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Figure 1: Applications using cubic mean value coordinates. Left: shape deformation using curved cage networks, (a,b): input images, (c,d):
deformed results. Right: an adaptive gradient mesh (g) created from a given gradient mesh (e), and (f,h) are the rasterized images of (e,g).

Abstract

We present a new method for interpolating both boundary values
and gradients over a 2D polygonal domain. Despite various pre-
vious efforts, it remains challenging to define a closed-form inter-
polant that produces natural-looking functions while allowing flexi-
ble control of boundary constraints. Our method builds on an exist-
ing transfinite interpolant over a continuous domain, which in turn
extends the classical mean value interpolant. We re-derive the inter-
polant from the mean value property of biharmonic functions, and
prove that the interpolant indeed matches the gradient constraints
when the boundary is piece-wise linear. We then give closed-form
formula (as generalized barycentric coordinates) for boundary con-
straints represented as polynomials up to degree 3 (for values) and
1 (for normal derivatives) over each polygon edge. We demonstrate
the flexibility and efficiency of our coordinates in two novel appli-
cations, smooth image deformation using curved cage networks and
adaptive simplification of gradient meshes.
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1 Introduction

Generalized barycentric coordinates are a simple yet powerful way
to interpolate values on a polygonal domain. Interpolation at an
arbitrary point v involves a weighted combination of values asso-
ciated with the polygon vertices, where the weights are referred to
as coordinates of v. Among many possible choices of coordinates,
mean value coordinates [Floater 2003] are particularly popular as
they possess simple closed forms and produce natural-looking in-
terpolations in arbitrary convex or non-convex domains. For this
reason, mean value coordinates have been widely used for applica-
tions ranging from cage-based shape deformation [Ju et al. 2005] to
approximation of PDEs [Farbman et al. 2009].

Oftentimes both values and gradients (i.e., normal derivatives) on
the boundary need to be interpolated. For example, when deform-
ing a shape using a network of cages, enforcing common defor-
mation gradient along shared cage edges is necessary to achieve a
globally smooth warp. In patch-based representation of a vector im-
age, the color at a particular point is often evaluated based on both
colors and gradients on a patch boundary [Sun et al. 2007]. Coor-
dinates for these applications should have the following properties:

1. They should accommodate continuously varying values and
gradients (i.e., at least linear on each edge).

2. They should have a closed-form that allows efficient compu-
tation.

3. The resulting interpolation should be smooth and intuitive.

Several coordinates have been proposed for Hermite interpola-
tion, most notably the biharmonic coordinates [Weber et al. 2012]
and the moving least square coordinates [Manson and Schaefer
2010]. However, neither coordinates possess all the properties
above. While biharmonic coordinates yield shape-aware interpo-
lation (as a biharmonic function), their closed forms only approx-
imate the true solution and are restricted to discontinuous, piece-
wise constant gradients. Moving least square coordinates possess
exact closed forms and accommodate continuous, high-order gra-
dient constraints, but they tend to produce unnatural undulations in
non-convex domains (see Figures 2 and 4).
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We introduce a new type of coordinates for Hermite interpolation
that possess these desirable properties in this paper. Our coordi-
nates are based on the transfinite interpolant introduced by Floater
and Schulz [2008] for Hermite constraints defined continuously
over the boundary. The interpolant is an extension of mean value
interpolation and enjoys similar theoretical properties, such as be-
ing well-defined and smooth over both convex and non-convex
domains. Experiments demonstrate that the interpolant matches
the boundary gradients while exhibiting a naturally varying shape.
Since the interpolant reproduces cubic functions, we shall refer to
it in this paper as the cubic mean value (CMV) interpolant.

We first reveal, in the transfinite setting, a new connection between
mean value interpolant and the CMV interpolant: while the former
is derived from the mean value property of harmonic functions, the
latter can be similarly derived from the mean value property of bi-
harmonic functions. We also prove that, for polygonal boundaries,
the CMV interpolant exactly matches the boundary gradients. We
next present the cubic mean value coordinates, a discrete closed-
form coordinates for evaluating the interpolant over a polygonal
domain. The CMV coordinates allow fast and exact interpolation of
continuously varying values and gradients represented respectively
as cubic and linear functions over each polygon edge.

We introduce two novel applications that showcase the flexibility
and efficiency of CMV coordinates. In the first application, we
perform smooth shape deformation with a network of cages made
up of both straight and curved edges (Figure 1 Left). In the second
application, we propose a variation of the gradient meshes [Lai et al.
2009] for representing vector images that supports irregular patches
and adaptive coarsening (Figure 1 Right).

2 Related works

Coordinates for interpolating values Classical forms of co-
ordinates, such as Wachspress coordinates [Wachspress 1975;
Meyer et al. 2002] and discrete harmonic coordinates (or cotan-
gent weights) [Pinkall and Polthier 1993], are well-defined within
a convex polygon. However, these coordinates are not always de-
fined outside the polygon or in a non-convex polygon. Floater in-
troduced mean value cooridnates [2003], which is well defined ev-
erywhere in the plane given arbitrary polygonal domains [Hormann
and Floater 2006]. These three types of coordinates all have simple
closed forms, and in fact belong to a one-parameter family of co-
ordinates [Floater et al. 2006]. More recently, several coordinates
have been introduced to achieve stronger properties, such as posi-
tivity within a non-convex shape, including harmonic coordinates
[Joshi et al. 2007], maximum entropy coordinates [Hormann and
Sukumar 2008] and positive Gordon-Wixom coordinates [Manson
et al. 2011]. However, they either lack analytical form or require
numerical integrations.

Several coordinates are designed to minimize the angle distortion
during deformation. Green coordinates [Lipman et al. 2008] and
Cauchy coordinates [Weber et al. 2009] produce holomorphic map-
pings, while Hilbert coordinates [Weber and Gotsman 2010] pro-
duce holomorphic mappings with no zero derivatives (i.e., the map-
pings are conformal). Note that these methods lack exact boundary
interpolation. This deficiency is addressed by the MAGIC complex
barycentric coordinates proposed by Weber et al. [2011], which
strictly interpolate boundary values.

Variational approaches seek smooth blendings or propagations by
solving partial differential equations, e.g., higher order Laplacian
weights [Botsch and Kobbelt 2004], heat diffusion weights [Baran
and Popović 2007], bounded biharmonic weights [Jacobson et al.
2011], etc. These methods in general do not have close-form solu-
tions. For an in-depth survey of these variational methods, readers

may refer to [Botsch et al. 2010].

Coordinates for interpolating values and derivatives Langer
and Seidel [2008] gave a method to convert any barycentric coor-
dinates to higher order ones. However, these converted coordinates
interpolate derivatives only at the vertices and lack derivative con-
trol over the rest of the boundary.

Floater and Schulz [2008] introduced a general method to inter-
polate value and derivative constraints defined continuously over
closed boundaries in any dimensions. To interpolate derivatives
up to order k, the method constructs univariate interpolants along
straight rays from the evaluation location v to each boundary point,
and seeks the value at v that minimizes the integral of squared k+1-
st derivative over all rays. It turns out that the method yields mean
value interpolation for k = 0. For k = 1, the authors show that the
minimizer uniquely exists (a.k.a. the CMV interpolant), and can be
expressed in an integral over the boundary.

Dyken and Floater introduced the transfinite Hermite mean value
interpolant [2009], which extends the well-known 1D cubic Her-
mite interpolation to a continuous 2D boundary by replacing the
linear Lagrange component in 1D with mean value interpolation in
2D. However, evaluating the interpolant requires double integration
over the boundary, which makes derivation of closed-form coordi-
nates much more challenging than the cubic mean value interpolant.

Moving least square coordinates [Manson and Schaefer 2010] pro-
vide a powerful framework for interpolating value and derivative
(of any order) constraints on both open and closed polygons. The
value is determined by the best-fitting polynomial in the least square
sense, where the fitting error is weighted by 1 over distance to the
boundary raised to the power of 2α for some user-specified value
α. The coordinates possess exact closed forms for boundary val-
ues and gradients expressed as polynomials on each polygon edge.
The authors observed experimentally that gradient interpolation is
achieved by α ≥ 2, but no proof was given. Moreover, in our ex-
periments we observed that interpolating gradient constraints using
moving least square coordinates with α = 2 (or greater) tend to
exhibit unnatural “ripples” in a non-convex domain (see more dis-
cussion in Section 3.2).

Recently, Weber et al. introduced biharmonic coordinates [Weber
et al. 2012], an extension of harmonic coordinates to approximate
the unique biharmonic function that interpolates Hermite boundary
constraints. Using the boundary element method, the coordinates
are presented as closed forms. However, the closed forms are de-
rived assuming a constant gradient along each edge, which is not
continuous across vertices. In terms of efficiency, evaluation of
the biharmonic coordinates at a point requires O(n2) time for a
polygon with n edges, which can be prohibitive for a finely tes-
sellated curve. In contrast, evaluation of both moving least square
coordinates and our cubic mean value coordinates take O(n) time.
Finally, biharmonic interpolation is only defined in the interior of
the boundary, whereas Hermite mean value interpolation, moving
least square interpolation, and our CMV interpolation are all de-
fined both inside and outside the domain.

3 Transfinite interpolation

We start with a discussion on the transfinite CMV interpolant, in-
troduced by Floater and Schulz [2008], upon which our coordinates
are constructed. We first describe an alternative derivation of the
CMV interpolant that is guided by the same “mean value” principle
from which the original mean value interpolation was derived. We
then discuss the properties of the interpolant and compare it with
other Hermite interpolants.



3.1 Deriving CMV interpolant

Mean value interpolation Consider a closed curve P in R2 with
a parameterization p[t], and a continuous scalar function f [t] de-
fined over P . The problem is to construct a function f̂ [v] for any
v ∈ R2 that interpolates f [t] on P , that is, f̂ [p[t]] = f [t].

Ideally, this function should be as smooth as possible and avoids
any unnatural undulations that are not implied by the boundary con-
straint f . A natural choice of f̂ in the interior of P , ΩP , would
be the harmonic function. The niceness of the harmonic function
arises from its mean value property, which states that the value at
a location v is the average of all those values on the unit circle Cv

centered at v (assuming Cv is contained in ΩP ).

Mean value interpolation is derived by enforcing the mean value
property over an auxiliary function that linearly interpolates be-
tween f̂ [v] and f [t] along straight rays. Specifically, consider the
ray from v to p[t], we use the linear interpolant F [r] (where r is
distance from v) with constraints

F [0] = f̂ [v], F [|u|] = f [t],

where u = p[t]− v. Note that F [1], which is the value on the unit
circleCv, is a linear function of the unknown f̂ [v]. The mean value
property of the union of F along all rays from v can be written as
an integral over Cv

1:

f̂ [v] =
1

2π

∫
t

F [1]dCv. (1)

Re-writing F [1] as a linear function of f̂ [v], the above equality
yields a simple linear equation for f̂ [v], whose unique solution is

f̂ [v] =

∫
t

f [t]

|u| dCv

/∫
t

1

|u|dCv. (2)

Cubic mean value interpolation Now suppose we have an ad-
ditional continuous vector function g[t] on P that serves as the
gradient constraints. The problem is now constructing a function
f̂ [v] that interpolates both f [t] and g[t], that is, f̂ [p[t]] = f [t] and
∇f̂ |p[t] = g[t].

A natural choice of f̂ would be the biharmonic function, which is an
extension of harmonic functions with harmonic Laplacians every-
where. Since a biharmonic function minimizes the Hessian energy,
it is in certain sense the least undulating function under the value
and gradient constraints on the boundary. Like harmonic functions,
biharmonic functions possess a similar mean value property that
relates the value at a point to the weighted average of values in a
circular neighborhood. Specifically, let B be a biharmonic function
over a unit circle centered at the origin, and let F [θ] and G[θ] be re-
spectively the value of B and derivative of B in the outward normal
direction at point {cos θ, sin θ}. The value and gradient of B at the
origin can be expressed as (see proof in Appendix A)

B|origin =
1

4π

∫ 2π

0

(2F [θ]− G[θ])dθ,

∇B|origin =
1

2π

∫ 2π

0

(3F [θ]− G[θ]){cos θ, sin θ}dθ.
(3)

1dCv is the projection of dt on Cv . Their relation is given by [Ju et al.
2005]:

dCv =
p⊥[t] · (p[t]− v)

|p[t]− v|2
dt,

where p⊥[t] is tangent vector at p[t] rotated counterclockwise by π/2. The
sign of dCv captures whether P has folded back when projecting onto Cv .

Following mean value interpolation, we seek an f̂ by enforcing
the mean value property on an auxiliary function that interpolates
between f̂ [v] and the boundary constraints along straight rays.
Specifically, consider the ray from v to p[t], we use the cubic inter-
polant F [r] (where r is distance from v) with Hermite constraints

F [0] = f̂ [v], F [|u|] = f [t],

F ′[0] = ĝ · u

|u| , F ′[|u|] = g[t] · u

|u| .

Here, ĝ is an unknown gradient constraint at v. Note that Floater
and Schulz used the same cubic interpolants in their radial function
[2008]. Now, enforcing the mean value property in Equation 3 over
the union of F along all rays yields

f̂ [v] =
1

4π

∫
t

(2F [1]− F ′[1])dCv,

ĝ =
1

2π

∫
t

(3F [1]− F ′[1])
u

|u|dCv.

(4)

where F [1] and F ′[1] are the value and normal derivative on the
unit circle Cv. Re-writing F [1], F ′[1] as linear functions of f̂ [v],
ĝX and ĝY (the X,Y components of ĝ), the above equalities yield a
simple system of linear equations in these unknowns, whose unique
solution has the form

{f̂ [v], ĝX , ĝY }T = A−1b, (5)

where

A =

∫
t

 6 3uX 3uY
3uX 2u2

X 2uXuY
3uY 2uXuY 2u2

Y

 1

|u|3 dCv,

b =

∫
t

 6f [t]− 3g[t] · u
(3f [t]− g[t] · u)uX
(3f [t]− g[t] · u)uY

 1

|u|3 dCv,

(6)

and uX ,uY are the X, Y components of u = p[t] − v (detailed
derivation is provided in Appendix B). The f̂ [v] in Equation 5 is ex-
actly the CMV interpolant as derived in [Floater and Schulz 2008].

3.2 Properties and comparison

The CMV interpolant has a series of nice theoretical properties
[Floater and Schulz 2008]. First, f̂ is well-defined over the en-
tire plane, regardless of the convexity of P . Second, f̂ interpolates
values f [t] on P . Third, f̂ is C∞ smooth everywhere away from
P . Finally, f̂ reproduces any cubic function.

While experiments support that f̂ matches the gradients g[t] on P ,
a proof was not given in [Floater and Schulz 2008]. As a first step in
filling in this gap, we give (in Appendix C) a proof of this property
for the case when P is a polygon.

Figure 2 compares the behavior of the CMV interpolant with sev-
eral other Hermite interpolants, including the (exact) biharmonic
function (BF), Hermite mean value (HMV) interpolant, and mov-
ing least squares (MLS) interpolant. For MLS, we use quadratic
fitting function and show results with α = 1 and α = 2. We use a
circular and a U-shaped domain, with a constant f and a varying g
over P . Observe that CMV has a natural shape similar to that of BF
and HMV in both curves. MLS with α = 1 produces smooth func-
tions but fails to interpolate the derivative constraints. MLS with
α = 2 interpolates the boundary derivatives but exhibits unnatural
“ripples” in the middle of the non-convex U-curve.



(a) CMV (b) BF (c) HMV (d) MLS (α = 1) (e) MLS (α = 2)

Figure 2: Comparing different transfinite Hermite interpolation methods in a convex (top) and non-convex (bottom) domain.

(a) CMV coordinate ai (b) CMV coordinate b+i (c) CMV coordinate c+i (d) interpolated surfaces

Figure 3: (a,b,c): CMV coordinates at a marked vertex for a convex polygon (top) and a non-convex polygon, plotted using both color and
iso-lines (at j/10 for j = 1, 2, ..., 9 and at±1/100). Regions with negative values are noted by “N”. (d): Surface rendering of interpolation
using CMV coordinates for each polygon given mixed types of gradient constraints (constant on two incident edges of the marked vertex and
linear on other edges).

4 Coordinates for closed polygons

We next consider a polygonal P , where the CMV interpolant guar-
antees to match both values and gradients. We assume f,g are
expressed as piece-wise polynomial functions over edges of P . For
a useful class of polynomials, we will give closed-form formula
for the integrals in A and b, and hence the CMV interpolant, as
weighted sums of f,g and their derivatives at the vertices.

To achieve C1 interpolation, both f and g need to be continuously
defined on the polygon. This requires the use of at least linear func-
tions on each edge. We found that representing f as a cubic func-
tion and the outward normal component of g as a linear function on
each edge offers sufficient flexibility for our applications. To define
these functions, we need 5 scalars at each vertex pi of P :

• fi: the value of f at pi.

• f−i , f
+
i : the derivatives of f at pi respectively along edges

{pi−1,pi} and {pi,pi+1}.

• h−i , h
+
i : the outward normal components of g at pi respec-

tively on edges {pi−1,pi} and {pi,pi+1}.

Note that, when the two edges at pi are not co-linear, the values of
h±i are completely determined by f±i for the gradient to be contin-
uous at pi. However, we still leave them as separate inputs in case
a continuous gradient is not desired or impractical (i.e., at a joint in
a cage network, see next section).

With this setting, the functions f [t] and g[t] along each edge
{pi,pi+1} can be represented as a weighted sum of the constraints
at pi and pi+1, where the weights are polynomials of t (we use arc



(a) Source image (b) CMV coordinates (c) Biharmonic coordinates (d) HMV interpolant (e) MLS coordinates

Figure 4: Deforming a non-convex cage (a) using different Hermite interpolants and coordinates (b,c,d,e).

length parameterization). Substituting these expressions into Equa-
tions 6 and 5 yields the following form of f̂ [v] as a weighted sum
of all input constraints:

f̂ [v] =
∑
i

ai[v]fi +
∑
i,s

bsi [v]fsi +
∑
i,s

csi [v]hsi , (7)

where s ∈ {+,−} and coefficients a, b, c, the CMV coordinates,
are integrals that can be written in closed forms using the geom-
etry of P and v (see Appendix D). Examples of these coordinate
functions are plotted in Figure 3 for a convex polygon (top) and a
non-convex polygon (bottom).

The use of cubic f and linear g allows flexible control over the be-
havior of the interpolant. As an example, the interpolations (using
CMV coordinates) in the last column of Figure 3 are computed un-
der the following setting: f is cubic along each edge, the normal
component of g is constant on the two edges incident to the marked
vertex and linear on all other edges. Let the marked vertex be pj ,
this setting is achieved by computing h−i , h

+
i from f−i , f

+
i for all

vertices i 6= j and assigning h+
j = h−j+1 and h−j = h+

j−1. Observe
that each interpolation, defined over the entire plane, is C1 every-
where on the polygon except at the marked vertex where it is C0

(due to the discontinuity of gradient constraints there).

5 Applications

We show two applications, shape deformation and vector image
representation, that harvest the flexible control over boundary con-
straints allowed by CMV coordinates.

5.1 Shape deformation using curved cage networks

Interactive shape deformation using cages has gained popularity
in recent years. Cage-based deformation can be formulated as
a boundary value interpolation problem: given cage vertices pi
and their deformed locations f [pi], compute the deformed location
f̂ [v] for any point v. The problem can be efficiently solved using
coordinates that interpolate boundary values, such as mean value
coordinates. However, without constraining the gradient of f̂ , the
deformation is only C0 at the cage boundary. As a result, when us-
ing multiple abutting cages (or a cage network) to deform different
portions of the shape, “seams” will become noticeable along shared
cage boundaries (see Figure 5 (b)).

By specifying gradient constraints, we can ensure C1 transition
across shared edges between abutting cages. To do so, for each cage
in the network, we set fi at a cage vertex pi to be the deformed lo-
cation f [pi], and compute f±i so that f is linear along every cage
edge (because the deformed cage edges remain straight). If pi is

(a) input (b) MV (c) CMV

Figure 5: Deforming a cage network using mean value (MV) co-
ordinates (b) and CMV coordinates (c).

incident to only two edges in the cage network (called a degree-2
vertex), h±i are fixed by f±i . Otherwise, h±i are obtained by first
computing the best fitting gradient to the derivative constraints of
f along all incident edges at pi and projecting the gradient to the
outward normal direction of the two edges incident to pi in the cur-
rent cage. The above setting ensures abutting cages use the same
location and gradient constraints along their shared edges and ver-
tices. A deformation that matches these constraints is not only C1

across cage edges, but also C1 at any degree-2 cage vertex or a ver-
tex whose 1-ring neighbors undergo an affine transformation. The
deformation using CMV coordinates is shown in Figure 5 (c).

We now compare the deformation produced by CMV coordinates
with those created by other Hermite interpolants under the same
gradient constraints over the cage boundary. As illustrated in Fig-
ure 4, CMV coordinates achieve qualitatively similar results as bi-
harmonic coordinates and Hermite mean value (HMV) interpolant.
However, the latter two are much more costly to compute. HMV re-
quires numerical integration over the boundary. Since biharmonic
coordinates only work for constant gradients per edge, the cage has
to be finely tessellated to approximate the linearly varying gradi-
ent, effectively turning each evaluation into an integration over the
boundary. Finally, although the moving least squares (MLS) coor-
dinates have comparable efficiency as CMV coordinates, the defor-
mation exhibits unnatural wiggles (e.g., near the top and right ends
of “L”). This echoes our earlier observation on the MLS interpola-
tion function in a non-convex domain (Figure 2).

To further exploit the space of constraints allowed by CMV coor-
dinates, we introduce curved cages. In this scenario, the user has
control not only over the locations of cage vertices but also two
tangent vectors on the ends of each cage edge - similar to free-
form curve design in popular tools like Adobe Illustrator. Since the
two tangent vectors define a cubic Bezier curve, it can be captured
exactly by our cubic model of boundary values (f±i are now deter-
mined from the tangent vectors). Curved cages allow creation of
smooth deformations that precisely conform to user-defined curved



(a) input image (b) intermediate image (c) output image (d) output image (e) output image

Figure 6: Image deformation using a curved cage network: (a) Input image and cage, (b) an intermediate image and a straightened
cage, both computed by the system from the input, (c,d,e) deformed images for three new cages, computed from the intermediate image and
straightened cage. The bottom row replaces the input image with a checkerboard pattern for visualization.

boundaries (see examples in Figure 7), which are not possible with
a linear model of boundary values.

(a) input cage (b) deformed cage

(c) deformed cage (d) deformed cage

Figure 7: Deforming an input straight cage (a) to various curved
cages (b,c,d) whose boundaries are piecewise cubic Bezier curves
(in blue, and handles in orange) using CMV coordinates.

For image editing, we can further allow the use of curved initial
cages, in addition to curved deformed cages. Given an initial image
I and cage (or cage network) C (e.g., Figure 6 (a)), a “straight-
ened” cage C∗ is first constructed that replaces curved edges in C
by straight segments. Then an intermediate image I∗ is computed
so that the color at each pixel v is obtained by I∗[v] = I[f̂ [v]]

where f̂ is the deformation function from C∗ to C computed using

CMV coordinates, as described before (Figure 6 (b)). The deforma-
tion to any newly deformed cage is then computed from the inter-
mediate image I∗ and the straightened cage C∗ (Figure 6 (c,d,e)).
Note that the construction of I∗, C∗ are hidden to the user, which
allows fluid manipulation with free-form curved cages (see further
examples in Figure 1 left and the accompanied video).

5.2 Adaptive gradient mesh

Gradient mesh is a powerful and widely used vector representation
for smoothly changing images. A gradient mesh is a regular grid
of Ferguson patches [Ferguson 1964; Sun et al. 2007] that inter-
polate both color and gradients stored at the nodes of the mesh.
However, this representation does not support adaptive represen-
tation; the grid cannot be locally refined or coarsened to adapt to
the density of image features. Although alternative representations
with more flexible structure have been proposed, such as diffusion
curves [Orzan et al. 2008] and curvilinear patches [Xia et al. 2009],
they do not offer direct control of color gradients.

With the ability to interpolate both values and gradients, CMV co-
ordinates offer a natural extension of gradient meshes to support
irregular patch shapes. Given color and gradient at a vertex of a
multi-sided patch, we set fi to be the color and f±i , h

±
i the com-

ponents of the gradient along corresponding edge directions and
their outward normal directions. Note that the interpolation interior
to the patch using CMV coordinates reproduces only cubic func-
tions (while Ferguson patches are bicubic). However, with a flexi-
ble patch structure that can adapt to image contents, such difference
is usually unnoticeable.

We use a simple greedy algorithm to create an adaptive gradient



(a) initial mesh (b) simplified mesh (c) simplified mesh (d) initial mesh (e) simplified mesh (f) simplified mesh

Figure 8: Two examples of creation of adaptive gradient meshes. For each example, we show the initial (regular) gradient mesh, two
simplified meshes at different thresholds, and the images rendered from each mesh.

mesh from an initial, fine mesh (e.g., created automatically from a
raster image using [Lai et al. 2009]) by iterative node removal. At
each step, our algorithm removes a node in the mesh and merges
all incident patches into a large patch. The “cost” of removal is
measured as the difference between the CMV interpolant in the
merged patch and the original raster image (evaluated at sampled
locations within the patch). The algorithm picks the removal op-
eration with the least cost, and iterates until that cost exceeds a
user-defined threshold. We then apply similar principle to simplify
the boundaries of each patch by removing nodes and merging in-
cident edges. Two examples are shown in Figure 8 (see the ac-
companying video for the simplification process). Note that image
regions with smoother color variations are represented with patches
of larger sizes. Also, the patch boundaries are aligned with major
curvlinear image features.

5.3 Implementation and performance

We have implemented CMV coordinates in C++ on a Windows 7
platform. Using their closed forms, the time complexity for com-
puting the coordinates at each point is O(n) for a polygon with n
edges. In our experiments, computing the CMV coordinates for
1, 000, 000 points within a quadrangle took less than 3.5 seconds
using an Intel Xeon E5620 2.40GHz CPU, which is about 12× the
time taken for computing mean value coordinates (using code pro-
vided by authors of [Ju et al. 2005]).

Like other types of coordinates, computing CMV coordinates for a
large set of points and can be fully parallelized. We used OpenMP
on a 16-core machine for the two application tasks. For cage-based
deformation, computing the coordinates for all 750×1000 pixels of
the intermediate image in Figure 6 (b) took less than 0.5 second, af-
ter which the deformation given new cages takes place in real time.
For gradient mesh simplification, rasterizing a simplified mesh on
a 1000 × 1000 resolution took less than 1 second, and the simpli-
fication process from an initial mesh took less than 0.5 second, for
all examples shown.

6 Conclusion and discussion

We introduced the cubic mean value coordinates for interpolating
Hermite constraints over a 2D polygonal boundary. The coordi-

nates have closed-forms and yield natural interpolations that exactly
match values and gradients expressed as cubic and linear functions
over each edge. The coordinates are built upon a known transfinite
interpolant [Floater and Schulz 2008], for which we give an alterna-
tive derivation. We demonstrate the utility of the coordinates in two
applications, shape deformation and vector image representation.

As in mean value coordinates (and many other coordinates that rely
on Euclidean distances), a boundary constraint may have (often
negative) impact on distant locations when interpolating with CMV
coordinates in a non-convex polygon (see Figure 3 lower-left). On
the other hand, biharmonic coordinates have the advantage of pro-
ducing more “shape-aware” functions, since the impact of a bound-
ary constraint is propagated only through the interior of the domain.

While this paper focuses on 2D domains, the techniques can be ex-
tended to higher dimensions and possibly to matching higher order
derivatives. In particular, [Floater and Schulz 2008] gives a gen-
eral recipe for building transfinite interpolants in any dimensions
matching derivatives of any order. While the cubic mean value in-
terpolant has the same form in higher dimensions, the exact form
of interpolants for higher order derivatives remain unknown. Sim-
ilarly, our mean-value-based derivation of cubic mean value inter-
polant can be conceptually extended to higher order derivatives, us-
ing mean value properties for poly-harmonic functions [Goyal and
Goyal 2012]. Whether the extensions of these two different deriva-
tions would yield equivalent interpolants, and how to construct co-
ordinates of these interpolants over discrete domains in both 2D and
3D, are interesting topics for future investigation.
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A Proof of Equation 3

Proof: Given the boundary constraints F [θ] and G[θ] on the unit
circle, the unique biharmonic solution of this Diriclet problem can
be expressed analytically as follows (refer to [Polyanin 2002]):

B[v] =
(1− r2)2

2π

∫ 2π

0

1− r cos(θ − φ)

(1 + r2 − 2r cos(θ − φ))2
F [θ]dθ

− (1− r2)2

4π

∫ 2π

0

1

1 + r2 − 2r cos(θ − φ)
G[θ]dθ,

(8)

where 0 ≤ r ≤ 1 and 0 ≤ φ < 2π are the polar coordinates of v.

The first equation in Equation 3 can be obtained by substituting the
variable r in Equation 8 with 0.



On the other hand, defferentiating Equation 8, we can get

∂

∂r
B[v] =

−4r

1− r2B[v]

+
(1− r2)2

2π

∫ 2π

0

4(1− r cos(θ − φ))(cos(θ − φ)− r)
(1 + r2 − 2r cos(θ − φ))3

F [θ]dθ

− (1− r2)2

2π

∫ 2π

0

cos(θ − φ)

(1 + r2 − 2r cos(θ − φ))2
F [θ]dθ

− (1− r2)2

2π

∫ 2π

0

cos(θ − φ)− r
(1 + r2 − 2r cos(θ − φ))2

G[θ]dθ.

Substituting r = 0 and φ = 0, π/2 in the above equation, we get

∂

∂x
B|origin =

1

2π

∫ 2π

0

(3F [θ]− G[θ]) cos θdθ

∂

∂y
B|origin =

1

2π

∫ 2π

0

(3F [θ]− G[θ]) sin θdθ,

forming the second equation in Equation 3. �

B Derivation of Equation 5

Using 1D cubic interpolation for F [r], we get

F [1] = f̂ [v] + ĝ · u|u| + β + γ

F ′[1] = ĝ · u|u| + 2β + 3γ,

where

β =
1

|u|2 (3f [t]− g[t] · u− 3f̂ [v]− 2ĝ · u)

γ =
1

|u|3 (−2f [t] + g[t] · u+ 2f̂ [v] + ĝ · u).

Substituting the above F [1], F ′[1] into Equation 4, and note that∫
t
dCv = 2π,

∫
t
u
|u|dCv = 0,

∫
t
uT u
|u|2 dCv = πI2, we can get that∫

t
γdCv = 0, and

∫
t
β u
|u|dCv = 0, yielding Equation 5.

C Interpolation of derivatives

Let P be a planar polygon, and suppose f and g are continuous
functions defined on P . For each boundary point p[t0], we write
Equation 5 as

{ f̂ [v]− f [t0]

|d| , ĝX , ĝY }T =

{− d

|d| · g[t0],g[t0]X ,g[t0]Y }T + A−1
0 b0,

(9)

where d = p[t0]− v, and

A0 =

∫
t

 6|d|2 3|d|uX 3|d|uY
3|d|uX 2u2

X 2uXuY
3|d|uY 2uXuY 2u2

Y

 1

|u|3 dCv,

b0 =

∫
t

(6fr[t]− 3gr[t] · u)|d|
(3fr[t]− gr[t] · u)uX
(3fr[t]− gr[t] · u)uY

 1

|u|3 dCv.

where

fr[t] = f [t]− f [t0]− (u− d) · g[t0],

gr[t] = g[t]− g[t0]

are the residuals of Taylor expansions of f and g at p[t0].

Because f and g are continuous, hence for arbitrary δ > 0, there
exists some ε > 0, s.t.

|fr[t]| < |u− d|δ,
|gr[t]X | < δ, |gr[t]Y | < δ

(10)

for all |p[t]− p[t0]| = |u− d| < ε.

Now assume v converges towards p[t0] from a fixed direction, i.e.,
d
|d| is fixed while |d| → 0. Note that P is a polygon, so the matrix
A0 in Equation 9 can be written in closed-form in terms of P and
v (see Appendix D), which has the following form when |d| → 0:

A0 =
1

|d|A1 + Ar,

where A1 is an invertible matrix that depends on the direction d
|d|

but not related to |d|, and each element of the residual matrix Ar

is o( 1
|d| ). Denote the maximum element of A−1

1 by M (a constant
depends on the direction d

|d| ), then each element of A−1
0 is bounded

by 2M |d|.

On the other hand, we can separate the matrix b0 in Equation 9
into two parts: the first part is the integral over |p[t] − p[t0]| >
ε, denoted by b0,P\ε, while the second part is the integral over
|p[t]− p[t0]| < ε, denoted by b0,ε.

For the first part, since |u| > |u− d| − |d| > ε− ε/2 = ε/2, and
note that both f,g,u are bounded, hence each element of b0,P\ε is
bounded by ε−3 multiplied by some constant (the maximum con-
stant is denoted by C1).

For the second part, using Equation 10, we know that each element
of b0,ε is bounded by δ

|d| multiplied by some constant (the maxi-
mum constant is denoted by C2).

Therefore, each element of A−1
0 b0 = A−1

0 (b0,P\ε + b0,ε) is
bounded by 6M |d|(C1

ε3
+ C2
|d|δ), which is bounded by 6M(C1 +

C2)δ when |d| < ε3δ. This implies that, when v converges towards
p[t0] from an arbitrary fixed direction, the elements of A−1

0 b0 con-
verge to 0. Thus, from Equation 9, we know that

f̂ [v]− f [t0]

|d| → − d

|d| · g[t0],

which means f̂ interpolates boundary derivatives.

D Deriving closed-form expressions of coor-
dinates

Using the cubic boundary value model and the linear boundary nor-
mal derivative model on each edge {pi,pi+1}, f [t] and g[t] can be
written as

f [t] =


fi
f+
i

fi+1

f−i+1


T 1 0 −3 2

0 Li −2 Li
0 0 3 −2
0 0 1 −Li


 1
ti
t2i
t3i

 ,

g[t] =


fi
f+
i

fi+1

f−i+1


T 0 −6/Li 6/Li

1 −4 3
0 6/Li −6/Li
0 2 −3


 1
ti
t2i

 ti

+

[
h+
i

h−i+1

]T [
1 −1
0 1

] [
1
ti

]
ni,



where Li = |pi − pi+1|, ti = |p[t] − pi|/|pi+1 − pi|, ti =
(tiX , tiY ) = (pi+1−pi)/Li, and ni = (niX ,niY ) is the outward
unit normal vector of {pi,pi+1}.

For notational simplicity, we introduce the following integrals:

Zik,m,n =

∫ 1

ti=0

tki
umXunY
|u|3 dCv,

where subscripts k ∈ {0, 1, 2, 3}, m ∈ {0, 1, 2}, n ∈ {0, 1, 2},
m + n ≤ 2, k + m + n ≤ 4. Note that Zik,m,n are constants
depending on the geometry of P and v.

The elements of matrix A can be now written as

A =
∑
i

6Zi0,0,0 3Zi0,1,0 3Zi0,0,1
3Zi0,1,0 2Zi0,2,0 2Zi0,1,1
3Zi0,0,1 2Zi0,1,1 2Zi0,0,2

 ,

and the elements of the vector b can be written as the following
weighted sums of the constraints fi, f±i , h

±
i ,

b =
∑
i

ai,0[v]fi
ai,1[v]fi
ai,2[v]fi

+
∑
i,s

bsi,0[v]fsi + csi,0[v]hsi
bsi,1[v]fsi + csi,1[v]hsi
bsi,2[v]fsi + csi,2[v]hsi

 ,

where the coefficients ai,j , bsi,j , c
s
i,j are:

ai,j = Uj(Zi0,mj ,nj
− 3Zi2,mj ,nj

+ 2Zi3,mj ,nj
)

+ 6VjtiX/Li(Zi2,mj+1,nj
−Zi3,mj+1,nj

)

+ 6VjtiY /Li(Zi2,mj ,nj+1 −Zi3,mj ,nj+1)

+ Uj(3Zi−1
2,mj ,nj

− 2Zi−1
3,mj ,nj

)

− 6Vjti−1X/Li−1(Zi−1
2,mj+1,nj

−Zi−1
3,mj+1,nj

)

− 6Vjti−1Y /Li−1(Zi−1
2,mj ,nj+1 −Z

i−1
3,mj ,nj+1),

b+i,j = Uj(LiZi1,mj ,nj
− 2Zi2,mj ,nj

+ LiZi3,mj ,nj
)

− VjtiX(Zi1,mj+1,nj
− 4Zi2,mj+1,nj

+ 3Zi3,mj+1,nj
)

− VjtiY (Zi1,mj ,nj+1 − 4Zi2,mj ,nj+1 + 3Zi3,mj ,nj+1),

b−i,j = Uj(Zi−1
2,mj ,nj

− Li−1Zi−1
3,mj ,nj

)

− Vjti−1X(2Zi−1
2,mj+1,nj

− 3Zi−1
3,mj+1,nj

)

− Vjti−1Y (2Zi−1
2,mj ,nj+1 − 3Zi−1

3,mj ,nj+1),

c+i,j = VjniX(Zi1,mj+1,nj
−Zi0,mj+1,nj

)

+ VjniY (Zi1,mj ,nj+1 −Zi0,mj ,nj+1),

c−i,j = −Vjni−1XZi−1
1,mj+1,nj

− Vjni−1Y Zi−1
1,mj ,nj+1,

where (m0, n0) = (0, 0), (m1, n1) = (1, 0), (m2, n2) = (0, 1),
and U0 = 6, U1 = U2 = 3, V0 = 3, V1 = V2 = 1.

Finally, the CMV coordinates ai, bsi , c
s
i in Equation 7 have the form

ai = {1, 0, 0}A−1{ai,0, ai,1, ai,2}T

bsi = {1, 0, 0}A−1{bsi,0, bsi,1, bsi,2}T

csi = {1, 0, 0}A−1{bsi,0, csi,1, csi,2}T .

We next give closed-form expressions for integrals Zik,m,n. To do
so, we move to the complex plane and treat each vector as a com-
plex number. Let ui = pi − v, j be the imaginary unit, z = u

|u| ,

µ = j
2

ui
Im(uiui+1)

, and κ = j
2

ui−ui+1

Im(uiui+1)
. We have 1

|u| = κz+ κ 1
z

,

ti = (µz + µ 1
z
)/(κz + κ 1

z
).

Consider the following complex integrals:

Ck,m,n =

∫
zi+1

zi

zm
1

jz
(µz + µ

1

z
)n(κz + κ

1

z
)k−ndz,

where zi = ui
|ui|

, zi+1 =
ui+1

|ui+1|
. The integrals Zik,m,n can be

reduced to Ck,m,n by

Zik,0,0 = C3,0,k
Zik,1,0 = Re[C2,1,k]

Zik,0,1 = Im[C2,1,k]

Zik,1,1 =
1

2
Im[C1,2,k]

Zik,2,0 =
1

2
(C1,0,k + Re[C1,2,k])

Zik,0,2 =
1

2
(C1,0,k − Re[C1,2,k]),

and Ck,m,n have the following closed-form expressions:

C3,0,0 = 2Re[−j(κ3I0 + 3κ2κI1)]

C3,0,1 = 2Re[−j(κ2µI0 + (κ2µ+ 2κκµ)I1)]

C3,0,2 = 2Re[−j(µ2κI0 + (µ2κ+ 2µµκ)I1)]

C3,0,3 = 2Re[−j(µ3I0 + 3µ2µI1)]

C2,1,0 = −j(κ2I0 + 2κκI1 + κ2I2)

C2,1,1 = −j(κµI0 + (κµ+ µκ)I1 + κµI2)

C2,1,2 = −j(µ2I0 + 2µµI1 + µ2I2)

C2,1,3 = −j(µ
3

κ
I0 +

µ3

κ
I2) + (3µ2µ− µ3κ

κ
)H1

+ (3µµ2 − µ3κ

κ
)H0

C1,0,0 = 2Re[−jκI1]

C1,0,1 = 2Re[−jµI1]

C1,0,2 = 2Re[−j µ
2

κ
I1] + 2(µµ− Re[

µ2κ

κ
])H0

C1,2,0 = −j(κI0 + κI1)

C1,2,1 = −j(µI0 + µI1)

C1,2,2 = −j(µ
2

κ
I0 +

µ2

κ
I1) + 2(µµ− Re[

µ2κ

κ
])H1,

where I0 = (z3i+1 − z3i )/3, I1 = zi+1 − zi, I2 = −I1, and
H0 = 1

|κ| (tan
−1( κ

|κ|zi+1)− tan−1( κ
|κ|zi)),H1 = 1

κ
I1 − κ

κ
H0.


