
IEEE TRANSACTIONS ON PATTERN , VOL. XX,NO. XX, XXX. XXXX 1

Salient Object Detection and Segmentation
Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Member, IEEE,

Philip H. S. Torr, Senior Member, IEEE, and Shi-Min Hu, Member, IEEE,

Abstract—Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the
contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a
regional contrast based salient object extraction algorithm, which simultaneously evaluates global contrast differences and spatial
weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-
quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut for high quality
salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well
as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms
existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show
that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based
image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are
ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods,
and additionally provides important target object region information.

Index Terms—Salient object detection, salient object segmentation, visual attention, saliency map, image retrieval.
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1 INTRODUCTION

W E, as humans, are experts at quickly and accu-
rately identifying the most visually noticeable

or familiar foreground object in the scene, known
as salient objects, and adaptively focusing our atten-
tion on such perceived important regions. In con-
trast, computationally identifying such salient object
regions [1], [2], that match the human annotators’
behaviour when they have been asked to pick a
salient object in an image, is very challenging. Being
able to automatically and accurately estimate salient
object regions, however, is highly desirable given the
immediate ability to characterise the spatial support
for feature extraction, isolate the object from poten-
tially confusing background, and preferentially allo-
cate computational resources for subsequent image
processing. While essentially solves a segmentation
problem, salient object detection models segment only
the salient foreground object from the background,
rather than partition an image into regions of coherent
properties as in general segmentation algorithms [2].
Salient object detection models also differ from eye
fixation prediction models which aims at predicting a
few fixation points in an image rather than uniformly
highlighting the entire salient object region [2]. The
value of salient object detection methods lies in their
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Fig. 1. Given input images (top), a global contrast
analysis is used to compute high resolution salien-
cy maps (middle), which can be used to produce
masks (bottom) around regions of interest.

wide applications in many fields: including object-
of-interest image segmentation [3]–[5], object recog-
nition [6]–[9], adaptive compression of images [10],
content-aware image resizing [11]–[14], and image
retrieval [15]–[19].

Although extraction of salient objects in a scene
is related to accurate image segmentation and object
retrieval, interestingly reliable saliency estimation is
often feasible at the image-level without any actu-
al scene understanding. This is feasible since often
saliency, as widely believed, is bottom-up. Such a
hypothesis is favored by an evolutionary incentive
to parallel process large volumes of low-level image
cues, without any computationally expensive global
coupling. Thus saliency originates from visual unique-
ness, unpredictability, rarity, or surprise, and is often
attributed to variations in image attributes like color,
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gradient, edges, and boundaries. Not surprisingly,
visual saliency, being tightly related to our perception
and processing of visual stimuli, is investigated across
many disciplines including cognitive psychology [20],
[21], neurobiology [22], [23], and computer vision [24],
[25]. Based on our observed reaction times and es-
timated signal transmission times along biological
pathways, human attention theories hypothesize that
the human vision system processes only parts of an
image in detail, while leaving others nearly unpro-
cessed. Early work by Treisman and Gelade [26], Koch
and Ullman [27], and subsequent attention theories
proposed by Itti, Wolfe and others, suggest two stages
of visual attention: (i) a fast, pre-attentive, bottom-up,
data driven saliency extraction; and (ii) a slower, task
dependent, top-down, goal driven saliency extraction.

We focus on bottom-up data driven salient object
detection using image contrast (see Fig. 1)1, with the
supposition that a salient object exists in an image [1].
Motivated by the popular belief that human cortical
cells may be hard wired to preferentially respond to
high contrast stimulus in their receptive fields [42],
we propose contrast analysis for extracting high-
resolution, full-field saliency maps based on the fol-
lowing considerations:
• A global contrast based method, which sepa-

rates a large-scale object from its surroundings,
is desirable over local contrast based methods
producing high saliency values at or near object
boundaries. Global considerations enable assign-
ment of comparable saliency values across similar
image regions, and can uniformly highlight entire
objects.

• Saliency of a region primarily depends on the
contrast of the region with respect to its nearby
regions, while contrasts to distant regions are less
significant (see also [43]).

• In man-made photographs, object are often con-
centrated towards the inner regions of the images,
away from image boundaries (see [40] and refer-
ences therein).

• Saliency maps should be fast, accurate, have low
memory footprints, and easy to generate to allow
processing of large image collections, and facili-
tate efficient image classification and retrieval.

We propose a histogram-based contrast method (HC) to
measure saliency. HC-maps assign pixel-wise saliency
values based simply on color separation from all other
image pixels to produce full resolution saliency maps.
We use a histogram-based approach for efficient pro-
cessing, while employing a smoothing procedure to
control quantization artifacts.

As an improvement over HC-maps, we incorporate
spatial relations to produce region-based contrast (RC)
maps where we first segment the input image into
regions, and then assign saliency values to them. The

1. A preliminary version of this work appeared at CVPR [41].

saliency value of a region is then calculated using
a global contrast score, measured by the region’s
contrast and spatial distances to other regions in the
image. Note that this approach better acknowledges
the relation between image segmentation and saliency
determination.

Segmenting regions of interest in still images is of
great practical importance in many computer vision
and computer graphics applications. Researchers have
devoted significant efforts to minimize user interac-
tion during this process. GrabCut [44], which itera-
tively optimizes the energy function and considers
both texture and edge information, has successfully
simplified the user interaction to simply dragging a
rectangle around the desired object. We propose an
improved iterative version of GrabCut and combine
it with our saliency detection method to achieve su-
perior performance compared to state-of-the-art un-
supervised salient object extraction methods.

We build a database with 10,000 pixel-accurate
human-labeled ground truth images (see also
Sec. 6.1.1), which is an order of magnitude bigger
than previous largest public available dataset of
its kind [25]. We have extensively evaluated our
methods on this dataset, and compared our methods
with 15 state-of-the-art saliency methods as well as
with manually created ground truth annotations2.
The experiments show significant improvements over
previous methods both in terms of precision and
recall rates. Overall, compared with HC-maps, RC-
maps produce better precision and recall rates, but at
the cost of increased computational overheard. In our
extensive empirical evaluations, we observe that the
saliency cuts extracted using our saliency maps are,
in most cases, comparable to the manually annotated
ground truths. We also demonstrate applications of
the extracted saliency maps to segmentation and
sketch-based image retrieval.

2 RELATED WORK

Our work belongs to the active research field of
visual attention modeling, for which a comprehensive
discussion is beyond the scope of this paper. We
refer readers to recent survey papers for a detailed
discussion of 65 models [45], as well as quantitative
analysis of different methods in the two major re-
search directions: human fixation prediction [46], [47]
and saliency object detection [2].

We focus on relevant literature targeting pre-
attentive bottom-up saliency region detection, which
are biologically motivated, or purely computational,
or involve both aspects. Such methods utilize low-
level processing to determine the contrast of image re-
gions to their surroundings, and use feature attributes

2. Results for 10,000 images and prototype software are avail-
able at the project webpage: http://cg.cs.tsinghua.edu.cn/people
/∼cmm/saliency2/.

http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency2/
http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency2/
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(a) original (b) IT [24] (c) AIM [28] (d) IM [29] (e) MSS [30] (f) SEG [31] (g) SeR [32] (h) SUN [33] (i) SWD [34]

(j) GB [35] (k) SR [36] (l) AC [37] (m) CA [38] (n) FT [25] (o) LC [39] (p) CB [40] (q) HC (r) RC

Fig. 2. Saliency maps computed by different state-of-the-art methods (b-p), and with our proposed HC (q) and
RC methods (r). Most results highlight edges, or are of low resolution. See also Fig. 9 (and our project webpage).

such as intensity, color, and edges [25]. We broadly
classify the algorithms into local and global schemes.
Note that the classification is not strict as some of the
research efforts can be listed under both categories.

Local contrast based methods investigate the rarity
of image regions with respect to (small) local neigh-
borhoods. Based on the highly influential biological-
ly inspired early representation model introduced by
Koch and Ullman [27], Itti et al. [24] define image
saliency using central-surrounded differences across
multi-scale image features. Ma and Zhang [48] pro-
pose an alternate local contrast analysis for gener-
ating saliency maps, which is then extended using
a fuzzy growth model. Harel et al. [49] propose a
bottom-up visual saliency model to normalize the
feature maps of Itti et al. to highlight conspicuous
parts and permit combination with other importance
maps. The model is simple, biologically plausible,
and easy to parallelize. Liu et al. [1] find multi-scale
contrast by linearly combining contrast in a Gaussian
image pyramid. More recently, Goferman et al. [38]
simultaneously model local low-level clues, global
considerations, visual organization rules, and high-
level features to highlight salient objects along with
their contexts. Such methods using local contrast tend
to produce higher saliency values near edges instead
of uniformly highlighting salient objects (see Fig. 2).
Note that Reinagel et al. [43] observe that humans
tend to focus attention in image regions with high
spatial contrast and local variance in pixel correlation.

Global contrast based methods evaluate saliency of
an image region using its contrast with respect to the
entire image. Zhai and Shah [39] define pixel-level
saliency based on a pixel’s contrast to all other pixels.
However, for efficiency they use only luminance in-
formation, thus ignoring distinctiveness clues in other
channels. Achanta et al. [25] propose a frequency
tuned method that directly defines pixel saliency us-
ing a pixel’s color difference from the average image
color. The elegant approach, however, only considers
first order average color, which can be insufficient
to analyze complex variations common in natural
images. In Figures 9 and 10, we show qualitative

and quantitative weaknesses of such approaches. Fur-
thermore, these methods ignore spatial relationships
across image parts, which can be critical for reliable
and coherent saliency detection (see Sec. 6).

Saliency maps are widely employed for unsuper-
vised object segmentation: Ma and Zhang [48] find
rectangular salient regions by fuzzy region growing
on their saliency maps. Ko and Nam [4] select salient
regions using a support vector machine trained on
image segment features, and then cluster these regions
to extract salient objects. Han et al. [3] model color,
texture, and edge features in a Markov random field
framework to grow salient object regions from seed
values in the saliency maps. More recently, Achanta et
al. [25] average saliency values within image segments
produced by mean-shift segmentation, and then find
salient objects by identifying image segments that
have average saliency above a threshold that is set
to be twice the mean saliency value of the entire
image. We propose a different approach that extends
GrabCut [44] method and automatically initialize it
using our saliency detection methods. Experiments on
our 10, 000 images dataset (see Sec. 6.1.1) demonstrate
the significant advantages of our method compared to
other state-of-the-art methods.

Subsequent to our preliminary results [41], Jiang et
al. [40] propose a comparable method also making
use of region level contrast to model image saliency.
In the segmentation step, their method also expands
and shrinks the initial trimap and iteratively applies
graphcut and histogram appearance model. Since
GrabCut is an iterative process of using graphcut
and GMM appearance mode, the two segmentation
methods share a strong similarity. Compared to the
CB method [40], experimental results show that our
RC salient object region detection and segmentation is
more accurate (Fig. 10(a)(c)), 20× faster (Fig. 7), and
more robust to center-bias (Fig. 10(b)).

3 HISTOGRAM BASED CONTRAST

Our biological vision system is highly sensitive to
contrast in visual signal. Based on this observation,
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Fig. 3. Given an input image (left), we compute its
color histogram (middle). Corresponding histogram bin
colors are shown in the lower bar. The quantized
image (right) uses only 43 histogram bin colors and still
retains sufficient visual quality for saliency detection.

we propose a histogram-based contrast (HC) method
to define saliency values for image pixels using color
statistics of the input image. Specifically, the saliency
of a pixel is defined using its color contrast to all other
pixels in the image, i.e., the saliency value of a pixel
Ik in image I is defined as,

S(Ik) =
∑
∀Ii∈I

D(Ik, Ii), (1)

where D(Ik, Ii) is the color distance metric between
pixels Ik and Ii in the L∗a∗b∗space for perceptual
accuracy. Equ. (1) can be expanded by pixel order to
have the following form,

S(Ik) = D(Ik, I1) +D(Ik, I2) + · · ·+D(Ik, IN ), (2)

where N is the number of pixels in image I . It is
easy to see that pixels with the same color value have
the same saliency value under this definition, since
the measure is oblivious to spatial relations. Hence,
rearranging Equ. (2) such that the terms with the same
color value cj are grouped together, we get saliency
value for each color as,

S(Ik) = S(cl) =
∑n

j=1
fjD(cl, cj), (3)

where cl is the color value of pixel Ik, n is the number
of distinct pixel colors, and fj is the probability of
pixel color cj in image I . Note that in order to prevent
salient region color statistics from being corrupted by
similar colors from other regions, one can develop a
similar scheme using varying window masks. How-
ever, given the strict efficiency requirement, we take
the simple global approach.

3.1 Histogram based speed up
Naively evaluating the saliency value for each im-
age pixel using Equ. (1) takes O(N2) time, which is
computationally too expensive even for medium sized
images. The equivalent representation in Equ. (3),
however, takes O(N) + O(n2) time, implying that
computational efficiency can be improved to O(N) if
O(n2) ≤ O(N). Thus, the key to speed up is to reduce
the number of pixel colors in the image. However, the
true-color space contains 2563 possible colors, which
is typically larger than the number of image pixels.

Zhai and Shah [39] reduce the number of colors,
n, by only using luminance. In this way, n2 = 2562

(typically 2562 � N ). The method, however, ignores
distinctiveness of color information. In this work, we
use the full color space instead of luminance only.
To reduce the number of colors needed to consider,
we first quantize each color channel to have 12 d-
ifferent values, which reduces the number of colors
to 123 = 1728. Considering that color in a natural
image typically covers only a small portion of the
full color space, we further reduce the number of
colors by ignoring less frequently occurring colors. By
choosing more frequently occurring colors and ensur-
ing these colors cover the colors of more than 95%
of the image pixels, we typically are left with around
n = 85 colors (see Sec. 6 for experimental details).
The colors of the remaining pixels, which comprise
fewer than 5% of the image pixels, are replaced by
the closest colors in the histogram. A typical example
of such quantization is shown in Fig. 3. Note that
due to efficiency considerations we select the simple
histogram based quantization instead of optimizing
for an image specific color palette.

3.2 Color space smoothing
Although we can efficiently compute color contrast
by building a compact color histogram using col-
or quantization and choosing more frequent colors,
the quantization itself may introduce artifacts. Some
similar colors may be quantized to different values.
In order to reduce noisy saliency results caused by
such randomness, we use a smoothing procedure to
refine the saliency value for each color. We replace the
saliency value of each color by the weighted average
of the saliency values of similar colors (measured by
L∗a∗b∗distance). This is actually a smoothing process
in the color feature space. We choose m = n/4 nearest
colors to refine the saliency value of color c by,

S′(c) =
1

(m− 1)T

∑m

i=1
(T −D(c, ci))S(ci) (4)

where T =
∑m
i=1D(c, ci) is the sum of distances

between color c and its m nearest neighbors ci, and the
normalization factor comes from

∑m
i=1(T−D(c, ci)) =

(m−1)T. Note that we use a linearly-varying smooth-
ing weight (T − D(c, ci)) to assign larger weights
to colors closer to c in the color feature space. In
our experiments, we found that such linearly-varying
weights are better than Gaussian weights, which fall
off too sharply. Fig. 4 shows the typical effect of color
space smoothing with the corresponding histograms
sorted by decreasing saliency values. Note that similar
histogram bins are closer to each other after such
smoothing, indicating that similar colors have higher
likelihood of being assigned similar saliency values,
thus reducing quantization artifacts (see Fig. 10).

3.3 Implementation details
To quantize the color space into 123 different col-
ors, we uniformly divide each color channel into
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Fig. 4. Saliency of each color, normalized to the
range [0, 1], before (left) and after (right) color space
smoothing. Corresponding saliency maps are shown
in the respective insets.

12 different levels. While the quantization of colors
is performed in the RGB color space, we measure
color differences in the L∗a∗b∗color space given its
perceptual accuracy. We do not, however, perform
quantization directly in the L∗a∗b∗color space since
not all colors in the range L∗ ∈ [0, 100], and a∗, b∗ ∈
[−127, 127] necessarily correspond to real colors. Ex-
perimentally we observed worse quantization artifact-
s using direct L∗a∗b∗color space quantization. Best
results were obtained by quantization in the RGB
space while measuring distance in the L∗a∗b∗color
space, as opposed to performing both quantization
and distance calculation in a single color space, either
RGB or L∗a∗b∗.

4 REGION BASED CONTRAST

Humans pay more attention to image regions with
high contrast to their surroundings [50]. Besides con-
trast, spatial relationships are important in human
attention. High contrast to ones surrounding regions
is usually stronger evidence for saliency of a region
than comparable contrast to far-away regions. Since
directly introducing spatial relationships when com-
puting pixel-level contrast is computationally expen-
sive, we introduce a contrast analysis method, region
contrast (RC), so as to integrate spatial relationships
into region-level contrast computation. In RC, we first
segment the input image into regions, then compute
color contrast at the region level, and finally define
saliency for each region as the weighted sum of the
region’s contrasts to all other regions in the image.
The weights are set according to the spatial distances
with farther regions being assigned smaller weights.

4.1 Region contrast by histogram comparison
We first segment the input image into regions using a
graph-based image segmentation method [51]. Then
we build the color histogram for each region as in
Sec. 3. For a region rk, we compute its saliency value
by measuring its color contrast to all other regions in
the image,

S(rk) =
∑

rk 6=ri
w(ri)Dr(rk, ri), (5)

where w(ri) is the weight of region ri and Dr(·, ·) is
the color distance metric between the two regions. We
weight the distances by the number of pixels in ri as

w(ri) to emphasize color contrast to bigger regions.
The color distance between two regions r1 and r2 is,

Dr(r1, r2) =
∑n1

i=1

∑n2

j=1
f(c1,i)f(c2,j)D(c1,i, c2,j)

(6)
where f(ck,i) is the probability of the i-th color ck,i
among all nk colors in the k-th region rk, k = {1, 2}.
Note that we use the probability of a color in the
probability density function (i.e., normalized color
histogram) of the region as the weight for this color
to further emphasize the color differences between
dominant colors.

Storing and calculating the regular matrix format
histogram for each region is inefficient since each
region typically contains a small number of colors
in the color histogram of the whole image. Instead,
we use a sparse histogram representation for efficient
storage and computation.

4.2 Spatially weighted region contrast

We further incorporate spatial information by intro-
ducing a spatial weighting term in Equ. (5) to increase
the effects of closer regions and decrease the effects
of farther regions. Specifically, for any region rk, the
spatially weighted region contrast based saliency is:

S(rk) = ws(rk)
∑

rk 6=ri
e
Ds(rk,ri)

−σ2s w(ri)Dr(rk, ri) (7)

where Ds(rk, ri) is the spatial distance between re-
gions rk and ri, σs controls the strength of spatial
distance weighting, w(ri) is the weight of region ri
defined by the number of pixels in ri, and ws(rk) is
a spatial prior weighting term similar to center bias
(CB [40]). We use ws(rk) = exp(−9d2k), where dk is the
average distance between pixels in region rk and the
center of the image, with pixel coordinates normalized
to [0, 1]. Thus, ws(rk) gives a high value if region rk
is close to the center of the image and it gives a low
value if the region is a border region away from the
center. For σs, larger values of σs reduce the effect of
spatial weighting so that contrast to farther regions
would contribute more to the saliency of the current
region. The spatial distance between two regions is
defined as the Euclidean distance between their cen-
troids. In our implementation, we use σ2

s = 0.4 with
pixel coordinates normalized to the range [0, 1].

4.3 Further improvement of RC saliency maps

We further refine our RC saliency maps in two steps.
First, we use the spatial prior to explicitly estimate the
non-salient (background) region. Second, we apply
the color space smoothing as described in Sec. 3.2.

We observe that regions with long borders over-
lapping with image borders are typically non-salient
background regions, which we call border regions.
We incorporate them as another spatial prior (ws(·) in
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(a) (b) (c) (d) (e) (f) (g)
Fig. 5. Region based contrast computation: (a) input image, (b) image regions generated by Felzenszwalb
and Huttenlocher’s segmentation method [51], (c) region contrast without distance weighting and spatial prior
(Equ. (5)), (d) region contrast with distance weighting, (e) region contrast further considering spatial prior
(Equ. (7)), (f) region contrast after improvement by border region estimation and color space smoothing, (g) using
our saliencyCut (Sec. 5), we get a high quality cut that is comparable to human labeled ground truth.

Equ. (7)) to detect non-salient regions. In our imple-
mentation, we normalize the number of pixels located
in the 15 pixel-wide image-border area by the region
size, and consider regions with this value higher than
a threshold to be border regions. In practice, this hard
constraint improves both the saliency maps as well
as the convergence speed of SaliencyCut (Sec. 5) by
improving the initial condition. Our border region
estimation aims at high precision, rather than high
recall. A strict fixed threshold, which on average
corresponds to 2% miss alarm rate in our dataset, is
chosen to detect border regions.

In order to uniformly highlight the entire saliency
region of the image, we get the average saliency
of each color in the color histogram and adopt the
color space smoothing (Sec. 3.2) to improve our RC
saliency map. After smoothing, some border region
pixels may get non-zero saliency values. We reset the
saliency of border region to zero and re-estimate the
saliency of each region as the average saliency value
of its corresponding pixels. Since initial RC maps
are typically more uniformly highlighted compared
to HC saliency maps without color space smoothing,
we typically choose smaller number of nearest colors
(m = n/10 in this part). Fig. 5(f) demonstrates such an
example. The jumping man region is more uniformly
highlighted compared to Fig. 5(e).

5 SALIENCYCUT: AUTOMATIC SALIENT RE-
GION EXTRACTION

In a highly influential work, GrabCut [44] made crit-
ical changes to the graphcut formulation to allow
processing of noisy initialization. This enabled users
to roughly annotate (e.g., using a rectangle) a region
of interest, and then use GrabCut to extract a precise
image mask. Using our estimated saliency masks, we
remove even the need for user annotated rectangular
regions. In this section, we introduce SaliencyCut,
which uses the computed saliency map to assist in au-
tomatic salient object segmentation. This immediately
enables automatic analysis of large internet image
repositories. Specifically, we make two enhancements

to GrabCut [44]: “iterative refine” and “adaptive fit-
ting”, which together handle considerably more noisy
initializations. Thanks to the robustness of the new
approach, we are able to automatically initialize the
segmentation according to the detected saliency map.

5.1 Algorithm initialization
Instead of manually selecting a rectangular region to
initialize the process, as in classical GrabCut, we auto-
matically initialize using a segmentation obtained by
binarizing the saliency map using a fixed threshold.
Similar to GrabCut, we use incomplete trimaps for
the initialization. Regions with saliency value below
a certain threshold are labeled as background regions.
Other regions correspond to the unknown part of the
trimap. Note that we do not initialize any hard fore-
ground labeling. These unknown regions are initially
used to train foreground color models thus helps the
algorithm to identify the foreground pixels.

Since the initial background regions are retained
while other regions may be changed during the Grab-
Cut optimization, we give preference to confident
background labels in the trimaps. Thus we initialize
the GrabCut algorithm using threshold given high
recall of potential foreground region and let the iter-
ative optimization process to increase its precision. In
our experiments, the threshold is chosen empirically
to be the threshold that gives 95% recall rate in our
fixed thresholding experiments (see Sec. 6.2). When
initialized using RC saliency maps, this threshold is
70 with saliency values normalized to [0, 255].

5.2 Segmentation by iterative fitting
Once initialized, we iteratively run GrabCut [44] to
improve the saliency cut result (maximum of 4 iter-
ations in our experiments). After each iteration, we
use dilation and erosion operations on the current
segmentation result to get a new trimap for the next
GrabCut iteration. As shown in Fig. 6(c, d), the region
outside the dilated region is set to background, the
region inside the eroded region is set to foreground,
and the remaining areas are set to unknown in the
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(a) (b) (c) (d) (e) (f)

Fig. 6. Demonstration of SaliencyCut: (a) original image, (b) initial segmentation by fixed thresholding the
saliency map, (c) trimap after first iteration, (d) trimap after second iteration, (e) final segmentation, and
(f) manually labeled ground truth. In the segmented images (e), blue is foreground, gray is background, while in
the trimaps (b–d), foreground is red, background is green, and unknown regions are left unchanged.

trimap. GrabCut, which by itself is an iterative process
using Gaussian mixture models and graph-cut [52],
helps to refine salient object regions at each step.

Different from one-pass GrabCut or the even sim-
pler graph cut based saliency segmentation [53], the
new scheme in SaliencyCut iteratively refines the initial
salient regions. Such an iterative design is important
to handle noisy initializations supplied by the saliency
detection algorithm rather than human annotations.
In case of incorrect initialization as shown in flower
example in Fig. 6 (b), the initial background region
incorrectly contains foreground object(s). Although
we can still get a segmentation result containing many
parts of the flower using GrabCut, the remaining
flowers in the initial background region would n-
ever be correctly extracted using GrabCut since the
background gets a hard labeling. One may consider
relaxing the hard constrain of GrabCut to solve this
problem. However, experimental results show this
would make the method not stable, often producing
results containing all foreground or all background.

We iteratively refine the initial segmentation and
adaptively change the initial condition to fit with
newly segmented salient region. The adaptive fitting
is based on an important observation: regions closer
to an initial salient object region are more likely to
be part of that salient object than far-away regions.
Thus, our new initialization enables GrabCut to in-
clude nearby salient regions, and exclude non-salient
regions according to color feature dissimilarity. After
each GrabCut iteration, SaliencyCut incorporates the
constraints given by the newly obtained trimap, and
train a better appearance model according to previous
results.

Fig. 6 shows three examples. In the flower exam-
ple (second row), SaliencyCut successfully expanded

the initial salient regions (obtained directly from the
saliency map) and converged to an accurate seg-
mentation result. In the excavator and teapot exam-
ples, unwanted regions are correctly excluded during
GrabCut iterations. The intermediate steps show how
SaliencyCut successfully extracted the object regions
of interest in these challenging examples. A compre-
hensive quantitative evaluation of different saliency
segmentation methods is presented in Sec. 6.3.

6 EXPERIMENTAL COMPARISONS

In this work, we extensively evaluated our saliency
detection method on three different types of bench-
mark datasets, and compared it against 15 alternate
methods — SR [36], IT [24], IM [29], SUN [33], AC
[37], SeR [32], AIM [28], GB [35], LC [39], CA [38],
FT [25], SWD [34], SEG [31], MSS [30], LP [54] and
CB [40], respectively. Following [25], we selected these
methods according to: number of citations (IT, SR,
SUN, AIM and FT), recency (SeR, MSS, SEG, IM, CA

Fig. 8. Ground truth examples: (first row) original
images with ground truth rectangles from [1], (sec-
ond row) our ground truth, which have more precisely
marked important regions at pixel level accuracy.
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Method IT [24] AIM [28] IM [29] MSS [30] SEG [31] SeR [32] SUN [33] SWD [34] CB [40]
Time (s) 0.246 4.288 0.991 0.106 4.921 1.019 1.116 0.100 5.568
Code Type Matlab Matlab Matlab C++ Matlab Matlab Matlab Matlab Matlab & C
Method GB [35] SR [36] FT [25] AC [37] CA [38] LC [39] HC RC
Time (s) 1.614 0.064 0.102 0.109 53.1 0.018 0.019 0.254
Code Type Matlab Matlab C++ Matlab Matlab C++ C++ C++

Fig. 7. Average time taken to compute a saliency map for images in the THUS10000 database (most have
resolution 400× 300). We use parallel computing environment for all Matlab functions for efficient computation.

and SWD), variety (IT is biologically-motivated, LC
is purely computational, GB and LP are hybrid, SR
works in the frequency domain, AC and FT output
full resolution saliency maps), and being related to
our approach (LC and CB).

The effectiveness of a saliency detection method de-
pends on the applications. We evaluated our method
on several core computer vision and graphics applica-
tions, including: salient region segmentation by fixed
thresholding, object of interest image segmentation,
and sketch based image retrieval.

Fig. 7 compares the average time taken by each
method on a Dual Core 2.6 GHz machine with 2GB
RAM. Our algorithms, HC and RC, are implemented
in C++. For the other methods namely IT, AIM, IM,
MSS, SEG, SeR, SUN, GB, SR, AC, CA, FT and CB,
we used the authors’ implementations, while for LC,
we implemented the algorithm in C++ since we failed
to obtain the authors’ implementation. For typical
natural images, our HC method runs in O(N), which
is sufficient for real-time applications. In contrast, our
RC variant is slower as it requires image segmenta-
tion [51], but produces superior quality saliency maps.

In order to comprehensively evaluate the accuracy
of our methods for salient object segmentation, we
performed two experiments using different objective
comparison measures. In the first experiment, to seg-
ment salient objects and calculate precision and recall
curves, we binarized the saliency map using every
possible fixed threshold (similar to [25]). In the sec-
ond experiment, we segment salient objects by our
SaliencyCut approach (Sec. 5).

6.1 Benchmark datasets for saliency detection

6.1.1 Images with unambiguous salient object
Similar to existing salient object region detection
methods [1], [25], [30], [40], we first evaluate our
methods on images with unambiguous salient object.
The largest dataset of this kind is provided by Liu et
al. [1]. This dataset contains 20,000+ images (mostly at
400× 300 resolution), with bounding box labeling by
3-9 users. Since objects can still be recognized at low
resolution, the dataset has limited scale and location
variations of salient objects, i.e., implicitly the images
have scale and location priors (Flickr like).

Although an invaluable recourse to evaluate salien-
cy detection algorithms, the database with the marked

bounding boxes, however, is often too coarse for fine
grained evaluation as observed by Wang and Li [55],
and Achanta et al. [25]. In order to do more exten-
sive and accurate evaluation, we randomly selected
10,000 images with consistent bounding box labeling
in database provided by Liu et al. [1] and the consis-
tent measure is the same as choosing image dataset
B in their paper. As shown in Fig. 8, we accurately
marked pixels in salient object regions. We call this
dataset THUS10000 because it contains 10,000 images
with pixel-level saliency labeling (publicly available
on our project page). Our dataset is 10 times bigger
than what was previously the largest public available
database of its kind [25] with pixel-level salient region
marking. In our experiments, we find that saliency
detection methods using pixel level contrast (FT, HC,
LC, MSS) don’t scale well on this lager benchmark
(see Fig. 10(a)), suggesting the importance of region
level analysis.

6.1.2 Non-selected internet images
While state-of-the-art methods consistently produce
excellent results when evaluated using the traditional
benchmark dataset [25] (see Fig. 10(c)), ordinary users
often report less satisfactory experiences when using
their own images. This encourage us to think about
two questions: ‘How would these methods deal with
random internet images?’ and ‘When can we trust
the results of these methods?’. To better explore these
issues, we evaluated salient object segmentation meth-
ods on a dataset with non-selected internet images
[56]. This benchmark dataset, namely THUR15000
[56], contains about 3000 images downloaded from
Flickr for each of the 5 keywords: “butterfly”, “coffee
mug”, “dog jump”, “giraffe”, and “plane”. Salient
regions in THUR15000 images are marked at pixel ac-
curacy. Note that not every image in the THUR15000
dataset contains a salient region label, as some images
do not have any salient object region. Besides saliency
detection, this dataset can also be used to evaluate the
performance of sketch based image retrieval (SBIR).

6.1.3 Human fixation dataset
While our algorithm targets salient region detection,
it is also interesting to evaluate its performance on
human fixation prediction benchmarks. We use the
most widely adopted human fixation benchmark [54]
for such evaluation.

http://www.flickr.com/
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(a) original (b) LC (c) CA (d) FT (e) HC-maps (f) RC-maps (g) RCC

Fig. 9. Visual comparison of saliency maps. (a) original images, saliency maps produced using (b) Zhai and
Shah [39], (c) Goferman et al. [38], (d) Achanta et al. [25], (e) our HC and (f) RC methods, and (g) RC-based
saliency cut results. Our methods generate uniformly highlighted salient regions (see our project webpage for all
results on the full benchmark dataset).

6.2 Segmentation by fixed thresholding

The simplest way to get a binary segmentation of
salient objects is to threshold the saliency map with a
threshold Tf ∈ [0, 255]. To reliably compare how well
various saliency detection methods highlight salient
regions in images, we vary the threshold Tf from
0 to 255. Fig. 10(a) shows the resulting precision
vs. recall curves. Typical qualitative comparison of
saliency maps obtained by the various methods are
presented in Fig. 2 and Fig. 9.

Unlike most other methods, both the CB method
and our RC method use the center location prior of
the man-made photographs. However, for a fair com-
parison, Fig. 10(b) shows comparisons while disabling
such a location prior. Specifically, RC1 shows the effect
disabling the center location weighting (Equ. (7)) of
RC method, while RC2 shows the effect of further
disabling border region estimation (Sec. 4.3). Other
methods in Fig. 10(b) also improve when we use
the same segmentation, as used in RC, to average
saliency values within each segment and re-normalize
to [0, 255] by uniform scaling. Note that many of these
methods aim to predict human eye movements rather
than perform salient object segmentation, as is our

focus.
The precision and recall curves clearly show that

our RC method outperforms the other methods. We
observe a significant loss in precision Fig. 10(b) for
the CB method (which has best performance in the
benchmark paper [2]) indicating that the method
heavily relies on location prior. The extremities of the
precision vs. recall curve are interesting: At maximum
recall where Tf = 0, all pixels are retained as positives,
i.e., considered to be foreground, so all the methods
have the same precision and recall values; precision
0.22 and recall 1.0 at this point indicate that, on
average, there are 22% image pixels belonging to the
ground truth salient regions. At the other end, the
minimum recall values of our RC method are higher
than those of the other methods, because the saliency
maps computed by our RC method are smoother
and contain more pixels with the saliency value 255.
Our HC method also has better precision and recal-
l compared to methods with similar computational
efficiency (SR, FT, and LC). After comparison of a
large number of saliency detection models, Borji et
al. [2] proposed a combined model and show that
integration of the few best models (with the initial
version of our method as one of them) outperforms all
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Fig. 10. Statistical comparison results of (a) different saliency region detection methods, (b) their variants,
and (c) object of interest region segmentation methods, using largest public available dataset (i) and (ii) our
THUS10000 dataset (to be made public available). (Please refer to our project webpage for details.)

models. We believe the the combined model of [2] will
naturlly be benefit from performance improvement of
our method.

As also observed in the survey papers [2], [45]–
[47], center-bias naturally exists in human captured
photos. Judd et al. [54] further found that a simple
Gaussian blob performs better than many saliency
detection methods when evaluated in famous eye fix-

ation dataset. We experimentally find that such simple
Gaussian blob, represented by ‘Gau’ in Fig. 10(a)(c),
also performs better than many existing models for
saliency region detection task. However, in the ab-
sence of explicit information, we prefer not to use
such a strong prior that can potentially produce biased
results, e.g., in automated imaging systems. When dis-
abling the center bias term, our method still produces
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Method MSS [30] CA [38] LP [54] Ours
ROC Area 0.683 0.844 0.849 0.830

Fig. 11. Comparison on human fixation dataset [54].

Fig. 12. From left to right, we show source image,
ground truth eye fixation map by human observer,
our RC result with the term encouraging similar ap-
pearance region receive similar saliency (Sec. 4.3)
disabled, and result by our full RC method.

better results than other alternatives Fig. 10(b).
In the context of human fixation prediction, the

CA [38] and LP [54] methods report the best per-
formance. Although it avoids the heavy learning for
combining multi-saliency models and object detec-
tors, the CA [38] method still needs about 1 min
to calculate a saliency map even for small images.
Fig. 11 and Fig. 7 shows that our method, although
initially designed for saliency region detection, has
only slightly lower performance to state-of-the-art
methods for predicting human fixation points, while
being 200+ times more efficient. Readers can refer to
[38], [47], [54] for more comparisons. Notice that the
good performance of our RC method for predicting
eye fixation points shown in Fig. 11 is achieved by
disabling the term encouraging similar appearance
region receive similar saliency value, thus improves
human fixation point prediction as demonstrated in
Fig. 12. Although disabling the process explained in
Sec. 4.3 improves eye fixation prediction performance,
we argue that uniformly highlighting the entire ob-
ject region is better in many applications, including
content aware image resizing [14], non-photorealist
rendering [41], adaptive image compression [10], and
image mosaic [38]. Thus, although their own method
[38] achieves best performance on eye fixation dataset
[54], Margolin et al. [57] still choose to integrate our
RC saliency maps to achieve better effects for various
of image manipulation applications.

6.3 Object of interest image segmentation

To objectively evaluate our new saliency cut method
using our RC-map as initialization, we compare our
results with results obtained by other state-of-the-art

Method FT [25] SEG [31] CB [40] Ours
Time (s) 0.247 7.48 36.5 0.621
Code Matlab Matlab & C Matlab & C C++

Fig. 13. Comparison of average time taken for different
saliency segmentation methods. Segmentation result-
s for THUS10000 benchmark dataset using different
methods are shared in our project page.

FT SEG Ours

0

0.2

0.4

0.6

0.8

1

Butterfly CoffeeMug DogJump Giraffe Plane
Fig. 14. Comparison of average Fβ for different salien-
cy segmentation methods: FT [25], SEG [31], and ours,
on THUR15000 dataset [56].

methods for object of interest segmentation, i.e., FT
[25], SEG [31], GrabCut [44] (initialized using 5 pixel
wide image boundary), and CB [40] (best parameters
are selected for these methods). Average precision,
recall, and F -Measure are compared against the en-
tire ground-truth database [25], with the F -Measure
defined as:

Fβ =
(1 + β2)Precision×Recall
β2 × Precision+Recall

. (8)

We use β2 = 0.3 as in Achanta et al. [25] to weigh
precision more than recall. As can be seen from the
comparison (see Fig. 10(c)), saliency cut using our RC
saliency maps significantly outperforms other meth-
ods. As discussed by Liu et al. [1], recall rate is not
as important as precision for attention detection. For
example, a 100% recall rate can be achieved by simply
selecting the whole image. Our approach reduced
57.2%, 50.9%, 46.5%, and 23.7% overall error rates on
F-measure, compared with FT [25], SEG [31], GrabCut
[44], and CB [40], respectively when evaluated using
large accurate dataset (THUS10000). Besides produc-
ing higher F-Measure and robustness to location prior,
SaliencyCut (demo software available on project web-
page) is about 60 times faster (see Fig. 13) compared
to CB [40].,

Although producing quite promising results for
simple images as evaluated in Fig. 10, evaluation
results for non-selected internet images Fig. 14 shows
that there is still a need to develop more robust meth-
ods. For both datasets, our saliency cut’s performance
is the best. We believe that such high performance in
predicting the entire salient object region can bene-
fit object recognition [7], classification [6], and auto-
cropping [57].

6.4 Sketch based image retrieval

Outline sketches are typically easier and faster for
users to generate than a complete color description
of the desired image. Sketch based image retrieval
(SBIR) techniques become vital for users to leverage
the increasing volumes of available image database.
A large majority of potential users fail to precisely
express fine details in their drawings. Thus most SBIR
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Fig. 15. Sketch based image comparison: first row shows images download from Flickr using keyword ‘giraffe’,
second row shows our retrieval results obtained by comparing user input sketch with SaliencyCut result using
shape context measure [58]; third row shows corresponding sketch based retrieval results using SHoG [59]. (see
our project page for more examples.)

TPR (%) Butterfly Coffee mug Dog jump Giraffe Plane Average
T50 T100 T50 T100 T50 T100 T50 T100 T50 T100 T50 T100

Flickr 28 28 58 51 56 55 30 25 44 48 41.4 43.2
Ours 58 52 88 93 86 90 72 66 88 90 78.2 78.4

SHoG [59] 36 40 82 78 74 73 18 18 90 91 60.0 60.0

Fig. 16. True positive ratios (TPR) among top 50 and 100 retrieval results. Results for SHOG are supplied by
original authors. An image is considered as true positive if it contains a target object specified by the keywords.

systems, which employ global descriptors, are unsat-
isfactory as they are unreliable under affine variations.
To overcome such drawbacks, Eitz et al. [59], [60] use
local descriptors to achieve state-of-the-art retrieval
performance. The success of their methods is mainly
attributed to translation invariance of local descriptors
while using large local feature size (in the order of
20− 25% of the image’s diagonal) to still retain large
scale characteristics. However, for such large window
sizes, there is simply not much space left for translat-
ing the sketch, thus limiting the translation invariance.
SBIR still suffers from relatively low accuracy thus
restricting its commercial potential.

Matching object shapes with clean background,
however, is a relatively mature field. Even for the very
challenging MPEG-7 dataset, state-of-the-art method-
s can achieve 91.61% retrieval rates [61]. Classical
shape methods such as Shape Contexts (SC) [58]
and Chamfer Matching [62] are mostly successful
when dealing with limited background clutter. Se-
lecting clean object outlines without influence from
irrelevant image edges has great potential to improve
current SBIR systems. Based on the observation that
good results cannot be achieved without selection of
segments, Bai et al. [63] use a shape band model
to coarsely select candidate of edge segments while
using Shape Context distance to decide the optimal
matching. However, the shape band model requires
user sketch for further detection thus does not allow
preprocessing. It needs a few minutes to process a
single image making it unsuited for real-time image
retrieval applications.

Our SaliencyCut algorithm provides another possi-
bility for automatically finding the outlines of object
of interest on large scale image datasets. After such
preprocessing, it becomes possible to make use of

proven shape matching algorithms. We simply rank
the images by SC [58] distance between their salient
region outlines and user input sketches and compare
with a state-of-the-art SBIR method using SHoG [59].

Experiments indicate that although our SaliencyCut
method may produce less optimal results for noisy
internet images, the shape matching method is very
efficient in selecting those well segmented results.
A quantitative evaluation in our THUR15000 dataset
is shown in Fig. 16. One can see that our retrieval
method is more effective than SHoG in terms of
selecting user-desired candidates. Sample qualitative
results are shown in Fig. 15. Compared with SHoG,
our method gives results that are more relevant to
user input sketches. Moreover, our method produces
the precise boundary of the desired object, which
makes it possible to reuse these segmented image
components in many applications, e.g., image com-
position [15], [16], semantic colonization [17], and
information extraction [18]. Note that the extracted
salient region features are complementary to other
features like color, texture, and local edges.

Such SBIR methods also demonstrate an impor-
tant technique for robustly integrating saliency de-
tection in real-world applications. Although saliency
detection methods cannot grantee robust performance
on individual images, their efficiency and simplicity
makes it possible to automatically process a large
number of images, which can be subsequently filtered
for reliability and accuracy [15]–[18].

7 CONCLUSIONS AND FUTURE WORK

We presented global contrast based saliency computa-
tion methods, namely Histogram based Contrast (HC)
and spatial information-enhanced Region based Con-
trast (RC). While the HC method is fast and generates

http://www.flickr.com/
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results with fine details, the RC method generates
spatially coherent high quality saliency maps at the
cost of reduced computational efficiency. We evalu-
ated our methods on the largest publicly available
dataset and compared our scheme with many other
state-of-the-art methods consistently demonstrating
that the proposed schemes is superior both in terms
of precision and recall, while still being simple and
efficient.

In the future, we plan to investigate efficient algo-
rithms that incorporate spatial relationships in salien-
cy computation while preserving fine details in the re-
sulting saliency maps. Also, it is desirable to develop
saliency detection algorithms to handle cluttered and
textured background, which could introduce artifacts
to our global histogram based approach. Finally, it
may be beneficial to incorporate high level factors
like human faces, and symmetry into saliency maps.
We believe the proposed saliency maps can be further
used for efficient object detection [64], reliable image
classification, robust image scene analysis [65], lead-
ing to improved image retrieval [66], [67].
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