forward difference is applied for

the first derivative approximation; see Section 4.1 for details of point interpolation: (a) An interpolating feature point; (b) Membrane

surface modeling with t ¼ 0; (c) Thin plate surface modeling with t ¼ 1 and (d) Hybrid thin plate surface under tension with t ¼ 0:5.
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first derivative. Under thin-plate energy, surface force

that acts at the boundary surface of the elastic body

exhibits, and thus, gives rise to the strain potential

energy that leads to strong bending effect on the

resulting surface (cf. Fig. 2c). Note that if the surface

map z is isometric, then the thin-plate energy is equal

to the total curvature over the surface.
�
 Adjusting the weighting t 2 ð0; 1Þ over the domain

O � R2 leads to a hybrid thin-plate surface under

tension, which characterizes shape with the para-

meter function tðx; yÞ (cf. Fig. 2d).

�
 Unlike the original Terzopoulos’ model in [4], the

surface model characterized by Eq. (1) does not

explicitly handle the discontinuity. In our application

scenarios, we generally suppose that the discontinuity

information is pre-specified before performing the

numerical computation, i.e., discontinuity detection

is not incorporated as part of the numerical

computation. Then in the proposed method, dis-

continuities are constructed by geometrically trim-

ming the surface with user-specified information (cf.

Fig. 10).
As already alluded in Section 1.1, we are interested in

discrete surface representation. The deduction of the

continuous system depicted in Eq. (1) to an ‘‘equivalent’’

discrete (lumped parameter) system can be processed in

several avenues, notably finite difference methods, finite

element methods, boundary element methods and the

method of lines. Since in our application scenarios the

independent data domain O is in R2, the finite difference

method is adopted in the proposed approach; accord-

ingly, the continuous domain O � R2 is replaced by a

quadrilateral mesh with fixed mesh-size.
Discretization of data domain. Let O be a bounded

planar region with boundary G (cf. Fig. 3). We construct

a discrete representation Oh of O as follows. Given an

original point ðx0; y0Þ and a mesh size h40, let R2
h be the

set of all points ðx0 þ ih; y0 þ jhÞ, i; j 2 Z. We say that

two points ðx; yÞ and ðx0; y0Þ of R2
h are adjacent if

ðx 
 x0Þ
2
þ ðy 
 y0Þ2 ¼ h2. Two adjacent points of R2

h are

properly adjacent if both are in O [ G and if the open

segment joining them (not necessarily including the

endpoints) is in O. Let Oh ¼ O \R2
h. A point p of Oh is

regular if its four adjacent mesh points in R2
h are

properly adjacent to p. Let Gh denote all points of Oh

which are not regular. Clearly Gh is a discrete

approximation of G. Next we develop discrete represen-

tations of the differential operators in Eq. (1).

Discretization of thin-plate term. To discretize the

thin-plate term in Eq. (1), Terzopoulos [4] and Zhang et

al. [5] use the following formula to discretize second

order partial derivatives at a regular node ði; jÞ with fixed
mesh-size h in both directions:

q2z
qx2

����
ði;jÞ

¼
1

h2
ðzh

iþ1;j 
 2zh
i;j þ zh

i
1;jÞ þ Oðh2Þ,

q2z
qy2

����
ði;jÞ

¼
1

h2
ðzh

i;jþ1 
 2zh
i;j þ zh

i;j
1Þ þ Oðh2Þ,

q2z
qx qy

����
ði;jÞ

¼
1

h2
ðzh

iþ1;jþ1 
 zh
iþ1;j 
 zh

i;jþ1 þ zh
i;jÞ þ OðhÞ.

This gives rise to an asymmetric finite difference

stencil with OðhÞ truncation error (cf. Fig. 4a). In our

practice, we use the following approximation for the
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Fig. 3. Data domain discretization for the depth-recovery problem.
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Fig. 4. The finite difference stencil at node ði; jÞ for thin-plate term discretization: (a) OðhÞ approximation and (b) Oðh2Þ approximation.

Y.-J. Liu et al. / Computers & Graphics 29 (2005) 778–793782
second-order mixed partial derivative:

q2z
qx qy

����
ði;jÞ

¼
1

4h2
ðzh

iþ1;jþ1 
 zh
iþ1;j
1 
 zh

i
1;jþ1 þ zh
i
1;j
1Þ

þ Oðh2Þ,

which leads to a symmetric stencil with Oðh2Þ truncation

error (cf. Fig. 4b). Note that using the symmetric stencil

can handle the nodes near irregular boundary much

easier than using the asymmetric one.

Discretization of membrane term. We can discretize the

membrane term in Eq. (1) using the following center

difference to achieve the same order Oðh2Þ of truncation

error as that in thin-plate discretization:

qz

qx

����
ði;jÞ

¼
1

2h
ðzh

iþ1;j 
 zh
i
1;jÞ þ Oðh2Þ,

qz

qy

����
ði;jÞ

¼
1

2h
ðzh

i;jþ1 
 zh
i;j
1Þ þ Oðh2Þ.

While the above formula has a second-order trunca-

tion error, this does not mean that its utilization always

offers a better approximation of the following forward
difference formula with the first-order truncation

error OðhÞ:

qz

qx

����
ði;jÞ

¼
1

h
ðzh

iþ1;j 
 zh
i;jÞ þ OðhÞ,

qz

qy

����
ði;jÞ

¼
1

h
ðzh

i;jþ1 
 zh
i;jÞ þ OðhÞ.

Actually in our application scenario, the center

difference always leads to an unstable numerical scheme;

this is easy to interpret with the illustration in Fig. 5.

Substitution of both discretized thin-plate and membrane

terms into Eq. (1) yields the following quadratic functional:

ShðzhÞ ¼
1

16h2

X
ði;jÞ2Oh

fth
i;j ½8ðz

h
iþ1;j 
 2zh

i;j þ zh
i
1;jÞ

2

þ ðzh
iþ1;jþ1 
 zh

iþ1;j
1 
 zh
i
1;jþ1 þ zh

i
1;j
1Þ
2

þ 8ðzh
i;jþ1 
 2zh

i;j þ zh
i;j
1Þ

2
�

þ 8½1
 th
i;j �½ðz

h
iþ1;j 
 zh

i;jÞ
2
þ ðzh

i;jþ1 
 zh
i;jÞ

2
�g

¼
1

2
zhTQzh, ð2Þ
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Fig. 5. Unstable numerical scheme by using center difference for the first derivative approximation: (a) A 1D shape which has zero first

derivative at any node 1–5 when the center difference is applied and (b) Membrane surface modeling with t ¼ 0 and with the center

difference applied; compared to Fig. 2b.

Fundamental features
Point features

Normal features
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where zh is a column vector containing depth values of the n

mesh nodes of Oh, Q is an n � n symmetric matrix and the

factor 1
2
is set for later convenience.
Composition features

Continuity features

Hermite features

Level set features

Dirichlet features

Neumann features

Discontinuity features

Crease features

Fig. 6. The proposed hierarchy of linear sketch features.
4. A hierarchy of linear sketch features

To model the 1D salient curves/corners information,

we propose a hierarchy of linear2 sketch features as

illustrated in Fig. 6. In the proposed hierarchy, there are

two fundamental linear geometric entities, points and

normals. Other linear feature entities, such as Hermite

data (point with normal) and characteristic curves, are

regarded as the composition of the two fundamental

entities. It is worth emphasizing that we set all sketch

features to be linear with the due consideration of
(1)
2H

can

nor
linear interpolant features are intuitive for shape

design/modification, and
(2)
 in the numerical engine to be proposed in Section 5,

linear features can guarantee the existence of a

unique solution and make the numerical computa-

tion process more efficient.
4.1. Fundamental features

Point feature. A point feature specifies the depth value

at a given point of O � R2. Upon mesh discretization,

the given point is snapped to its nearest mesh node in

Oh. Every point feature zhðxi; yjÞ ¼ di;j offers one linear

constraint on zh:

ð. . . ; 0; 1; 0; . . .Þð. . . ; zh
i;j
1; z

h
i;j ; z

h
i;jþ1; . . . Þ

T
¼ di;j .

One example of point feature interpolation is illu-

strated in Fig. 2.

Normal feature. Note that for a Monge surface

Mðx; yÞ ¼ ðx; y; zðx; yÞÞ, its normal field takes the form

of ð
ðqz=qxÞ;
ðqz=qyÞ; 1Þ, subject to normalization.

Then every normal feature nhðxi; yjÞ ¼ ðnx; ny; nzÞ offers
ere linear feature means, upon discretization, the feature

be represented by vector forms; thus geometric position and

mal are linear features, while curvature is not.
two linear constraints:

qz

qx

����
ði;jÞ

¼
1

h
ðzh

iþ1;j 
 zh
i;jÞ ¼ 


nx

nz

,

qz

qy

����
ði;jÞ

¼
1

h
ðzh

i;jþ1 
 zh
i;jÞ ¼ 


ny

nz

.

One example of normal feature interpolation is

illustrated in Fig. 7.

4.2. Composition features

Hermite feature. The most direct composition feature

is the Hermite data, i.e., a specified depth value together

with a normal vector at a given mesh node. Each

Hermite feature offers three linear constraints on the

depth vector zh.

Level set feature. It is a composition feature grouping

a set of point features. Given a curve specified over the

domain O � R2, we scan convert it to a polygonal curve

over Oh of which each node is assigned the same depth

value; that is why it is called level set curve. This

composition feature has a direct application to model-

ling iso-elevation contour maps. Two examples of shape

modelling with two level set curves interpolation are

illustrated in Figs. 8 and 9b.

Dirichlet feature. The Dirichlet problem is known as

finding a function that is harmonic in O and takes the



ARTICLE IN PRESS

Fig. 7. Shape modelling by interpolating one point and four normal features: (a) One point and four normal features; (b) Shape

modeling with t ¼ 0; (c) Shape modeling with t ¼ 1 and (d) Shape modeling with t ¼ 0:5.

Fig. 8. Shape modelling by interpolating two level set curve features: (a) Two level set curve features and (b) Shape modeling with

t ¼ 1.
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given values on the boundary G of O. In the proposed

system we define the Dirichlet feature as a composition

of point features to specify the boundary condition of

the mesh Oh. One example of shape modelling with

Dirichlet feature is illustrated in Fig. 9(c).

Neumann feature. The Neumann problem is known as

finding a function that is harmonic in O and whose

normal derivative takes the given values on the

boundary G of O. In the proposed system we define

the Neumann feature as a composition of the normal

features satisfying

qz

qn

����
ði;jÞ

¼ rzjði;jÞ � njði;jÞ.

One example of shape modelling with Neumann

feature is illustrated in Fig. 9(d).

In the proposed feature hierarchy, all the above

features, including both fundamental and composition

features, can be assembled into the following linear form:

C � zh ¼ d,
where C is an m � n constraint matrix with rank m

(mon) and d is an m-vector.

4.3. Controlled-continuity features

In the proposed feature hierarchy, the rest features for

shape characteristics concern with the geometric con-

tinuity. Benefited from the controlled-continuity surface

model depicted in Eq. (1) and its discrete form depicted

in Eq. (2), the features characterizing discontinuities

(C
1) and creases (C0) on a hybrid thin-plate surface

under tension (C1) are readily obtained as follows.

Discontinuity feature. In the proposed system, the

discontinuity information is assumed to be available prior

to the numerical computation of the 3D shape. Given a

curveD on the domainOh identifying a discontinuity on the

underlying surface, we construct the discontinuity by

duplicating the curve D and forming a closed boundary

consisting of D and its duplicate D0. One example of shape

modelling with discontinuity features is illustrated in Fig. 10.

Crease feature. Crease features are modelled by first

scan converting the curve C that identifies the position
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Fig. 10. Shape modelling with discontinuity feature: (a) One point, four normal and a discontinuity features and (b) The resulting

mesh modeling with t ¼ 1.

Fig. 9. Shape modelling with one point and two level set curve features and with t ¼ 0:5: (a) One point and two level set curve features;
(b) Shape modeling with free boundary condition; (c) Shape modeling with Dirichlet feature (all the boundary points are fixed at z ¼ 0)

and (d) Shape modeling with Neumann feature (normals at boundary are all parallel to z-axis).
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of creases and secondly dropping the smoothness term

th
i;j ½8ðz

h
iþ1;j 
 2zh

i;j þ zh
i
1;jÞ

2
þ ðzh

iþ1;jþ1 
 zh
iþ1;j
1 
 zh

i
1;jþ1

þ zh
i
1;j
1Þ

2
þ 8ðzh

i;jþ1 
 2zh
i;j þ zh

i;j
1Þ
2
�

þ 8½1
 th
i;j �½ðz

h
iþ1;j 
 zh

i;jÞ
2
þ ðzh

i;jþ1 
 zh
i;jÞ

2
�

of all nodes ði; jÞ lying on C from the summation in Eq.

(2). One example of shape modelling with crease features

is shown in Fig. 11.
5. A fast and stable numerical engine

Recall that in the proposed system, 2D regional

binding information is characterized by minimizing a
quadratic functional and 1D salient curve/corner

information is characterized by a hierarchy of linear

interpolatory features. Thus the sketch based 3D shape

can be recovered by solving the following linear

constrained quadratic minimization problem:

� Find a solution //minimize a quadratic functional Sh

u ¼ argmin
zh2OhfS

hðzhÞ

¼ 1
2
zhTQzh : Oh � Rn ! Rg;

� Subject to Cu ¼ d //linear, interpolatory

sketch feature constraints:

(3)

In Section 5.1 we show that Q is a n � n matrix of

rank n and C is an m � n matrix of rank m, mon. Thus
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Fig. 11. Shape modelling with crease feature: (a) One point, four normal and a crease features and (b) The resulting mesh modeling

with t ¼ 1.
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we can apply the Lagrange multiplier method to show

that a necessary condition for the functional Sh to have

a relative extremum at the point u 2 U with respect to

the set U ¼ fvh 2 Oh : Cvh ¼ bg is the existence of a

solution ðu; kÞ 2 Rnþm of the linear system

Quþ CTk ¼ 0

Cu ¼ d

(
¼)

Q CT

C 0

 !
u

k

� �
¼

0

d

� �
. (4)

Let

AðnþmÞ�ðnþmÞ ¼
Qn�n ðCT

Þn�m

Cm�n 0m�m

 !
.

Given that the ðn þ mÞ � ðn þ mÞ matrix A is non-

singular, a unique solution to the linear system (4) exists

theoretically and is readily obtained by applying

standard routines in a general numerical engine [18],

e.g., a popular linear system solver—Gaussian elimina-

tion with partial pivoting (GEPP)—can be performed in
2
3
ðn þ mÞ

3 flops.3 However, it will be unwise if the

sophisticated black-box numerical engine is used with-

out the due considerations of the particular problem at

hand. Indeed, exploiting special structures inherent in

the problem can always lead to faster solutions, e.g., the

solver with Cholesky factorization for a symmetric

positive definite matrix A can be performed in 1
3ðn þ

mÞ
3 flops, a factor of 2 better than the GEPP. Mean-

while the stability of an algorithm also depends on the

problem: a well known example is the modified

Gram–Schmidt method, which is stable when used to

solve the least squares problem but can give poor results

when used to compute an orthonormal basis of a matrix

[19]. In the following subsections, we exploit in depth the

special structures in our specified formulation (3) of the

general depth-recovery problem and propose a fast and

stable numerical engine for it.

5.1. Special structures in system (4)

First we draw observations from engineering litera-

ture that the linear system (4) is actually a special type of
3We normally state only the highest-order terms of flop

counts. Thus for 2
3
n3 flops, we really mean 2

3
n3 þ Oðn2Þ flops.
equilibrium systems [20,21] which frequently rise in

optimization, finite elements, structure analysis, and

electrical networks. The following Lemma is in order.

Lemma 1. The linear system (4) has the following

structures:
(1)
 Matrix Q is symmetric positive definite (SPD),
(2)
 Matrix C has rank m, i.e., full row rank,
(3)
 Matrix A is non-singular.
Proof.
(1)
 First it is easy to see that Q is symmetric; otherwise

we can always transform it to a symmetric counter-

part Q0 ¼ 1
2
ðQþQTÞ by

2ShðzhÞ ¼ zhTQzh ¼ ðzhTQzhÞ
T

¼ zhTQTzh ¼ 1
2
zhTðQþQTÞzh.

Given an arbitrary vector zh, it is clear from Eq. (2)

thatShðzhÞX0; the equality holds iff zh is in the form

of zh
0 ¼ a � ð1; 1; . . . ; 1ÞT, where a is an arbitrary

scalar, that physically means all mesh nodes have

the same depth value and we call this state of the

mesh surface as lazy state which is excluded from

our proposed system. Thus ShðzhÞ40 for any

arbitrary zhazh
0 and the associated Q is positive

definite.
(2)
 In the proposed system, by guaranteeing that each

linear sketch feature specified by user is unique, the

constraint matrix C is of full row rank.
(3)
 Let vectors a 2 Rn and b 2 Rm solve the homo-

geneous system Aða
b
Þ ¼ 0. Then Qaþ CTb ¼ 0 and

Ca ¼ 0 ) aTQaþ aTCTb ¼ 0 ) aTQa ¼ 0 )

(since Q is SPD) a ¼ 0 ) CTb ¼ 0 ) b ¼ 0. So only

the null vector solves the homogeneous system with

A and therefore A is non-singular. &
The above lemma reveals the special structures in the

coefficient matrix A. When comparing our system (4) to

the general form of equilibrium system [21], our system

possesses a null vector in the upper right-hand side ð0
b
Þ of
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the system (4). As revealed in the following theorem,

more exciting structures exist in our proposed system.

Theorem 2. The solution ðu
k
Þ to the linear system (4), i.e.,

Q CT

C 0

 !
u

k

� �
¼

0

d

� �
,

is mathematically4 equal to the solution to the system

Q CT

0 CQ
1CT

 !
u

k

� �
¼

0

d

� �
, (5)

i.e., the ðm þ nÞ � ðm þ nÞ linear system (4) can be

solved with two smaller subsystems:
(1)
4T

pres
Calculate the m-vector k by solving the m � m linear

subsystem 
CQ
1CTk ¼ d;
(2)
 Calculate the n-vector u by solving the n � n linear

subsystem Qu ¼ 
CTk.
Proof. Since Q is SPD, the Cholesky factorization Q ¼

GGT exists. Then the LU factorization of the matrix A is

AðnþmÞ�ðnþmÞ ¼
Qn�n ðCT

Þn�m

Cm�m 0m�m

 !

¼
Gn�n 0n�m

Xm�n Ym�m

 !
ðGTÞn�n ðXTÞn�m

0m�n ðZTÞm�m

 !

subject to

GXT
¼ CT and XXT ¼ 
YZT,

where both Y and Z are lower triangular matrices. Since

XXT is SPD (cf. Corollary 3 below), Y and Z can be

therefore uniquely determined by another Cholesky

factorization XXT ¼ WWT with Y ¼ 
Z ¼ W. Thus

we have

GGT ¼ Q

GXT ¼ CT

(
¼)WWT ¼ XXT ¼ CQ
1CT

and

A ¼
Q CT

C 0

 !
¼

G 0

X W

� �
GT XT

0 
WT

 !
.

Given the above LU factorization, the solution to the

system (4) is to perform in tandem the forward

substitution

G 0

X W

� �
y1

y2

 !
¼

0

d

� �
and the back substitution
he meaning of mathematically but not physically is

ented in Remark 4 below.
GT XT

0 
WT

 !
u

k

� �
¼

y1

y2

 !
.

Given the special null vector 0 in the right-hand side ð0
b
Þ

of the system, the forward substitution gives

y1 ¼ 0 and Wy2 ¼ d

and the back substitution gives

GT XT

0 
WT

 !
u

k

 !
¼

0

y2

 !

¼)
GTuþ XTk ¼ 0 ) GGTuþGXTk ¼ 0 ) Qu ¼ 
CTk


WTk ¼ y2 ) 
WWTk ¼ Wy2 ) 
CQ
1CTk ¼ d:

(

That completes the proof. &

We emphasize that both numbers m and n could be

large in the proposed system, e.g., in the system leading

to the example shown in Fig. 9d, m ¼ 227 and n ¼ 625.

Therefore by Theorem 2 the system decomposition to

the form (5) makes a big reduction in the computation

cost.

Corollary 3. Given Q is SPD and C is of full row rank

m, the matrix CQ
1CT is also SPD.

Proof. Since Q is SPD, the Cholesky factorization Q ¼

GGT exists. Then, for an arbitrary vector x,

xTCQ
1CTx ¼ xTCG
TG
1CTx¼ ðG
1CTxÞTðG
1CTxÞ

X0, where the quality holds iff x ¼ 0 (since C is of full

rank m and G is of full rank n). &

Remark 4. It cannot be concluded (by simple compar-

ison between the system (4) and the system (5)) that the

matrix A is reducible, i.e., there does not exist a

permutation matrix P such that

P
1AP ¼
Q CT

0 CQ
1CT

 !
.

In our application scenario, A is generally irreducible

and the reason that the system decomposition (from

system (4) to (5)) is possible is all due to the existence

of a null sub-vector in the right-hand side ð0
b
Þ of the

system (4).

Remark 5. Given any scalar aa0 and Q0 ¼ aQ, the

solution u0 to the system with Q0 is identical with the

solution u to the system with Q. This means that

different weighting between the quadratic functional and

linear feature constraints provide the same result.
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Proof.

Q CT

0 CQ
1CT

 !
u0

k0=a

 !
¼

0

d

 !

¼)
Q CT

0 CQ
1CT

 !
u0

1
a
k0

 !

¼
0

d

 !
: &

5.2. Stability analysis

The conditional number of a linear system Ax ¼ b

measures the sensitivity of the solution x to perturba-

tions in the input ðA; bÞ. A system is called ill-conditioned

if its conditional number is large. An important

characteristic observed in the proposed system is that

although by Lemma 1 the matrix A is non-singular and

the linear system (4) has a unique solution theoretically,

the system (4) as well as the system (5) is frequently

numerically rank-deficient and thus ill-conditioned.

The most crucial problem in connection with rank-

deficient systems is how to reliably compute the

numerical rank of the matrix A. The canonical tool for

numerical rank analysis is the singular value decom-

position (SVD). Let A 2 Rn�n. Then the SVD of A is

A ¼ UDVT ¼ ½u1; . . . ; un�

s1

s2

. .
.

sn

26666664

37777775½v1; . . . ; vn�
T

¼
Xn

i¼1

uisiv
T
i ,

where s1Xs2X � � �XsnX0 are the singular values of A

and the vectors ui and vi are the ith left and right

singular vector of A, respectively. The 2-norm condition
0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

1 21 41 61 81 101 121 141

0.
0.
0.
0.
0.
0.
0.
0.
0.

1.
1.

Fig. 12. The singular value spectrums of two instantiations of the sys

with the size of 142� 142 solved for the example in Fig. 9c. Right: the

Fig. 9d.
number of A is by definition

cond2ðAÞ ¼
s1
sn

.

From the relation Avi ¼ siui ) kAvik2 ¼ si, it is clear

that for a small singular value si relative to s1 ¼ kAk2,

there exists a linear combination of the columns of A

which amount closely to a null vector, implying that A is

nearly rank deficient.

We should be more careful when investigating what is

the source of ill conditioning of the proposed systems (4)

and (5). If the ill-conditioned system is derived from a

direct discretization of an ill-posed problem, all singular

values of the coefficient matrix should decay gradually

to zero, with no distinct gap anywhere in the spectrum;

this situation is quite complicated since we cannot

merely filter out a cluster of small singular values.

Fortunately this is not our case. In our application

scenario, we discretize a regularized ill-posed problem.

Thus we are confronted with a rank-deficient problem

but not a discrete ill-posed problem. The numerical

deficiency comes from the constraint matrix C: in the

proposed interactive system, the user-specified features

are usually non-uniformly distributed and then the

constraint matrix C in system (4) is always numerical

deficient, so is CQ
1CT in system (5). This conclusion

is confirmed in our experiments since there is a well-

determined gap between the large and small singular

values of CQ
1CT; the singular value spectrums

of two instantiations of the system (5) are illustrated in

Fig. 12.

Given a well-determined gap between singular values

sr� and sr�þ1 of A, it makes sense to say that A has

numerical �-rank r�, sr�4�Xsr�þ1. For identification of

numerical rank deficiency, the predefined constant �
should be small enough when compared with the

machine precision (e.g., 10
6 for single precision and

10
12 for double). As a consequence, a stabilized

solution to the rank-deficient system Ax ¼ b is to simply

ignore the SVD components associated with the small

singular values and compute the truncated SVD (TSVD)
0
1
2
3
4
5
6
7
8
9
1
1
2

1 21 41 61 81 101 121 141 161 181 201 221

tem (5). Left: the plot of singular values of the matrix CTQ
1C

plot of the 227� 227 matrix CTQ
1C solved for the example in
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solution by

x ¼
Xr�

i¼1

uTi b

si

vi.

5.3. A fast truncated rank-revealing decomposition

We use the SVD for stability analysis of our proposed

system. The SVD is a superior numerical tool that can

reveal all difficulties in an ill-conditioned system.

However, the cost paid for this ‘‘superiority’’ is a high

computational cost, e.g., the Golub–Kahan–Reinsch

SVD algorithm for a dense m � n matrix has the

complexity of 14mn2 þ 8n3 flops. In practical applica-

tions, many other rank-revealing decompositions, such

as RRQR and UTV decompositions, have been

proposed as computationally advantageous alternatives

to the SVD when the numerical rank is either high or

low. In our practice, we implement a symmetric rank-

revealing decomposition [22] as the numerical engine in

the proposed system to achieve a truncated VSV

solution [23] which we briefly summarize as follows

with the emphasis on the special structures in our

proposed system.

Let M ¼ CQ
1CT. In the proposed system (5), M (as

well as A in the system (4)) is symmetric. We thus expect

the matrix decomposition to inherit the symmetry. The

symmetric counterpart of SVD is the eigenvalue

decomposition (EVD) [24] and for the UTV decomposi-

tion, the symmetric counterpart is the VSV decomposi-

tion [22]:

M ¼ VSVT ¼ ðV1 V2Þ
S11 S12

ST12 S22

 !
VT
1

VT
2

 !
, (6)

where V has orthonormal columns and S is a symmetric

matrix with S11 being r� � r�. The VSV decomposition is

rank-revealing since the matrix S is arranged in such a

way that S11 is well-conditioned (� s1=sr� ) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS12k

2
2 þ kS22k

2
2

q
be of the order sr�þ1

(�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2r�þ1 þ � � � þ s2m

q
). Given the VSV decomposition

(6) of M, the columns of V1 span an approximation to

the numerical range Rr� ðMÞ ofM and the columns of V2

span an approximation to the numerical null space

Nr� ðMÞ of M. Therefore a stabilized truncated VSV

solution to the ill-conditioned system Mk ¼ d is

kS ¼ V1S

1
11 V

T
1 d.

To perform the VSV decomposition, the algorithm

consists of an initial triangular factorization and a rank-

revealing postprocessing step. Since by Corollary 3

(resp., Lemma 1) the matrix M (resp., A) is SPD, the

initial factorization can be achieved in 1
3
m3 (resp.,

1
3
ðm þ nÞ3) flops by the symmetrically pivoted Cholesky
factorization PTMP ¼ GGT, P is a permutation matrix.

Due to siðGÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
siðMÞ

p
(see Theorem 4.1 in [22]), the

postprocessing step can be achieved by computing the

ULV decomposition of EXG
TEX , where EX is an

exchange matrix consisting of the columns of the identity

matrix in reverse order. The ULV decomposition requires

only cðm 
 r�Þm
2 flops if r� � m, or cr�m

2 flops if r�5m,

where c is an algorithm-dependent constant.

5.4. Robustness in the presence of rounding errors

In the ideal situation, the above presented VSV

solution to our proposed system (5) obviously works

well. In real-world scenarios, numerical computation

with finite precision arithmetic represents real numbers

by approximate quantities. In this stage the leading

source of errors is rounding that replaces a given real

number by the nearest p significant digit number, p is a

machine-dependent constant. It is inviting to ask what is

the performance of the adopted truncated VSV solution

in the presence of rounding errors with the following

arguments.

By adopting a truncated VSV solution, we actually

apply a direct method to solve the linear system (5). The

use of iterative methods, however, has received intensive

attentions in CV/CG applications [16,12,17,5]. A typical

iterative method involves (a) the selection of an initial

approximation k0 to the solution k of the linear system

Mk ¼ d and (b) the determination of a sequence

fk1; k2; . . .g by performing some iterative algorithm,

which, if the method is properly designed, will converge

to the exact solution k. For e.g., in the context of fluid

dynamics, a well-known iteration method for solving the

equilibrium system (4) is Uzawa’s method, which

resembles a relaxed block SOR iteration and the

iteration process converges if the relaxation parameter

satisfies 0ooo2=lmaxðMÞ. The use of iterative methods

has the principal advantage that the matrix M is not

altered during the computation process; hence though

the iteration process may be long, the problem of the

accumulation of rounding errors is less serious than

most direct methods, where the matrix is changed during

the computation process. On the other hand, recent

advances in matrix analysis [20,25,26] advocate using

direct methods for equilibrium systems because of

their predictable behavior. In our application scenario,

if our adopted direct method is insensitive to the

rounding errors, the underlying numerical engine

inherent in the proposed system is certainly superior to

the existing numerical engines with the core of iterative

methods.

The effect of rounding errors can be illustrated by the

mixed forward–backward error analysis. Consider the

linear subsystem Mk ¼ d in (5). Let eM ¼ Mþ E,ed ¼ dþ e, M ¼ VSVT, eM ¼ eVeSeVT
, where M is given
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exactly and E represents the influence of rounding errors

with unit roundoff e whose norm is typically of order

10
8 or 10
16 in single and double precision computer

arithmetic, respectively. For the statistical distri-

bution of rounding errors in float point arithmetic, the

reader is referred to [27] and the references therein.

Let kS ¼ V1S

1
11 V

T
1 d and ekS ¼ eV1

eS
1

11
eVT

1
ed. It can be

shown (see Theorem 3.2 in [23]) that givenkEk2psr�þ1

osr� 
 kS22k2,

kkS 
 ekSk2

kkSk2

p
s1
sr�

kek2

kMkSk2
þ

kEk2

kMk2
þ
keS12k2
kMk2

 

þ sinfr�

kd
MkSk2

kMkSk2

�
þ sinfr�

,

where the distance sinfr�
between the subspaces Rr� ðMÞ

and Rr� ð
eMÞ is bounded by

sinfr�
p

kS12k2 þ keS12k2 þ kEk2

sr� 
 keS22k2 .

In our application scenario, since there is a distinct gap

between sr� and sr�þ1
comparable to the roundoff unit,

we can expect that kEk2, kek2, kS12k2, keS12k2, keS22k2
have the same order of machine precision sr�þ1 � kek2
and thus

sinfr�
�

kek2

sr�

and
kkS 
 ekSk2

kkSk2
�

kek2

sr�

c þ
kMk2

kMkSk2

� �
,

where c is a constant. That means in the presence of

rounding errors, the error of the truncated VSV solutionekS relative to kS is bounded in the same order of

machine precision. We thus conclude that our present

numerical scheme is stable in the sense of rounding error

insensitivity.

We finally note that we diagnose the ill-conditioning

of the system using the SVD tool and in practice solve

the ill-conditioned system using a truncated VSV

solution due to its computational efficiency. It is also

interesting to compare the truncate SVD and VSV

solutions side by side in terms of accuracy. Let the EVD

of M be UD
1UT and the TSVD solution to Mk ¼ d be

kD ¼ U1D

1
1 UT

1 d, where U1 consists of the first r�
columns of U. By Theorem 2.2 in [23], the truncated

VSV and SVD solutions kS and kD satisfy

kkD 
 kSk2

kkDk2
p sin yr� 1þ

s1
sr�

kS12k2

kMk2
þ

kd
MkDk2

kMkDk2

� �� �
,

where in our case, the distance sin yr� between the

subspaces spanned by columns of U1 and V1, respec-

tively, is bounded by sin yr� � ðsr�þ1Þ=sr� . Thus in our
application scenario,

kkD 
 kSk2

kkDk2
�

kek2

sr�

þ Oðkek22Þ,

i.e., the difference between kS and kD is also in the order

of machine precision.
6. Implementation and applications

We have implemented a prototype system for sketch-

based free-form shape modelling with the fast and stable

numerical engine proposed in this paper. The user

interface of the system is illustrated in Fig. 13. Two

applications are presented below to demonstrate the

usefulness and effectiveness of the proposed system.
6.1. Car body design

In automobile industry, computer models designed by

artists are preferred in advance of the physical proto-

types. To design a computer model with sketching, the

user creates a set of essential curves. The quality and

aesthetics of these curves, so called character lines,

determine the global product impression. In the

proposed system, we first specify controlled-continuity

features, e.g., the weighting parameter tðx; yÞ, creases
and discontinuity features, such that the discrete

quadratic Q is fixed (cf. Fig. 14a) and then Q
1 can be

preprocessed. Subsequently, other aesthetic features are

added without changing Q
1 and thus, we can achieve

interactive-rate editing of the 3D car body; one example

is illustrated in Fig. 14b.
6.2. Cartoon character design

In entertainment industry, artists usually create

cartoon pictures in 2D sketch planes. To generate the

3D effect of the 2D sketch-based cartoon character, the

proposed system can be applied. One example of 3D

effects on a cartoon character depicted in a single

2D sketch is illustrated in Fig. 15. Note that a single

sketch may only offer a portion of the complete

3D shape. If several consistent character sketches

from different viewpoints are provided, it is possible to

build a complete 3D character by applying the standard

range image registration, blending and stitching techni-

ques. Note also that the stereopsis techniques cannot

capture shapes accurately from a wide range of view-

points and silhouette-based techniques cannot captures

shapes with salient open curves and corners. It is

also illustrative from Figs. 1 and 15 that the proposed

system can be used for image-based modelling and

rendering [8].
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Fig. 13. The user interface of the prototype system for sketch-based shape design.

Fig. 14. The car body design process: (a) Specification of controlled-continuity features, together with a mixed boundary condition

and (b) Car body design by adding more aesthetic features.
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7. Summary

In this paper, a sketch-based free-form shape model-

ling technique is proposed by solving a linearly
constrained quadratic optimization problem with a fast

and stable numerical engine. To infer the 3D shape

information from 2D sketches, both clues of 2D region-

binding and 1D salient curves/corners are exploited and
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Fig. 15. Cartoon character design from sketches. The upper-left BW 2D cartoon image is downloaded from http://www.coloring.ws/

cartoons.htm.

Y.-J. Liu et al. / Computers & Graphics 29 (2005) 778–793792
formulated by a hybrid thin-plate surface model and a

hierarchy of linear features, respectively. To gain an

interactive-rate performance in the proposed system, a

fast and stable numerical engine is developed with a

rigorous proof that system decomposition with reduced

computational cost is always possible by exploiting the

special structures inherent in the proposed system.

Stability, accuracy and efficiency are studied in-depth

for the proposed numerical engine. The usefulness

and effectiveness of the proposed technique is

finally demonstrated by two diverse applications with

examples.
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