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a b s t r a c t

The Dirichlet energy of a smooth function measures how variable the function is. Due to its deep
connection to the Laplace–Beltrami operator, Dirichlet energy plays an important role in digital
geometry processing. Given a 2-manifold triangle mesh M with vertex set V , the generalized Rippa’s
theorem shows that the Dirichlet energy among all possible triangulations of V arrives at its minimum
on the intrinsic Delaunay triangulation (IDT) of V . Recently, Delaunay meshes (DM) – a special type
of triangle mesh whose IDT is the mesh itself – were proposed, which can be constructed by splitting
mesh edges and refining the triangulation to ensure the Delaunay condition. This paper focuses on
Dirichlet energy for functions defined on DMs. Given an arbitrary function f defined on the original
mesh vertices V , we present a scheme to assign function values to the DM vertices Vnew ⊃ V
by interpolating f . We prove that the Dirichlet energy on DM is no more than that on the IDT.
Furthermore, among all possible functions defined on Vnew by interpolating f , our scheme attains the
global minimum of Dirichlet energy on a given DM.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In mathematics, the Dirichlet energy of a smooth function
measures how variable the function is. Since it is intimately
linked with Laplace’s equation, the Dirichlet energy has been
widely used in many engineering fields, such as numerical solu-
tions to PDE and data clustering (e.g., [1]). In computer graphics
and computational geometry, the Dirichlet energy defined on
polyhedral surfaces is of particular interest, and has been widely
studied in the past three decades (e.g., [2–4]).

Delaunay triangulation is closely related to the Dirichlet en-
ergy. Rippa’s theorem [2] reveals that in Euclidean spaces, the
Dirichlet energy attains its minimum on Delaunay triangulations.
A Delaunay triangulation for a given set P of 2D points is a trian-
gulation DT on P such that no point in P is inside the circumcircle
of any triangle in DT . Delaunay triangulation has many properties
favorable to digital geometry processing (e.g., [5–8]). For example,
it maximizes the minimum angle of all the angles of the triangles
in the triangulation, hereby tending to avoid sliver triangles.

Although Delaunay triangulation in Euclidean spaces is well
understood, only in recent years Delaunay triangulation on curved
manifolds has received attention. The manifold counterpart, called
intrinsic Delaunay triangulation (IDT) [9], is a triangulation defined
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on a polyhedral surface and with geodesic edges (see Fig. 1(b)).
An IDT has exactly the same geometry of the polyhedral surface,
since no new vertices are required to form the triangulation.
However, an IDT may contain degenerate faces with only two ver-
tices or edges. Bobenko and Springborn [4] showed that Rippa’s
theorem also holds for polyhedral surfaces: given a 2-manifold
polygonal mesh M with vertex set V , the minimum of the Dirich-
let energy among all possible geodesic triangulations of V on M
is attained on the intrinsic Delaunay triangulation, where V is the
set of mesh vertices in M . Since the sum of the angles opposite
an internal edge does not exceed π , the IDT-induced cotangent
Laplace operator [10] is guaranteed to have non-negative weights,
which is highly desirable in digital geometry processing.

Delaunay mesh (DM) is a special 2-manifold triangle mesh
whose IDT is the mesh itself [11,12]. Thanks to its many favorable
features [11–14], DM is an effective mesh representation scheme
that can improve the accuracy and the robustness of PDE-based
numerical computation, such as geodesic computation [15] and
harmonic parameterization [3]. Liu et al. [12] developed an algo-
rithm to convert an arbitrary manifold triangle mesh M with m
vertices into a DM with O(Km) vertices in O(mKlogK ) time, where
K is a model-dependent constant. Their algorithm adds auxiliary
points to the edges of M and locally refines incident faces to
ensure the Delaunay condition. They showed that the resulting
DM has the same geometry of the input mesh M (Fig. 1(c)), thus
the Hausdorff distance between M and DM is zero, which in turns
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Fig. 1. Both intrinsic Delaunay triangulation and Delaunay mesh have the same
geometry of the input triangle mesh M . IDT shares the same vertex set of
M (red), but its edges are geodesics (green polylines) that may cross several
triangular faces. DM contains auxiliary vertices (green dots) and its edges are
line segments. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

implies the Hausdorff distance between IDT and DM is also zero.
It is worth noting that for a given 2-manifold mesh M , there are
infinitely many Delaunay meshes with the same geometry of M .

The existing algorithms mainly focus on constructing IDTs and
DMs [11–13,16]. In this paper, we study the relation of Dirichlet
energies on DM and IDT. Although both DM and IDT have the
same geometry with the original mesh M , DM has more vertices
than IDT. Given any function f defined on the vertices of M , we
propose a scheme to assign function values on the newly added
vertices in DM by interpolating f . Then we present a constructive
proof, showing that the resulting Dirichlet energy on any DMs is
no more than the Dirichlet energy on the IDT of M . We also show
that among all possible interpolating functions defined on the
vertices of DM, our proposed scheme attains the global minimum
of Dirichlet energy. Our scheme does not need to compute IDT
explicitly, which is usually difficult to represent since its edges
are geodesics that may cross multiple triangles.

Designing a scheme for interpolating function values on mesh
vertices is desired in many geometric processing applications. In
some application scenarios, computing the features of a part of
vertices in a mesh is easy, but computing the features of all points
is hard. However a proper interpolation technique can offer an
available resolution to this issue. For example, it is possible to
fast query geodesic distance on triangle meshes with the help of
interpolation techniques [17].

Our contributions are twofold. First, we propose a holistic
COT harmonic interpolation scheme for newly added vertices in
DM, and prove that the interpolation attains the unique global
minimum of the Dirichlet energy on DM. Second, for a given
2-manifold mesh, the relation of Dirichlet energy between corre-
sponding IDT and DM is compared according to our interpolation
scheme, which is not reported in the existing literature.

The rest of this paper is organized as follows. Section 2 reviews
the related work and present background knowledge. Section 3
presents the main theoretical results, followed by experiments
and applications in Section 4. Section 5 concludes the paper.

2. Related work & preliminaries

In this section, we briefly review the most related work of
Dirichlet energy and Delaunay triangulations. We refer readers
to [5,6] for a comprehensive review.

Denote by M = (V , E, F ) the manifold triangle mesh and V ,
E and F its sets of vertices, edges and faces. Each edge carries
an arbitrary but fixed orientation, while vertices and triangles
always have counterclockwise orientation by convention. Index
order indicates direction, in the sense that edge eij is directed

from vertex vi to vj. For a triangular face fijk = (vi, vj, vk), we
denote the angle between ejk and eji by αik. If multiple triangles
are involved and ambiguity occurs, we use the full indices to
denote angle, e.g., αijk = ̸ vivjvk.

2.1. Dirichlet Energy

Let Γ = {Ti} be all geodesic triangulations on a 2-manifold
mesh M , in which each Ti has the same set of vertices with M . Let
V = {v1, v2, . . . , vm}, ET and FT be the sets of vertices, edges and
triangular faces of a geodesic triangulation T ∈ Γ on the domain
M , respectively. Note that M ∈ Γ since it is a special triangulation
in Γ . Let f : V → R be a scalar function defined on vertices V .
For each T ∈ Γ , let f |T : T → R be a piecewise linear function
interpolating f on T , f |T (vi) = f (vi), ∀vi ∈ V , i.e., f |T is linear on
the faces of T and its gradient ∇f |T is a constant vector on each
face.

The Dirichlet energy of f |T on T is

E(f |T ) =
1
2

∫
T
∥∇fT∥2dA (1)

Using the finite element method [10,18], the Dirichlet energy is
discretized as

E(f |T ) =
1
4

∑
fijk∈FT

[cotαij(fi − fj)2 +

cotαjk(fj − fk)2 + cotαki(fk − fi)2] (2)

where fl = f (vl). Rearranging the terms in Eq. (2) leads to a sum
over the edges of T

E(f |T ) =
1
2

∑
eij∈ET

ωij(fi − fj)2, (3)

where ωij =
1
2 (cotαij+ cotβij), αij = ̸ vivpvj and βij = ̸ vivqvj are

opposite angles in two faces adjacent to the edge eij.
The Dirichlet energy is closely related to Laplace’s equation,

since the solutions of Laplace’s equation are harmonic functions,
which are smooth functions minimizing the Dirichlet energy [19].
The Laplace operator, given by the divergence of the gradient
of a function on Euclidean space, can be generalized to operate
on functions defined on Riemannian manifolds. This generalized
operator is often called Laplace–Beltrami operator (LBO). Discrete
LBOs on polygonal surfaces have attracted considerable research
and found a wide range of applications in computer graphics and
computer vision [4,10,18,20–24]. Xu and his colleagues [25,26]
presented deep investigation on the Dirichlet energy defined on
triangular/quadrilateral meshes and the convergence of different
discrete LBO schemes.

2.2. Intrinsic delaunay triangulation

Bobenko and Springborn [4] defined the IDT associated to M
as follows:

• the IDT’s vertex set is the same as that of M ,
• every IDT edge is a geodesic path in M ,
• for each interior edge, the local Delaunay criterion is sat-

isfied, i.e., the sum of the opposite angles in the adjacent
triangles is no more than π .

Rivin [9] conjectured that the IDT can be constructed by edge
flipping without rigorous proofs. Bobenko and Springborn [4]
proved that by iteratively flipping the non-Delaunay geodesic
edges to be locally Delaunay, the edge flipping algorithm ter-
minates in a finite number of steps, implying that the intrinsic
Delaunay triangulation exists. They also proved the uniqueness
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Fig. 2. IDT and DM construction on a tetrahedron. The top row shows the tetrahedron rendered semitransparent and the bottom row shows the flattened 2D
triangulation. The original tetrahedron is very long and narrow. For better illustration, a nonuniform scaling is used. The vertex coordinates are v1 = (0.005, 0.0, 0.130),
v2 = (1.732, 1.0, 0.0), v3 = (1.732,−1.0, 0.0) and v4 = (−100.0, 0.0, 0.0). The resulting IDT has a self-loop edge at v1 and then each of its two adjacent faces has only
two vertices. DM is constructed by iteratively adding new vertices, i.e., v5 = (0.0, 0.983, 0.0) and v6 = (0.0,−0.983, 0.0), into the tetrahedron with face subdivision.

of Delaunay tessellation1 and the IDT can be obtained by trian-
gulating the non-triangular faces. Afterwards, Fisher et al. [27]
presented a practical edge-flipping algorithm to compute the
IDT from an arbitrary triangle mesh. The edge-flipping algorithm
[4,27] does not have known time complexity and may also pro-
duce geodesic triangulations containing faces with only two ver-
tices or only two edges, or edges adjacent to the same face
on both sides. See Fig. 2 left for an example. Liu et al. [16]
developed an algorithm for constructing proper2 IDTs from the
dual of geodesic Voronoi diagram. Their algorithm runs in O(m2

+

tm logm) time, where t is the number of obtuse angles in the
mesh. The widely used cotangent LBO always has non-negative
weights on IDTs and thus numerical stability can be achieved
in many computer graphics applications [27]. Recently Sharp
et al. [28] customized an efficient data structure that stores the
direction and distance to neighboring vertices. Then IDTs can be
viewed as ordinary meshes, and common geometric operations
and algorithms can be easily implemented.

Bobenko and Springborn [4] generalized Rippa’s theorem [2],
showing that among all geodesic triangulations in Γ , the min-
imum of the Dirichlet energy defined in Eq. (1) is attained on
IDT IM ,

min
T∈Γ

1
2

∫
T
∥∇f |T∥2dA =

1
2

∫
IM

∥∇f |IM ∥
2dA. (4)

2.3. Delaunay meshes

As a special type of IDT, DMs are triangle meshes where
the local Delaunay condition holds everywhere. Dyer et al. [11]
developed an algorithm to convert an arbitrary triangle mesh
M into a DM by recursively splitting non-Delaunay edges and
refine the local triangulations. Both M and DM have the same
geometry. However, their algorithm can only prove the conver-
gence without time and space complexity. In practice, since their
local refinement scheme is purely combinatorial and does not
consider the local geometry, their algorithm often adds too many
redundant splitting points into the mesh.

Recently, Liu et al. [12] proposed a geometry-aware algorithm
for constructing DM. An edge e in M is locally Delaunay (LD) if the
sum of the two angles facing e is no more than π ; otherwise it
is non-locally Delaunay (NLD). An NLD edge is called planar if its
two incident faces are coplanar, and non-planar otherwise. Liu
et al. propose a Delaunay sampling criterion, based on which a
set of candidate points S are sampled on edges in M . Then their
algorithm flips planar NLD edges and iteratively processes non-
planar NLD edges e by adding selected auxiliary points from S

1 Faces in Delaunay tessellation are general but not always triangular.
2 An IDT is proper if it is a realization of a simplicial complex. All Delaunay

triangulations in R2 are proper.

based on the local geometry around e (Fig. 2 right). Splitting
edges and faces at auxiliary points will introduce more edges and
faces into M , which may also turn some existing LD edges into
NLD. Liu et al. [12] proved that the iterative process is guaranteed
to terminate and their algorithm runs in O(K ′n) time, where K ′ is
a constant depending on model’s geometry.

3. Main theoretical result

Throughout this paper, given an arbitrary 2-manifold triangle
mesh M = (V , E, F ), we denote the IDT and any DM of M as
IM and DM , respectively. The sets of vertices, edges and faces
of IM and DM are denoted as (VI = V , EI , FI ) and (VD, ED, FD),
respectively.

The generalized Rippa’s theorem [4] shows that among all pos-
sible geodesic triangulations of V on the manifold domain M , the
Dirichlet energy arrives at its minimum when the triangulation is
intrinsically Delaunay. On the other hand, the recently proposed
DM is a special IDT by adding more vertices into IDT of M . In this
paper, we study the relation of Dirichlet energies on DM and IM
that has the same geometry of M .

We assume that all Delaunay meshes DM studied in this paper
are in general position, i.e., for any interior edge eij ∈ ED, the
sum of its opposite angles αij and βij in two faces adjacent to e
is strictly less than π ; in other words, when folding two faces
sharing e into a common plane, no circle passes through their
four vertices. This general assumption is easy to guarantee during
the DM construction process: for any new inserted vertex, if
degeneracy occurs, a tiny perturbation is sufficient to remove it.
In fact, the assumption implies the global unique minimizer of
Laplace’s equations with given boundary conditions.

3.1. Minimization of Dirichlet energy on DM

Different from IDT, DM has more vertices and the vertex set
VD of DM can be separated into two mutually exclusive subsets:
the vertex set V of M and the new vertex set VD \ V . Given any
function f : V → R, to compute Dirichlet energy on DM , the
function values of vertices in VD \V need to be determined. Since
the DM construction algorithm [12] adds new vertices only at the
edges e ∈ E of M , intuitively, barycentric interpolation or other
special schemes (e.g., incremental cotan interpolation illustrated
below in Example 3.3) during DM construction can be used.
However, both barycentric interpolation and incremental cotan
interpolation may lead to larger Dirichlet energy values than that
of IDT. The main reason is that both interpolation methods cannot
achieve globally optimal result. Below we use M , IM and DM in
Fig. 2 as illustrative examples.
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Example 3.1. Let f |M : FM → R and f |IM : FI → R be the piecewise
linear functions with f (v1) = 1, f (v2) = 2, f (v3) = 2 and f (v4) =
2 on the face sets FM = (△v1v3v2,△v1v4v3,△v1v2v4,△v2v3v4)
of the original tetrahedron mesh M and FI = (△v1v3v2,△ṽ1v3v2,
△ṽ1v1v3,△ṽ1v1v4) of the IDT IM of M , respectively, where
△ṽ1v3v2,△ṽ1v1v3 and△ṽ1v1v4 are triangles with curved geodesic
edges. The Dirichlet energies on M and IM are E(f |M ) = 201.232
and E(f |IM ) = 4.659.

Example 3.2. Let f (v1) = 1, f (v2) = 2, f (v3) = 2 and f (v4) = 2,
the same as in Example 3.1. The DM DM adds two new vertices
v5 and v6 into the original tetrahedron mesh M . Given that v5
lies on the edge (v2, v4) and v6 lies on the edge (v3, v4), using
barycentric interpolation, we have f (v5) = 2 and f (v6) = 2. Then
the Dirichlet energy on DM is E(f |DM ) = 201.232, which is the
same as E(f |M ) and larger than E(f |IM ), where f |DM : FD → R is the
piecewise linear function on the face set FD of DM , interpolating
the function values f (vi), i = 1, 2, . . . , 6.

Example 3.3. Let f (v1) = 1, f (v2) = 2, f (v3) = 2 and f (v4) = 2,
the same as in Example 3.1. In the DM construction process,
first v5 is added on the edge (v2, v4), which is adjacent to faces
△v1v2v4 and △v2v3v4. Using cotan interpolation, we minimize
the following quantity with variable f (v5):

1
4 [(cotα145 + cotα125)(f (v1)− f (v5))2+
(cotα215 + cotα235)(f (v2)− f (v5))2+
(cotα325 + cotα345)(f (v3)− f (v5))2+
(cotα415 + cotα435)(f (v4)− f (v5))2]

(5)

and we have f (v5) = 1.35. Second, v6 is added on the edge
(v3, v4), which is adjacent to faces △v3v4v5 and △v1v3v4. Using
cotan interpolation again, we minimize the following quantity
with variable f (v6):

1
4 [(cotα136 + cotα146)(f (v1)− f (v6))2+
(cotα316 + cotα356)(f (v3)− f (v6))2+
(cotα416 + cotα456)(f (v4)− f (v6))2+
(cotα536 + cotα546)(f (v5)− f (v6))2]

(6)

and we have f (v6) = 1.13. Then the Dirichlet energy on DM
is E(f |DM ) = 19.672, which is larger than E(f |IM ), where f |DM :

FD → R is the piecewise linear function on the face set FD of DM ,
interpolating the function values f (vi), i = 1, 2, . . . , 6.

There exist infinitely possible interpolating schemes to extend
an arbitrary scalar function f defined on V to vertices in VD \ V ,
including the barycentric interpolation and incremental cotan
interpolation in Examples 3.2 and 3.3. Below we propose a novel
holistic COT harmonic interpolation, with three distinct merits:
(1) we prove that it achieves the minimum of Dirichlet energy on
DM among all possible interpolating schemes, (2) we prove that
it has lower Dirichlet energy than that of IDT, and (3) it does not
depend on the IDT and thus is easy to compute.

Proposition 3.1 (Holistic COT Harmonic Interpolation). Given a 2-
manifold mesh M, a scalar function f : V → R defined on
vertices V of M and a Delaunay mesh DM of M, the following
linear system of equations has a unique solution to unknown scalars
fm+1, fm+2, . . . , fn that are function values at vertices in VD \ V
of DM :∑

vj∈nbhd(vi)
(cotαij + cotβij)(fi − fj) = 0,

i = m+ 1,m+ 2, . . . , n
(7)

where m and n are numbers of vertices in V and VD respectively,
nbhd(vi) of vi ∈ VD contains those vertices sharing an edge with
vi in DM and f1, f2 · · · , fm are known function values at vertices V
specified by f : V → R.

Proof. We rearrange the terms in the linear system (7) by
putting unknowns on the left and constants on the right:∑

vj∈nbhd(vi)
(cotαij + cotβij)fi−∑

vj∈nbhd(vi),j>m(cotαij + cotβij)fj
=

∑
vj∈nbhd(vi),j≤m

(cotαij + cotβij)fj
i = m+ 1,m+ 2, . . . , n

(8)

which can be written in a matrix form as

Ax = b, (9)

where A is an (n−m)× (n−m) matrix, x is a (n−m)×1 column
vector (fm+1 fm+2 · · · fn)T which contains all unknowns and b is
a constant (n−m)× 1 column vector.

To prove that the system in Eq. (9) has a unique solution,
we need to show that the matrix A is invertible. In the proof of
Theorem 3.1 presented below, we prove that A is positive definite
and then is invertible. □

Theorem 3.1. Given a 2-manifold mesh M, a Delaunay mesh DM
of M and a scalar function f : V → R defined on vertices V of M,
in all possible scalar function fD : VD → R defined on vertices VD of
DM that satisfies fD(v) = f (v), ∀v ∈ V , the function f ∗D attains the
global minimum of Dirichlet energy of fD|DM on DM = (VD, ED, FD):

E(f ∗D |DM ) =
1
4

∑
ei,j∈ED

(cotαij + cotβij)(fi − fj)2 (10)

where f ∗D |DM : FD → R is a piecewise linear function on FD with
f ∗D |DM (vi) = f ∗D (vi), ∀vi ∈ VD, if and only if f ∗D is given by holistic
COT harmonic interpolation in Proposition 3.1 .

Proof. Note that ∇E(fD|DM ) = 0 with respect to the unknowns
x = (fm+1 fm+2 · · · fn)T (whose elements are function values at
VD \ V of DM ) is exactly the linear system of Eqs. (7). Below we
show that the quadratic function E(fD|DM ) is convex; therefore,
∇E(f ∗D |DM ) = 0 implies that E(f ∗D |DM ) is a global minimizer.

A twice continuously differentiable function is strictly convex
if and only if its Hessian matrix is positive definite. Eq. (10) can be
rewritten in a matrix form as xTAx+bx+c , where the symmetric
matrix A is specified in Eq. (9), b is a 1× (n−m) constant vector
and c is a constant. Then the Hessian matrix of E is A. Below we
show that A is positive definite.

First, ∀x = (fm+1 fm+2 · · · fn)T , we have

xTAx = 1
4

∑
ei,j∈ED,i>m,j>m(cotαij + cotβij)(fi − fj)2

+
1
4

∑
ei,j∈ED,i>m≥j(cotαij + cotβij)f 2i

(11)

Given that due to the local Delaunay condition, cotαij + cotβij >

0, ∀i, j, we have xTAx ≥ 0. Next, we show that xTAx = 0 if and
only if x = 0.

By Eq. (11), xTAx = 0 implies two conditions:∑
ei,j∈ED,i>m,j>m

(cotαij + cotβij)(fi − fj)2 = 0 (12)

and∑
ei,j∈ED,i>m≥j

(cotαij + cotβij)f 2i = 0 (13)

If A is irreducible, all vertices in VD \ V are connected in DM .
The condition in Eq. (12) implies that all the values in x are
equal. The condition in Eq. (13) implies that at least one value
in x is zero. Therefore, both conditions imply x = 0. If A is
reducible, A can be rearranged into block upper-triangular form
by simultaneous row/column permutations. Now we examine
each block submatrix, denoted as Ai, which is irreducible. Since
Ai is irreducible, by replacing non-zero entries in Ai by one and
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viewing the matrix as the adjacency matrix of a graph gi, we have
that (1) gi is strongly connected and (2) in each gi at least one
vertex has neighbors in V . Then the condition in Eq. (12) implies
that all the function values at vertices in gi are equal, and the
condition in Eq. (13) implies that at least one vertex’s value in gi is
zero. Therefore, both conditions imply that all the function values
at vertices in each gi are zero and then x = 0. That completes the
proof. □

There exist simple methods that can prove the positive defi-
niteness of A in previous Proposition and Theorem. E.g., according
to the rank (equal to n-1) of the Laplacian matrix and given
boundary conditions, we can result in the positive definiteness,
but here we adopt a complete proof that can be self-contained.
Note that the proofs stated above are valid for closed meshes.
In fact, the Proposition 3.1 is also true for 2-manifold meshes
with boundaries. The Dirichlet energy in (10) is convex on any
2-manifold meshes, then the null space of Laplacian operator is a
constant function, and the Laplacian matrix can be non-singular.
Since the matrix in (7) is a sub-matrix of the Laplacian matrix,
then it is also non-singular, therefore a unique solution can also
be guaranteed.

3.2. Relation of Dirichlet energies on DM and IM

Both DM DM and IDT IM satisfy local Delaunay condition on
every (geodesic) edge, and they have the same geometry of the
original mesh M . In this section, we show that using the holis-
tic COT harmonic interpolation in Proposition 3.1, the Dirichlet
Energy on DM is no greater than that on IM .

To establish such a relation, our strategy is to propose an
interpolation scheme that starts from IM , iteratively adds new
vertices in VD \ V and updates the mesh connectivity, and finally
reaches DM .

Given any f : V → R, the Dirichlet Energy on IM = (VI =

V , EI , FI ) is

E(f |IM ) =
1
4

∑
e=(vi,vj)∈EI

(cotαij + cotβij)(fi − fj)2 (14)

where f |IM : FI → R is a piecewise linear function on FI with
f |IM (vi) = f (vi), ∀vi ∈ VI .

We put the vertices in VD\VI into a sorted3 list L = {vm+1, vm+2,
. . . , vn}. Let Mm = IM . Starting from i = m + 1, we iteratively
assign the function value at vi and subdivide the mesh using the
following steps:

• Step 1. Find the geodesic edge ep,q ∈ EMi−1 or the geodesic
face fabc ∈ FMi−1 whose interior contains vi.
• Step 2. Assign the value f (vi) using the barycentric inter-

polation between f (vp) and f (vq), or among f (va), f (vb) and
f (vc).
• Step 3. Add vi and locally subdivide Mi−1 into a 2-manifold

mesh M ′i = (VM ′i
, EM ′i , FM ′i ), vi ∈ VM ′i

;
• Step 4. Apply the edge flipping algorithm [4,27] to M ′i and

generate an IDT of M ′i ; denote the resulting IDT as Mi =

(VMi = VM ′i
, EMi , FMi ).

• Step 5. If i < n, then i← i+ 1 and go to Step 1; otherwise
stop.

In above iterative process, let fM ′i |M ′i : FM ′i → R and fMi |Mi : FMi →

R be the piecewise linear functions specified in Steps 3 and 4,
respectively. Given the barycentric interpolation, we have

E(fMi−1 |Mi−1 ) = E(fM ′i |M ′i ), i = m+ 1,m+ 2, . . . , n (15)

3 Our method does not depend on a specified ordering and any sorting is
fine.

Fig. 3. Insert a vertex vi into the Mi−1 (left) and locally split the geodesic triangle
△ṽ1v2v3 ∈ Mi−1 that contains vi (right).

To see the above property, without loss of generality, we assume
that the new added vertex vi lies inside the geodesic triangle
△ṽ1v2v3 ∈ Mi−1 (Fig. 3 left). By assigning the value f (vi) using the
barycentric interpolation among f (v1), f (v2) and f (v3), and locally
subdividing △ṽ1v2v3 into three small geodesic triangles △ṽ1v2vi,
△ṽ1viv3 and △ṽiv2v3 (Fig. 3 right), it is readily seen that

E(△ṽ1v2v3) = E(△ṽ1v2vi)+ E(△ṽ1viv3)+ E(△ṽiv2v3) (16)

and then Eq. (15) holds. By generalized Rippa’s Theorem 1 in [4],
the Dirichlet Energy of IDT Mi is not larger than that of M ′i ,
i.e., E(fM ′i |M ′i ) ≥ E(fMi |Mi ). Therefore, we have

E(f |IM ) ≥ E(fM ′m+1 |M ′m+1 ) ≥ E(fMm+1 |Mm+1 ) ≥ E(fM ′m+2 |M ′m+2 ) ≥
E(fMm+2 |Mm+2 ) ≥ · · · ≥ E(fMn−1 |Mn−1 ) ≥ E(fM ′n |M ′n ) ≥ E(fMn |Mn )

(17)

implying E(f |IM ) ≥ E(fMn |Mn ).
Given VMn = VD and the assumption of general position in

VD, the intrinsic Delaunay tessellation/triangulation of VD on DM
is unique [4] and then we have DM = Mn. This indicates that the
Dirichlet Energy of IDT IM is not less than that of DM by iteratively
barycentric interpolation, i.e., E(f |IM ) ≥ E(fDM |DM ).

By Theorem 3.1, in all possible scalar function fD : VD → R (in-
cluding fDM = fMn determined by the above iteratively barycentric
interpolation and edge flipping process), the function f ∗D specified
by holistic COT harmonic interpolation in Proposition 3.1 attains
the global minimum of Dirichlet energy. We have

Corollary 3.1. Given a 2-manifold mesh M, a Delaunay mesh DM
of M and a scalar function f : V → R, the Dirichlet energy of the
function f ∗D specified by Proposition 3.1 on DM is not larger than the
Dirichlet energy of f |IM on IM , i.e.,

E(f ∗D |DM ) ≤ E(f |IM ) (18)

Example 3.4. Let f (v1) = 1, f (v2) = 2, f (v3) = 2 and
f (v4) = 2, the same as in Example 3.1. The DM DM of the original
tetrahedron mesh M in Fig. 2 includes two new vertices v5 and v6.
Using the holistic COT harmonic interpolation in Proposition 3.1,
we have[
153.544 −51.751
−51.751 153.544

][
f (v5)
f (v6)

]
=

[
103.545
103.545

]
(19)

and the solution is f (v5) = f (v6) = 1.0173. Then the Dirichlet
energy on DM is E(f |DM ) = 4.598, which is smaller than E(f |M )
and E(f |IM ) (they are computed in Example 3.1), where f |DM :

FD → R is the piecewise linear function on the face set FD of
DM , interpolating the function values f (vi), i = 1, 2, . . . , 6.
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Fig. 4. For many downstream applications, it is desired to convert an arbitrary 2-manifold mesh M into a Delaunay mesh (DM ), which has exactly the same geometry
with the original one but is numerically more stable. DM usually adds more auxiliary vertices into M . To specify the color/texture coordinates at these auxiliary
vertices, barycentric interpolation and holistic COT harmonic interpolation can be used. The barycentric interpolation leads to exactly the same color/texture effects
on M and DM (see also Example 3.2). By Theorem 3.1 and Corollary 3.1, holistic COT harmonic interpolation can lead to a minimal Dirichlet Energy on DM , which
is lower than the one by barycentric interpolation, meaning that the color/texture function by holistic COT harmonic interpolation is the smoothest one on DM .

4. Illustrative examples and discussions

Delaunay meshes are known to have many favorable geomet-
ric and numerical behaviors [12] such as more robust geodesic
computation using the heat method [15], better accuracy of cotan
discrete Laplace–Beltrami operator estimation and better dis-
crete harmonic mapping, etc. Fig. 4 shows some mesh models
with colors. For downstream mesh processing such as computing
geodesic distances on these models using the heat method, it is
suggested to convert the meshes into DMs (which have the same
geometry with the original meshes) and perform the computation
on DMs [12]. After converting an M into DM , we need to specify
the colors or texture coordinates on those new added vertices
VD \ V by interpolating existing colors or texture coordinates on
V .

In Fig. 4, two interpolation schemes are used to interpolate
texture coordinates. One is the straightforward barycentric in-
terpolation using the original mesh M (which does not change
the Dirichlet energy defined on M; see also Example 3.2) and the
other is holistic COT harmonic interpolation in Proposition 3.1.
Then color images are mapped onto mesh models using texture

coordinates. The results demonstrate that using holistic COT har-
monic interpolation leads to much more smooth color/texture
distribution on DM , in accordance with Theorem 3.1 that holistic
COT harmonic interpolation achieves the minimization of Dirich-
let energy and a lower Dirichlet energy induces a smoother
function defined on DM .

We implemented our algorithm in C++ and evaluated it on
eight representative models. Some are commonly used models
in graphics community, and others are anisotropic meshes from
the Thingi10k dataset.4 Timings were measured on a workstation
(Intel Xeon E5-2620 2 GHz, 32GB RAM). Table 1 reports the run
time of IDT and DM construction, barycentric and our interpola-
tion. Although there is no theoretical time complexity, the edge
flipping method [4,27] has good practical performance. However,
due to the geodesic IDT edges, it is difficult to represent, store
and locate geometric primitives in the IDT faces on M . The time
efficiency of barycentric interpolation is superior to the proposed
interpolation. The main reason is that the time complexity of

4 https://ten-thousand-models.appspot.com/.

https://ten-thousand-models.appspot.com/
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Fig. 5. Interpolating geodesic distances. We compute the exact geodesic distances on the input meshes using the FWP method [29]. Using the geodesic distances on
vertices, we adopt barycentric interpolation and our interpolation to compute the distances for the newly added vertices of DM. From left to right, top to bottom:
Kitten, Elephant, Bunny, Armadillo, Carter, Bimba, Heptoroid and Mushroom. For each model, the five sub-figures are the input mesh, Delaunay mesh, exact geodesics
on the input mesh, barycentric interpolation on DM, and our interpolation on DM. As Table 2 shows, our interpolation has smaller mean and max errors than
barycentric interpolation for most models.

Table 1
Quantitative results of running times and Dirichlet Energies (DE) on eight models.
Model name Input mesh IDT DM Barycentric interpolation Our interpolation

Vert num DE Vert num Time (s) DE Vert num Time (s) Time (s) DE Time (s) DE

Kitten 1370 0.7933 1370 0.001 0.7773 2146 0.028 0.001 0.7933 0.26 0.7641
Bunny 2502 0.5630 2502 0.002 0.5554 3491 0.035 0.001 0.5630 0.413 0.5469
Armadillo 3650 1.1076 3650 0.005 1.0852 5884 0.041 0.003 1.1076 0.838 1.0629
Elephant 4996 0.7866 4996 0.007 0.7665 9316 0.048 0.005 0.7866 1.581 0.7459
Carter 1853 1.6616 1853 0.004 1.5506 6288 0.051 0.028 1.6616 3.315 1.5449
Heptoroid 4458 0.6708 4458 0.011 0.6284 17028 0.146 0.016 0.6708 1.808 0.6164
Bimba 3099 1.02281 3099 0.004 1.01847 5355 0.04 0.003 1.02881 0.259 1.01509
Mushroom 968 3.31713 958 0.002 3.22441 2651 0.022 0.003 3.31713 0.211 3.2152

barycentric interpolation is O(l) due to local interpolation, and the
time complexity of the proposed interpolation is O(l2) since the
Jacobi iteration is used to solve Eq. (7), where l is the number of
unknowns.

Dirichlet energies of the eight models and their DMs are
also computed. Our interpolation method achieves the minimal
Dirichlet energies on these models (see Table 1). The experimen-
tal results also verify our mathematical conclusions. Note that
Dirichlet energies are computed based on the geodesic distances.

The iterative interpolation scheme using barycentric coordi-
nates in Section 3.2 (or replacing barycentric interpolation by
cotan interpolation in the same iterative scheme) can also result
in the Dirichlet energy on DM no greater than that of IDT IM . How-
ever, both schemes need to construct the IDT of M , and are not
globally optimal interpolation with respect to Dirichlet energy.
Instead, the proposed interpolation scheme is performed on the

original meshes, and achieves global minimization of Dirichlet
energies.

In Fig. 5, we estimate the accuracies between our holistic
COT harmonic interpolation and the barycentric interpolation
on DMs of the eight models. The exact geodesic distances on
the input meshes are computed using the FWP method [29].
The geodesic distances of newly added vertices in DMs are es-
timated by barycentric interpolation and our proposed method,
respectively. The relative mean interpolation errors and relative
maximal interpolation errors are shown in Table 2. The geodesic
contours are visualized in Fig. 5 as well. The experimental results
illustrate that the relative mean errors of the proposed method
are better than those of the barycentric interpolation in most
cases. On the other hand, the relative maximal errors of the
proposed interpolation are totally better than those of barycentric
interpolation, and moreover the differences are fairly obvious.
In extreme cases, the accuracy of barycentric interpolation is
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Table 2
Statistics on geodesic interpolation.
Model
name

Barycentric interpolation Our interpolation

Mean error (%) Max error (%) Mean error (%) Max error (%)

Kitten 0.4183 237.93 0.304 71.65
Bunny 0.06 34.59 0.05 16.79
Armadillo 0.102 44.12 0.106 19.43
Elephant 0.06 16.72 0.04 16.52
Carter 0.44 201.34 0.35 36.02
Heptoroid 0.30 145.82 0.29 23.44
Bimba 0.23 50.44 0.09 29.30
Mushroom 0.33 61.72 0.25 25.31

very bad (e.g., the relative maximal error of Kitten model in
Table 2). Therefore the proposed interpolation can well approxi-
mate geodesic distances. Particularly, when the geodesic distance
field of an input mesh is computed, then the geodesic distance
field of DM can be directly updated using our proposed interpo-
lation instead of recomputing. Furthermore a geodesic distance γ

of an arbitrary point to the source can be estimated using intrinsic
barycentric interpolation in DM . 5

5. Conclusion

In this paper, we reveal the relation of Dirichlet energies on
DMs and IDT, both of which have the same geometry of the
original mesh M . We prove that using a holistic COT harmonic
interpolation, we can directly obtain a scalar function f ∗D : VD →

R from a given f : V → R, which achieves the global minimum
of Dirichlet energies in all possible functions fD : VD → R on a
given Delaunay mesh DM . The obtained Dirichlet energy on DM is
no greater than that on IDT IM . We demonstrate the efficacy of our
method on texture mapping and geodesic distance interpolation.
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