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Figure 1: Patchwise scaling for image retargeting. The first row: examples of retargeting the BOAT image in RetargetMe benchmark to half
size using six methods. The second row: Retargeting the TAJMAHAL image with the fixed-image-width constraint.

Abstract

Content-aware image retargeting methods have recently received
increasing attentions. In this paper we improve a patchwise
scaling method for image retargeting at an object level. The
improvements include a simple yet effective patch partitioning
scheme and an optimal scaling factor assignment algorithm. The
improved patchwise scaling method first takes the overall image
structure into consideration by partitioning the image into rectangle
patches of adaptive sizes, which are comparable to the sizes of
salient objects in the image. This partitioning is based on a visual
saliency map and accordingly the partitioned patches are labeled
important and non-important. Then an optimal patchwise scaling
method is applied that scales the important patches as uniform
as possible and stretches/squeezes the non-important patches to
fit the target size. To find an optimal set of scaling factors, a
patch-based image similarity measure is proposed to guide the
optimization process. Experimental results show that the improved
patchwise scaling method has a good performance in image types
of lines/edges, foreground objects and geometric structures.
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1 Introduction

Image retargeting methods adjust images into arbitrary sizes such
that they can be viewed on different displaying devices. Recently,
by preserving visually salient regions in images, content-aware
image retargeting has received considerable attentions. Broadly
the image retargeting methods can be classified from a viewpoint
of image structure. Based on the structure scales that different
retargeting operators work on, the retargeting methods can be
classified into three levels: (1) pixel level, (2) groups of pixels in
fine granularity level (akin to the concept of superpixels in image
segmentation) and (3) groups of pixels in coarse granularity level
(akin to the patches used in texture synthesis and completion).

The pixel-level retargeting methods are typified by the seam carving
algorithms [Avidan and Shamir 2007] which greedily remove or
insert seams passing through less important regions, where a seam
is a path of 8-connected pixels forming a column or a row in an
image. The fine-granularity-level methods are typified by the image
warping methods [Wang et al. 2008], which impose a dense mesh
structure in an image with fixed resolution of mesh faces. Usually
a dense quadrangular or triangular mesh is used and each quad/tri
face contains few to tens of pixels. The coarse-granularity-level
methods are typified by the patch-based methods (e.g., [Barnes
et al. 2009]) which have been widely used in structural image
analysis and editing including retargeting. Compared to the quad/tri
faces in a warping mesh, the patches used in patch-based sampling
methods are much sparse and usually contain tens to hundreds of
pixels.

Psychological research shows that people perceives an object as
a whole from its components and for retargeting images, humans
usually observe global structure changes before comparing subtle
changes pixel by pixel. For images, the global structure is best
characterized by salient objects and their relative positions. In
this paper, we improve a patchwise scaling method [Liang et al.
2012] that works at a scale even larger than the coarse-granularity
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Figure 2: Overview of the proposed patchwise scaling method: Retargeting an image from 800 × 440 (a) to 520 × 440 (d), using the
importance-map-driven object-level patchwise scaling method.

level; i.e., the patches used in this method are adaptive to the
number of salient objects in an image. Compared to the previously
patch-based methods that uses fixed resolutions (e.g., the patches in
[Barnes et al. 2009] have a fixed window size such as 14× 14), our
important patches correspond to salient objects in the image and
have adaptive sizes. For an example, the patches of three buildings
in the bottom row of Figure 1 contains various pixel sizes from
hundreds to thousands to describe the objects. We improve the
patchwise image retargeting method [Liang et al. 2012] from three
significant aspects:

• There are not deterministic patch partitioning rules in [Liang
et al. 2012], leading to a somewhat random patch partition. In
this paper we propose a simple yet effective patch partitioning
scheme and show that the patchwise retargeting method can
be formulated in an elegant optimization framework.

• The SSIM metric [Wang et al. 2004] and global line features
across multiple patches are considered in an improved patch-
wise image similarity measure to guide the search for finding
optimal scaling factors.

• The weighting of three components in the proposed dis-
tance measure is evaluated by the RetargetMe benchmark
[Rubinstein et al. 2010] and the objective image retargeting
assessment method [Liu et al. 2011].

2 An optimization framework for patchwise
image retargeting

We formulate the image retargeting problem as an optimal patch-
wise scaling factor assignment problem. Figure 2 presents an
overview of our method. First we compute a binarized important
map (Figure 2b) of the original image by combining an edge
detector and a saliency map. Then we identify the important
objects in the image by its importance map and bound the important
objects using axis-aligned bounding boxes. We extend the edges of
bounding boxes to form a partitioning of the whole image (Figure
2c). Given the partitioning, we regard the original image consists
of important and non-important patches. Now given the target size,
the retargeting problem becomes assigning optimal scaling factors
to each patch in the original image (Figure 2d).

Compared to previous image warping and patch-based sampling
methods, the patches used in our method are much larger and work
at the object level. One more advantage of object-level editing is
that the user has an intuitive interaction with each important object
in the image (the bottom row in Figure 1). There are three key
components in the patchwise image retargeting method:

• (Section 2.1) A deterministic patch partitioning scheme at the
object level based on an importance map;

• (Section 2.2) An optimal scaling factor assignment method;
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 Figure 3: The comparison of importance map in Wang et al. [2008]
that uses multiplication of edge map and saliency map to ours using
addition.

• (Section 3) A patch-based image similarity measure for the
optimal scaling factor assignment.

2.1 Patch partition based on an importance map

Given an input image, we want to identify the important objects in
it and use them to divide the image into patches for later scaling.
The meaning of important object is based on visual perception, and
in this paper, is defined as a visually conspicuous, continuous and
homogenous image component that attracts human attention.

We use a combination of an edge detector (a low level feature) and
a saliency map (a high level feature) to define an importance map.
Edge operators have been used in [Avidan and Shamir 2007] to
compute the importance of image pixels. Image edges or gradients
can give some hints of important objects; however, they only work
at pixel level and very weak to identify continuous saliency regions.
In our work, we use the Sobel operator to define an edge map
IE that identifies important pixels associated with the contour of
important objects (Figure 3e). We also use a saliency map IS in
[Harel et al. 2006] (Figure 3d), which has a better accuracy in a
ROC metric of a human-based control to highlight conspicuity and
predict human fixations in images. We define an importance map
as M = αIE + (1 − α)IS , where α is the weight balancing the
contributions of contours and conspicuity of important objects. We
use α = 0.5 in our experiments.



 

 

 

   

   

 

 

 

 

 

 

 

Figure 4: Patch partition based on the importance map. Top left:
the original image; Top middle: edge map; Top right: saliency
map; Bottom left: importance map; Bottom middle: binarized
importance map; Bottom right: patch partition using yellow lines.

Similar to our work, Wang et al. [2008] also used a combination
of edge map and saliency map to determine pixel importance.
However, they multiplied the edge and saliency maps while ours
use addition. In our experiment, we find that multiplication offers a
bias to edge map and cannot identify important objects with small
gradients and large conspicuity (Figure 3f), while addition achieves
a better balance towards important object identification (Figure 3g).
One retargeting example using Wang’s multiplication map is shown
in Figure 3b: in this retargeting image, since the interior of flower
area are tagged less important, the fine mesh faces covered these
areas are distorted without keeping as rigid as possible. As a
comparison, the whole flower area is tagged important and is kept
as rigid as possible in our method using additive map.

To divide an image into patches according to the important objects,
we binarize the importance map using a fixed threshold. Let V
be the set of all pixels of value 1 in the binarized image. The
four connectivity E in image structure forms a graph G = (V,E).
Linear time is sufficient to determine the connected components in
G. Denote the connected components by (C1, C2, · · · , Cm) sorted
by the vertex number in each component in a descending order. We
find k important components by satisfying (

∑k
i=1 #Ci)/#G >

60%, where #Ci (#G) is the vertex number in a (sub)graph Ci

(G). The connectivity measure in G emphasizes continuity in
important object detection.

For each pixel p(x, y) in the binarized importance map, denote its
L∗a∗b∗ color value at the original image by L∗a∗b∗(x, y). For
each important component C, we define a homogeneity measure
of C as the variance v(C) of a random variable X of color
distances, where X = {∥L∗a∗b∗(xi, yi) − L∗a∗b∗(xj , yj)∥2,
i ̸= j, pi(xi, yi) ∈ V (C), pj(xj , yj) ∈ V (C)} and V (C) is
the vertex set of C. Given an importance map with values ranged
in [0, 255], we evaluate every possible threshold t in [0, 255] by the
following measure of important components:

m(t) =

∑k(t)
i=1 #Ci

noriginal
− λ

∑k(t)
i=1 vi(C)

k(t)

where the number k(t) of important components is a function of
t, norignal is the total number of pixels in original image, and we
choose the weight λ = 0.1 in our experiment. We determine an
optimal threshold t′ which maximizes the measure m(t).

Figure 4 illustrates an example that uses the importance map to
determine important components in the image. For each important
component, we identify its boundary points as the topmost, bot-
tommost, leftmost and rightmost points (the green points in Figure
4). Since image retargeting is along the width (x axis) and height
(y axis) directions, we build axis-aligned bounding box of each
important component and extend the boundary edges of bounding
boxes until they meet another boundary edges or image boundary.

Figure 5: Patch partitioning rules for image retargeting along
width direction. Red line: the edge of bounding box of an important
object; Blue line: the extended line of one red line; Black line: the
image boundary.

To reduce the shearing effect, we follow the step in [Rubinstein
et al. 2009] that the image is retargeted to fit target width first and fit
target height secondly. Without loss of generality, in the following
we present the method that retargets images using different widths.
Retargeting images with different heights is treated by rotating the
image with angle π/2.

We now specify the patch partitioning rules. Let each important
object be bounded by an axis-aligned bounding box (red lines in
Figure 5). For each boundary line, we extend it using the following
rules:

• If the boundary line is parallel to y-axis, we extend it to touch
the image boundary (black lines in Figure 5).

• If the boundary line is parallel to x-axis, we extend it to touch
either other boundary edge (including its extended line) or the
image boundary.

The boundary lines and their extensions partition the image into
patches. We regard the patches between any two y-parallel parti-
tioning lines in tandem as a patch column. The above partitioning
rules make sure that each patch column crosses through the whole
image. Note that there may be some T-joins in patch rows. Since
we consider image retargeting along x-axis, we assign one unique
scaling factor to each patch column to reduce the shearing effect.

2.2 Optimal patch scaling factor assignment

Given an n × m image to be retargeted to size of n × m′, denote
its r patch columns by {C1, C2, · · · , Cr}. Let the width of Ci be
wi. We need to assign a scaling factor Si to each patch column Ci,
such that the following constraints are satisfied:

r∑
i=1

wiSi = m′, Si ≥ 0 (1)

All possible values of scaling factors {S1, S2, · · · , Sr} form a
polyhedra P in Rr . Ideally, for each patch column containing
important objects, its scaling factor should be as close to 1 as
possible and the width change in the retargeting image should
be compensated by scaling patch columns which do not contain
any important object. On the other hand, the scaling factors of
adjacent patch columns should be also as close as possible to
reduce the distortion along the patch boundaries. Thus there is a
tradeoff between scaling factors of important and unimportant patch
columns. To find an optimal set of scaling factors, for each point
x ∈ P, we assign a function value f(x) which is determined as
follows. A retargeting image I(x) can be uniquely determined by
x. In Section 3, we propose a measure D which evaluates the image
similarity between I(x) and the original image Iori. We define
f(x) = D(Iori, I(x)). To maximize the function f , generally we
can apply two types of methods:



• Only need evaluations of the function f . In this case, the
classic methods such as dowhill simplex and direction set in
multidimensions can be applied. These methods are sensitive
to the starting points and may easily converge to a local
extrema. Usually widely varying starting points are tried and
the method is applied for each starting point to capture the
global extrema.

• Need evaluations of both the function f and the derivatives
of the function. In this case, the classic methods such as
conjugate gradient and BFGS in multidimensions can be
applied. The additional information of derivatives usually
makes these methods converge much faster.

In our approach, we choose the second type. We sample the
polyhedra P and use a RBF interpolating function f̃ to approximate
f . The advantages of this approach include:

• Give the small set of uniform sampling in the polyhedra P
as the starting values, our approach converges to the global
extrema with high possibility.

• With the aid of derivative information, our approach con-
verges fast.

Let smax = max{m′/wi, i = 1, 2, · · · , r}. We use sampling
density smax/10 to uniform sample the subspace P. For each
sample point s, we find function value f(s) = D(Iori, I(s)) and
build a RBF interpolating function

f̃(x) =

n∑
i=1

uiΦ(x− si) (2)

where x ∈ P and n is the number of sample points. We choose the
Gaussian radial basis function Φ(r) = e−(εr)2 due to its positive
definite property. The coefficients ui in Eq. 2 are determined by
solving the following linear system that satisfies the interpolating
constraints:

f(sj) =

n∑
i=1

uiΦ(sj − si), ∀si ∈ S

where S is the set of all samples in P. It leads to a simple
matrix form Qn×nu = f , where Qij = Φ(sj − si), u =
(u1, u2, · · · , un)

T and f = (f(s1), f(s2), · · · , f(sn))T . Since
Qn×n is positive definite, u can be efficiently solved by the
Cholesky decomposition. Finally, we use the BFGS algorithm in
multidimensions to find the maximization of the function f̃ over
subspace P, which gives us the optimal set of scaling factors.

3 Patch-based image similarity measure

A measure D is needed in Section 2.2 to evaluate the similarity be-
tween the original image Iori and a retargeting image Iret. For our
patchwise scaling method, we make use of special characteristics
in patchwise structure to define such a measure as follows:

D(Iori, Iret) = αDLocal(Iori, Iret)+
βDPatchbndry(Iori, Iret) + γDLine(Iori, Iret)

(3)

where 0 < α, β, γ < 1 and α+β+γ = 1. The patch partition gives
an overall image structure. If a patch contains an important object,
we call it important patch; otherwise it is called non-important
patch. All patches can be classified into important patches IP and
non-important patches NP . Let a patch p in Iori be scaled into p′

in Iret. The measure in Eq. 3 consists of three parts:

• DLocal (Section 3.1): The natural correspondence p to p′

reduces the search space of pixel correspondence and we use
a local SSIM similarity DLocal to measure the patch-to-patch
similarity.

• DPatchbndry (Section 3.2): Let p1, p2 be two adjacent patch-
es. DPatchbndry measures the similarity from the neigh-
borhood of common boundary between p1, p2 in Iori to the
neighborhood of common boundary between p′1, p

′
2 in Iret.

• DLine (Section 3.3): Human vision system is sensitive to
salient lines and their perspective relations. DLine is used
to measure the abrupt changes in salient lines.

3.1 Patch-based bidirectional similarity DLocal

Inspired by the similarity measures of BSM [Simakov et al. 2008],
BDW [Rubinstein et al. 2009] and BIED [Dong et al. 2009], we
define a local bidirectional similarity DLocal as follows. Denote
(p, p′), p ∈ Iori, p

′ ∈ Iret be a patch correspondence and k-
window1 be a square portion of k × k pixels in a patch. We use
SSIM metric [Wang et al. 2004] to measure the similarity of two
k-windows w ∈ p and w′ ∈ p′:

SSIM(s(w), s(w′)) =
(2µs(w)µs(w′)+0.01)(2σs(w)s(w′)+0.01)

(µ2
x+µ2

y+0.01)(σ2
x+σ2

y+0.01)

(4)

where s(w) is a scalar quantity of pixels in w, µs(w) and σs(w)

is the mean and standard deviation of scalar quantities in w,
σs(w)s(w′) is the correlation coefficient between s(w) and s(w′).
We measure the similarity between w and w′ in CIE L∗a∗b∗ color
space by

SSIM(w,w′) = SSIM(L∗(w), L∗(w′))+
SSIM(a∗(w), a∗(w′)) + SSIM(b∗(w), b∗(w′))

(5)

Given a patch correspondence (p, p′), we define the local bidirec-
tional similarity as

DLocal(p, p
′) = 1

nw

∑
w⊂p minw′⊂p′ SSIM(w,w′)+

1
nw′

∑
w′⊂p′ minw⊂p SSIM(w′, w)

(6)

where nw, nw′ are the total numbers of k-windows in p, p′,
respectively. Finally, given the patch classification IP and NP ,
the patch-based image similarity of Iori, Iret is defined by

DLocal(Iori, Iret) = wI

∑
p∈IP DLocal(p, p

′)+
wN

∑
p∈NP Dlocal(p, p

′)
(7)

In our experiments, we use wI = 0.8 for important patches and
wN = 0.2 for non-important patches, and k = 7 for k-window.
Compared to the global bidirectional similarity measure, the patch
correspondence in our method offers a structural information and
the local bidirectional measure DLocal can better assess the image
quality.

3.2 Patch boundary similarity DPatchbndry

Different scaling factors can be assigned to patch columns and
image distortions are introduced around the shared boundaries of
two adjacent patch columns. To measure this kind of distortions,
we define a patch boundary similarity DPatchbndry as follows.

1In some previous work, the term k-patch is used to define a k × k
pixel portion. In this paper, to make a clear distinction with the object-level
patches, we use the term window.



Figure 6: Patch boundary similarity DPatchbndry across patches.
Left image is the original image with a 5k-cross-window CW
shown in blue. Right image is the retargeting image and the
retargeting 5k-cross-window CW ′ is also shown in blue.

Let li be a y-axis-parallel boundary line between two patch columns
Ci and Ci+1. We define a 5k-cross-window CW whose height
equals to the image height, width equals to 5k and whose centerline
coincides with li (Figure 6 left). Assume that Ci and Ci+1 are
scaled by Si and Si+1 in a retargeting image. Then the window
CW is retargeted into a window CW ′ with width 2.5kSi +
2.5kSi+1 (Figure 6 right). We define the patch boundary similarity
around li between Ci and Ci+1 as

DPatchbndry(Ci, Ci+1) =
1

nw

∑
w⊂CW minw′⊂CW ′ SSIM(w,w′)+

1
nw′

∑
w′⊂CW ′ minw⊂CW SSIM(w′, w)

(8)

where nw, nw′ are the total numbers of k-windows in CW , CW ′,
respectively. For an image with patch columns {C1, C2, · · · , Cr},
the patch boundary similarity DPatchbndry is defined by

DPatchbndry(Iori, Iret) =

r−1∑
i=1

DPatchbndry(Ci, Ci+1) (9)

3.3 Salient line similarity DLine

Since straight lines are special smooth curves of infinite curvature
radii and their inter-relations give the perspective information of an
image, human vision system is very sensitive to the abrupt changes
in straight lines. To measure this kind of distortion that widely
exists in man-made buildings and road images, we define a salient
line similarity DLine as follows.

Given an original image Iori to be retargeted, we apply the
Hough transform to detect line segments in Iori. Note that the
Hough transform treats several disjoint line segments with the same
equation as one complete line ln. Assume that ln crosses several
patch columns (Ci, Ci+1, · · · , Cj) and has a slope k. Denote the
line segment of ln at patch column Cx, i ≤ x ≤ j, by lnx. Let
Cx be scaled by Sx in the retargeting image. The slope of lnx after
scaling becomes k′

x = k/Sx. We define the salient line similarity
DLine of ln by

DLine(ln) = −
j−1∑
x=i

(k′
x − k′

x+1)
2 (10)

The salient line similarity DLine of the retargeting image with L
salient lines is then given by

DLine(Iori, Iret) =
∑
ln∈L

DLine(ln) (11)

4 Experiments

We first compare the proposed optimal scaling-factor assignment
method with the original patchwise scaling method in [Liang

et al. 2012]. Four examples are presented in Figure 8(a), which
demonstrate three distinct advantages of the optimal scaling-factor
assignment method:

• There are not deterministic patch partition rules in [Liang
et al. 2012]. This may lead to an inconsistent classification
of important patches containing salient objects, e.g., the left
tower is misclassified in the patch division in [Liang et al.
2012] (Figure 8(a2)), while it is correct in our patch division
(Figure 8(a4)).

• Liang et al’s method [2012] randomly samples the solution
space and only evaluate these sample points to guess an
optimal value. If the sampling is very dense in Liang et
al’s method [2012], the computational cost is very high.
On the other hand, if the samples are sparse, the solution
is far from optimization. By applying the optimal scaling-
factor assignment, our method achieves better retargeting
effects. E.g., for the same patch division shown in Figure
8(a10), our retargeting method better preserved both salient
surfboards. One more example is given in Figure 8(a11) using
the Painting2 image in RetargetMe.

• We include a new saliency line similarity (Eq. 11) into the
distance metric (Eq. 3). As shown in Figures 8(a8) and (a9),
the line features are better preserved in our method.

We next use both RetargetMe benchmark [Rubinstein et al. 2010]
and the objective image retargeting assessment (OIRA for short)
method [Liu et al. 2011] to evaluate the proposed patchwise method
with several classic retargeting methods. We use 37 images in
RetargetMe in which the number of images, in the categories of
lines/edges (25), faces/people (15), texture (6), foreground objects
(18) and geometric structures (16), are shown in parenthesis (one
image may belong to different image categories).

4.1 Evaluation of image similarity measure (3)

Our patchwise scaling method relies on a patch-based image
similarity measure D (Eq. 3). The measure D consists of three
parts DLocal (Eq. 7), DPatchbndry (Eq. 9) and DLine (Eq. 11). To
test the effect of different parts and their combinations, we define
the following four measures:

• D = 0.34DLocal + 0.33DPatchbndry + 0.33DLine, i,e, the
original measure in Eq. (3).

• D1 = 0.5DLocal + 0.5DPatchbndry

• D2 = 0.5DLocal + 0.5DLine

• D3 = 0.5DPatchbndry + 0.5DLine

In principle, measure D1 does not count for lines/edge distortion,
D2 does not count for visual artifacts along the patch boundaries,
D3 does not preserve important content and may disorder patch
structures. We apply the four measures D,D1, D2, D3 to retarget
images in the five image categories and use OIRA to assess their
retargeting quality. The experimental results are shown in Figure
7(a) in which the x-axis is indexed by picture ID in each image
category and y-axis is the OIRA evaluation value for pictures with
different IDs. In all testing categories, generally D has the best
performance (i.e., of the highest OIRA values) and D3 has the
worst performance (i.e., of the lowest OIRA values). This can
be explained that D3 did not consider the patch orders and patch-
based image content, which occupies most areas in the image when
compared to areas containing lines/edges and patch boundaries.

To quantitatively compare the retargeting performances, we convert
the absolute OIRA values into a ranking order that is treated as a
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(b) The comparison of measures D,D4, D5

Figure 7: The comparison of measures {D,D1, D2, D3} and {D,D4, D5} in the image categories of lines/edges, faces/people, texture,
foreground objects, geometric structures and the whole image set in RetargetMe.

variable. We use the mean of ranking orders as a statistic measure.
For example, for picture of ID 2 in the texture class, the OIRA
values are D (0.702), D1 (0.665), D2 (0.580), D3 (0.555), and
then the ranking order is D (1), D1 (2), D2 (3), D3 (4). The
mean E{6}(D) of ranking orders of D in six sets (five image
categories plus a whole set) are {1.08, 1.13, 1.0, 1.11, 1.06, 1.08},
showing that D has the best performance. The set E{6}(D3) are
{3.80, 3.47, 3.67, 3.39, 3.88, 3.59}, showing that D3 is worst.

To define DLocal (Eq. 7), we use the SSIM measure (Eqs. 4
and 5) to evaluate the similarity at the pixel level. DLocal uses a
bidirectional similarity measure (i.e., completeness and coherence)
that is similar to the BSM measure proposed in [Simakov et al.
2008]. BSM measure uses the sum of squared distance in CIE
L∗a∗b∗ color space at the pixel level. Given measure D is
an optimal combination of DLocal, DPatchbndry and DLine, to
compare our measure with BSM globally and locally, we define the
following measures:

• D = 0.34DLocal + 0.33DPatchbndry + 0.33DLine

• D4 = BSMglobal(Iori, Iret), i.e., the original BSM measure
[Simakov et al. 2008].

• D5 = 0.34BSMLocal + 0.33DPatchbndry + 0.33DLine,
where BSMLocal uses BSM measure to measure patch-to-
patch similarity.

We test the measures D,D4, D5 on the six image sets and the
experimental results are shown in Figure 7(b). The results

• E{6}(D) = {1.56, 1.47, 1.33, 1.44, 1.50, 1.49}

• E{6}(D4) = {2.36, 2.67, 2.67, 2.67, 2.44, 2.49}

• E{6}(D5) = {2.08, 1.87, 2.0, 1.89, 2.06, 2.03}

Ours is better Both are similar Ours is worse
MULTIOP 104 40 41

SC 114 38 33
SM 101 41 43

WARP 104 53 28
SCL 101 42 42
SV 85 57 43

SNS 99 62 24

Table 1: Subjective evaluation of the proposed method with respect
to seven classical methods. Each test set (i.e., the set of retargeting
images of the same original image) received the same number
5 of votes, and then each comparison group (Ours,A), A ∈
{MULTIOP, SC, SM,WARP, SCL, SV, SNS}, has totally
185 votes.

show that D is the best and D4 is the worst.

4.2 Comparison of different retargeting methods

We compare our patchwise scaling method using measure D (Eq.
3) to seven classic methods included in the RetargetMe benchmark,
i.e., simple scaling (SCL), WARP, SC, SNS, MULTIOP, SM and
streaming video (SV), in which SC and SM work at the pixel level,
WARP, SNS and SV work at the fine-granularity level, MULTIOP
works with a multi-level between pixels and fine-granularity image
features, while our method works at the object level. For all 37
images in RetargetMe, the full retargeting image data used for
comparison is presented in supplemental material A. In Figure
8(b), two examples with comparison to five methods are illustrated,
showing that our method preserves the salient objects, i.e., the three
standing persons in the foreground of the Colosseum image and
the white house in the Housefence image, are better preserved than



Class Ours MULTIOP SC SM WARP SCL SV SNS
Lines 2.08±1.47 2.88±1.51 2.96±1.51 4.20±1.88 4.36±1.38 5.28±1.59 6.76±0.65 7.48±1.17
Faces 3.13±1.36 2.80±1.90 2.87±1.78 4.47±2.45 4.40±1.85 5.53±2.22 6.13±1.15 6.53±1.59

Texture 2.50±1.12 1.83±0.69 4.17±1.67 3.5±2.22 4.50±1.38 4.67±0.75 7.0±0.58 7.83±0.37
Fore obj 2.83±0.90 2.44±1.46 3.0±1.73 4.56±2.54 4.83±1.92 5.06±2.17 6.28±1.10 6.89±1.24
Geo str 1.69±1.04 2.75±1.25 3.25±1.56 3.81±1.88 4.44±1.12 5.44±1.22 6.88±0.48 7.75±0.56

All 2.46±1.41 2.70±1.54 3.0±1.61 4.35±2.26 4.54±1.60 5.30±1.89 6.46±1.08 7.14±1.28

Table 2: The statistic data (the mean value E{6} ± the standard deviation) of the ranking order in eight methods, using the image categories
of lines/edges, faces/people, texture, foreground objects, geometric structures and the whole image set in RetargetMe.

the methods of MULTIOP, SC, WARP, SCL and SV. Our method
also has a good tradeoff between preserving well salient objects and
straight lines. As a comparison, WARP and SV seriously distort the
ground white lines in the Colosseum image.

A subjective evaluation was performed in which 40 college students
in ages from 18 to 22 are invited. Since the seven classic methods
have been compared to each other in details in [Rubinstein et al.
2010], our goal is to compare the proposed method to the seven
methods. For each of 37 images in RetargetMe benchmark, eight
retargeting images (by our method and seven classical methods) are
presented to the participants and are treated as one testing set. To
compare the proposed method to the seven classic method, a three-
point quality scale (better, similar, worse) is used (ref. Table 1).
We assign the 37 testing sets to the participants according to the
following rules:

• Each testing set is evaluated by the same number 5 of
participants;

• Each participant evaluates 4 or 5 testing sets.

The full evaluation results are also presented in supplemental
material A, and these results are summarized in Table 1, which
shows that our method is averagely better than other methods.

We further use OIRA to analyze the performance of different retar-
geting methods. The full evaluation results using OIRA values are
presented in supplemental material B, which also show that there
is not a single method absolutely better than others. The mean
values E{6} of the ranking orders in eight methods are summarized
in Table 2, which demonstrate that our method and MULTIOP
have averagely better performances. The standard deviations of the
random variable of ranking order are also summarized in Table 2,
which demonstrate that the ranking performances of our method
and MULTIOP are both stable. Since MULTIOP use a mixed
pixel-level and fine-granularity-level, MULTIOP is averagely better
than our method in image categories faces/people, texture and
foreground objects. As a comparison, our method uses patch
partition and patch correspondence to take care of global structure
inherent in the image and uses DLine to take care of global line
features. Our method is averagely better than MULTIOP in the
categories geometric structures and lines/edges.

5 Conclusion

In this paper, we propose an improved patchwise scaling method for
image retargeting. Given the patch partition at the object level based
on an importance map, we show that the image retargeting can be
formulated as a scaling factor optimization problem. To guide the
optimization process, we propose a patch-based image similarity
measure which takes the special properties of the patchwise struc-
ture into account. To compare the proposed method with other
image retargeting method, the RetargetMe benchmark [Rubinstein
et al. 2010] and the objective image retargeting assessment method
in [Liu et al. 2011] are used in the experiments. The experimental

results show that the presented patchwise retargeting method has
a good performance in image categories lines/edges, foreground
objects and geometric structures. The limitation of the patchwise
scaling method is its speed: in our current implementation, to
retarget an image (such as those in RetargetMe benchmark) from
500 × 400 to 350 × 400, the average running time is about 1.5-
3.5 minutes in a PC with 1.83GB RAM and Intel core2 Quad
Q9400 CPU running at 2.66GHZ, which is a bit slower than the
seven methods evaluated in RetargetMe. The most computational
burden lies in the repeated computation of Dlocal in the optimal
scaling factor assignment process. Barnes et al. [2009] showed
that a novel random search can be applied for a local bidirectional
correspondence with a GPU parallel implementation, in which the
speed is roughly 7 times faster than the CPU implementation. Our
preliminary GPU implementation results show that the retargeting
time can be reduced to 40 − 80 seconds using a NVIDIA NVS
4200M.

It is worthy of note that during the development of the proposed
patchwise scaling method, a novel method which also uses axis-
aligned deformation is simultaneously proposed in [Panozzo et al.
2012]. Panozzo et al. [2012] uses a simple yet effective image
energy function by the integration of a salience map: this charac-
teristic makes their method have a very fast performance. As a
comparison, our patchwise scaling method utilizes a non-regular
partition (possibly with T-joins) at an object level. Meanwhile,
we use a more comprehensive patch-based bidirectional similarity
measure. In the future work, it is interesting to combine our method
(using non-regular object-level patch partitioning) and Panozzo et
al. [2012]’s method (using the integration of a salience map to build
objective function for optimization): this may offer a good tradeoff
between fast retargeting performance and high retargeting quality.
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(a) The comparison of the proposed optimal scaling-factor assignment method and Liang et al.’s method [2012]

Ours            MULTIOP                     SC                       WARP               SCL              SV
(b) The comparison of the proposed method and five classic retargeting methods

Figure 8: The comparison of the proposed method with (a) Liang et al. [2012] and (b) the five classic retargeting methods using RetargetMe
benchmark. The full comparison with the seven classic methods for 37 images in RetargetMe is presented in supplemental material A.




