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Robust Feature Classification and Editing
Yu-Kun Laia, Qian-Yi Zhoua, Shi-Min Hua, Johannes Wallnerb and Helmut Pottmannb

Abstract— Sharp edges, ridges, valleys and prongs are
critical for the appearance and an accurate representation
of a 3D model. In this paper, we propose a novel approach
that deals with the global shape of features in a robust
way. Based on a remeshing algorithm which delivers
an isotropic mesh in a feature sensitive metric, features
are recognized on multiple scales via integral invariants
of local neighborhoods. Morphological and smoothing
operations are then used for feature region extraction and
classification into basic types such as ridges, valleys and
prongs. The resulting representation of feature regions is
further used for feature-specific editing operations.

Index Terms— feature sensitivity, remeshing, morphol-
ogy, feature extraction, feature classification, feature edit-
ing.

I. INTRODUCTION

FEATURES are important parts of geometric mod-
els. They come in different varieties: sharp edges,

smoothed edges, ridges or valleys, prongs, bridges (see
Figures 1 and 10) and others. The crucial role of features
for a correct appearance and an accurate representation
of a geometric model has led to an increasing activity in
research dealing with features (see subsection I-A).

We assume the underlying surfaces to be processed
are sufficiently smooth. For discrete representations like
triangular meshes, we assume that they are piecewise
linear approximations to smooth surfaces. In this setting,
feature regions can typically be characterized by at least
one high value of a principal curvature. Just as curvature
depends on the scale, so do features. A sharp edge can
be seen as a limit of a smoothly blended edge when
the blending radius tends to zero. Roughly speaking,
features are characterized by the way in which the unit
surface normal varies along the surface Φ. It is therefore
natural to consider the field of unit normal vectors n(x)
attached to the surface point x ∈ Φ as a vector-valued
image defined on the surface. Borrowing the idea of
an image manifold from Image Processing [1], one can
now map each surface point x to a point xf = (x, wn)
in R6. Here, w denotes a non-negative constant, whose
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magnitude regulates the amount of feature sensitivity and
the scale on which one wants to respect features (see
Section II-A). In this way, Φ is associated with a 2-
dimensional surface Φf ⊂ R6. By measuring distances
of points and lengths of curves on Φf instead of Φ, we
introduce a feature sensitive (fs) metric on the surface.
It has been studied under the name regularized isophotic
metric [2], and it has been applied to fs mathematical
morphology on surfaces.

Fig. 1. Result of automatic feature classification: ridges (orange),
valleys (blue), prongs (pink). See also Fig. 10.

Fig. 2. Isolines of the distance from given points computed with
respect to the feature sensitive metric.

As shown in Fig. 2, distances across features are
much larger in the fs metric than in the ordinary Euclid-
ean metric. This provides possibilities for fs geometry
processing. An isotropic mesh of Φf delivers a feature
sensitive mesh of Φ. In this paper, we show how to
compute these meshes and study some of its geometric
properties. Moreover, we propose fs remeshing as an ef-
fective tool for computation of integral invariants which
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provide good indicators for features. Most of the further
processing pipeline such as feature region extraction and
global feature classification can be largely based on this
mesh.

A. Related Work

Feature Extraction. Features, especially feature lines
(crest lines) have been discussed from a differential
geometric perspective [3]. Feature extraction can then be
performed by estimating differential quantities via local
or global surface fitting (see [4]–[7] and the references
therein). Also methods of computational differential
geometry, which work directly with meshes and do
not require an approximation step, have recently been
extended for crest line extraction [8].

Our method for feature extraction uses integral invari-
ants of approximate geodesic circles in the fs metric.
In this sense, it is related to and motivated by work of
Manay et al. [9], who noted that curvature of planar
curves can be estimated in a robust way via integrals
over local neighborhoods. A very similar idea is found
in the work of Clarenz, Rumpf and Telea [10], [11], who
recognize features by integral invariants of patches cut
out from the surface by balls; the ball size determines
the scale on which the features shall be detected. This
method is robust and could also be used for feature
detection prior to the use of our further processing.
However, it does not prepare further processing as much
as our approach is doing this.

Feature classification and editing. In contrast to the
large body of work on local feature extraction, there
is much less research on automatic classification and
editing. To extract the global shape of features, ideas
from mathematical morphology [12] have been extended
to surfaces [13]. This work, though not based on feature
sensitive metric and related techniques, has relations
to our feature classification approach. However, our
approach further classifies features and manipulates them
corresponding to their type. Clarenz et al. [11] propose
a PDE-based algebraic multigrid algorithm to compute
a set of multiscale basis functions, which are then
applied for feature sensitive surface editing. Based on
the characteristics of intersection curves with blowing
bubbles, Mortara et al. [14] propose a method to locally
classify vertices into a few types, which is different from
our approach that takes global shape of features into
account.

Fs parameterization. Almost any work dealing with
features incorporates surface normals in some way, and
there is even some work which does this in a way close
to ours: Cohen-Steiner et al. [15] aim at approximating

surfaces with help of Lloyd’s clustering algorithm and
a geometric error metric based on surface normals.
However, the authors of [15] do not exploit the fea-
ture sensitive metric and the properties of the related
image manifold. The purpose of combining normals with
positions as well as the method used are different, and
we also solve a different problem. The image manifold
is also related to curvature estimation based on normal
cycles [16]. Sander et al. [17] proposed a parameteriza-
tion method that minimizes signal errors (approximated
by first order Taylor expansion) and in this work they
mention that normals can be considered as 3-dimensional
signals; in a later contribution [18] they deal with fs
parameterization.

Feature sensitive remeshing is a basic tool used in this
paper for efficient feature extraction and processing on
mesh models. We treat fs remeshing as isotropic remesh-
ing in the fs metric. Remeshing is an active topic, and we
will briefly describe some work which is related to ours.
Isotropic remeshing was studied in [19]. The authors
used error diffusion to initially distribute vertices, and
then refined positions of vertices using global conformal
parameterization and the weighted centroidal Voronoi
diagram. Finally, a constrained Delaunay triangulation is
applied to construct the mesh. Due to the use of a global
parameterization, the approach does not work well when
applied to models with complicated topology. The work
in [20] and [21] improved this by using a set of local
parameterizations. Botsch and Kobbelt [22] proposed
an efficient and heuristic approach to generate isotropic
meshes, which used iterative local modifications and
reported good results on smooth models. Even with
curvature-adaptive sampling [19]–[21], [23], [24] it is not
easy to follow features with one large principal curvature
well. In [25], a general approach based on principal
curvature tensor estimation was proposed to generate
isotropic triangles in umbilic regions and anisotropic
quadrilaterals elsewhere.

Feature sensitive surface extraction from volume data.
Kobbelt et al. [26] proposed a feature preserving ap-
proach to surface extraction from volume data. Their
approach utilizes feature edge and feature point detection
with some heuristics related to normal variation; then
more samples are inserted in detected feature regions
to improve the representation of sharp features. Ju et
al. [27] improves this method, and the improved method
is used for mesh repair with feature preservation [28]. A
sampling pattern to represent feature and blend regions
which minimizes normal variation and noise was pro-
posed in [29]. This approach still depends on an accurate
detection of feature regions. Vorsatz et al. [30] proposed
another way for feature preserving remeshing, where
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an estimated scalar curvature field forces vertices to
snap to features. Though explicit thresholding is avoided,
curvature estimation is still necessary. Our approach not
only deals with sharp features, but also smooth ones;
it incorporates normal information, but no higher-order
differential quantities.

B. Overview

Based on the feature sensitive metric, an efficient
anisotropic remeshing method can be derived. By ex-
ploiting properties of the mapping between a surface
Φ and its image manifold Φf , one can recognize and
extract feature regions. The computation of integral
invariants used for feature extraction can greatly benefit
from the new remeshing approach. Morphology based
on the feature sensitive metric and feature sensitive
curve smoothing performed via Φf allow us to improve
feature extraction results. We also show how a smoothed
skeleton, constructed in the feature sensitive sense, is
used for classification, for automatic modification of
features, or for interactive editing operations.

The paper is organized as follows. Section II describes
geometry and the algorithm for feature sensitive remesh-
ing. The extraction of feature regions is discussed in
Section III. Global descriptors such as the skeleton (with
respect to the feature sensitive metric) of a feature re-
gion serve for classification and manipulation of feature
regions in Section IV. Experimental results are presented
and discussed in Section V and finally we conclude this
paper and discuss future work in Section VI.

II. FEATURE SENSITIVE REMESHING

A. Definition and Geometric Properties

Any isotropic surface remeshing or sampling algo-
rithm, which is not confined to the 3D case, can just
as well be applied to Φf ⊂ R6 instead of Φ. This is
a simple approach to feature sensitive remeshing and
feature sensitive sampling, respectively: it places more
points in highly curved areas than in flat ones. We
have verified this transfer for various remeshing and
sampling algorithms [19], [21], [31], [32]. We would
like to point out that the use of Φf ⊂ R6 is mainly for a
simple transfer from isotropic to non-isotropic remeshing
algorithms and for a simple introduction of the fs metric.
As will be seen from the developments given below, we
can still explain everything in R3 via an appropriately
combined processing of points and normals and thus the
use of the image manifold in R6 does not result in any
computational overhead over working in 3D.

Here we focus on fs isotropic meshes. They stem
from nearly equilateral and equally sized triangles in

R6. In the next sections, we will see that such meshes
are very useful for feature extraction and for simplifying
and accelerating the algorithms for fs morphology on
surfaces which are proposed in [2]. They are also used
for feature sensitive smoothing which achieves similar
effects as geometric snakes [33], but in a simpler way.

The geometric properties of fs isotropic remeshing
stem from the characteristics of the fs metric, especially
the property of principal distortions. The first fundamen-
tal form of Φf has the symmetric positive definite matrix

M = I + w2III, (1)

which is a combination of first and third fundamental
form of Φ. More details about basic geometric properties
can be found in [2].

A mapping between two surfaces, e.g., Φ and Φf , can
be investigated with regard to metric distortions. In our
case, the mapping α between the two surfaces is given
by α : x(u, v) ½ xf (u, v). At some point (u, v), the
distortion λ(u̇) in direction u̇ = (u̇, v̇) (seen as tangent
direction of a curve (u(t), v(t)) in the parameter domain,
whose image on Φ and Φf is c and cf respectively), is
defined as λ2(u̇) := ċ2

f/ċ2. It can be proved that

λ(u̇) = 1− w2K + 2w2Hκn(u̇), (2)

where K and H are Gaussian and mean curvature,
respectively, and κn is the normal curvature in direction
u̇.

Of particular interest are the extremal distortions,
whose geometric explanation is very simple. The affine
first derivative mapping Dα maps the unit circle k in
a tangent plane of Φ (centered at the point x(u, v) of
contact), to an ellipse kf in the corresponding tangent
plane of Φf at the point xf (u, v). The distances of
the vertices of that ellipse to its center are exactly the
extremal distortions λ1, λ2. Equation 2 shows that the
directions of extremal distortion between Φ and Φf are
the principal curvature directions of Φ; with the principal
curvatures κi (i = 1, 2) of Φ, the extremal distortions λi

are
λ2

i = 1− w2K + 2w2Hκi = 1 + w2κ2
i . (3)

Note that also the reverse mapping from Φf to Φ has
extremal distortions. A unit circle lf in a tangent plane
of Φf is mapped under Dα−1 to an ellipse l in the
corresponding tangent plane of Φ. The axes of this ellipse
l are in principal curvature direction, and its vertices
are distance 1/λi to the center. These ellipses l nicely
visualize the fs behavior of the metric and serve (if
small) as approximate isolines of the fs distance from
their center (see Fig. 2).
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A near-isotropic triangulation with target length l
of a smooth surface with maximum curvature κ has
approximation error ≈ l2 κ

2 . We can then show that a
fs isotropic mesh with target length lf in feature space
leads to a triangulation of the original surface with
approximation error ≈ l2f

κ
2

1
1+κ2w2 .

The computation of the image manifold Φf requires
surface normals. For a smooth surface in any represen-
tation this is a simple task. However, we need to be
careful with the following issues: the presence of noise,
the scale and the presence of sharp features. The latter
can be edges as intersection curves of smooth surfaces or
corners, which are points, where at least three surface
patches intersect or where the local shape is like the
vertex of a cone. The computation of the image manifold
Φf for triangle meshes with estimated normals can be
done by simply mapping each vertex to the feature space
in R6 while keeping the connectivity unchanged. For
sharp features (edges or corners), the mapping is not
one-to-one, or in the discrete case, the simple mapping
will result in undersampling of the manifold embedded
in R6, even if it is well sampled in R3. For most scanned
models, sharp features are not well preserved, and will
most likely be replaced by small blending regions, due to
the limitation of acquisition or processing techniques. In
this case, sharp features discussed here are not present at
all. However, for CAD models or models constructed via
feature preserving algorithms (e.g. [29], [30]) or feature
recovery techniques (e.g. [34]), it is possible to have
sharp features, though they are always rare compared
to the whole model.

Noise and scale. We assume that we are given an error
tolerance δ for points on the model and a parameter ε
(usually small, but much larger than δ); only features of
width > ε shall be handled.

In the presence of noise or negligible features, we
estimate normals from a neighborhood of size≈ ε, e.g.,
with local planar or quadratic fits (see e.g. [35]) and a
fitting error < δ. Even if this does not mean smoothing
of the original data, this approach prevents a dramatic
increase of the noise level in Φf . Moreover, marginal
features - in contrast to relevant ones - do not manifest
themselves in larger area of Φf .

If the model Φ gets scaled by a factor σ, Φf scales
with this factor if the weight w is also multiplied by σ.
Hence, w has to be judged in relation to the object size.
Suitable values of w will therefore be given under the
assumption that the model fits into the unit cube. Explicit
estimation of the noise level is not practical for many
cases and thus in practice it is chosen with the user’s
assistance. We have found that the same w is suitable
for a wide range of models with similar scale, therefore

choosing an appropriate w will not be a difficult task.
Moreover, users may appreciate the freedom of choice
of w, as a way to control the feature sensitivity. This is
especially useful in remeshing. The values w used for
the examples in this paper will be given in Section V.

Fig. 3. The blow-up phenomenon at sharp edges and corners: Top:
original mesh in R3. Bottom: Projection of the corresponding mesh
in R6.

Sharp features. The handling of sharp features de-
pends on the application. In our paper, we assume the
viewpoint that a sharp feature is a limit case of a
smooth surface. The reader may consider sharp features
smoothed with a very small blending radius. Then, a
point p on a sharp edge c ⊂ Φ, with normals n−

and n+ of the adjacent smooth surfaces, corresponds
to a circular arc pf on the image manifold Φf ; this
arc has the endpoints (p, wn−) and (p, wn+). This is a
case of surface expansion (see Fig. 3). A sharp edge is
mapped to a surface region on Φ. Likewise, at a corner
we have a two-dimensional set of surface normals and
a corresponding spherical patch in the image manifold.
Similarly, we need to insert more samples in expansion
regions to ensure accurate sampling.

As discussed above, sharp edges or corners, rather
than sharp blending regions, need special treatment.
The detection of sharp edges and corners can be made
by dihedral angle estimation; instabilities due to badly
shaped triangles are avoided by the use of planar cuts
orthogonal to the edge in consideration. More samples
with the same position, but different normal vectors are
then inserted to sample the feature regions with better
accuracy (Fig. 3).

B. Remeshing Algorithm

Details about transferring the optimization algorithm
in [32] to Φf to achieve fs isotropic remeshing will be
discussed in this subsection. Advantages of this approach
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are its generality and its capability of handling models
with arbitrary genus, with or without holes.

The remeshing process is carried out in two phases.
The first phase spreads out a desired number of sampling
points over the input mesh surface Φf and iteratively
modifies their positions to achieve near-isotropic sam-
pling. The second phase connects those sampling points
with the information from the input mesh. This two-
phase strategy is similar to the re-tiling approach in [23],
however, we adapt it to fs isotropic remeshing, and utilize
different algorithms in either phase.

The basic idea is the same as [32], but it is imple-
mented on meshes embedded in R6. It is based on the
minimization of an energy function, which is a sum
of spring energies that push away vertices which are
too close to each other. This is done by a projected
gradient descent method. The manifold is the triangle
mesh representation of Φf in R6; the projection onto
it can be accelerated by the approximate nearest neigh-
bor algorithm [36]. Because we are processing models
containing various kinds of features, it is not ideal if
we simply use Euclidean distances in R6 to judge their
distances over the surface. We have found geodesic
distances, computed by [37] for example, necessary to
achieve fs isotropic remeshing of high quality.

The second phase takes the sample points and the
original mesh as input, and reconstructs the output mesh
with correct connectivity, keeping triangles as equilat-
eral as possible. We suggest to recover connectivity
by a set of overlapping local parameterizations. In a
local region, a geodesic disk is constructed and the
corresponding region is mapped to a unit circle in the
parameter domain, using a feature sensitive adaptation
of the parameterization method described in detail in
the following paragraph. The samples falling into the
disk are also mapped to the parameter domain, and a
planar Delaunay algorithm can be applied to connect
the local patch. Previously connected edges are treated
as constraints, and thus a planar constrained Delaunay
triangulation algorithm is applied. The constrained De-
launay triangulation has been implemented using the
CGAL library [38]. The local parameterization scheme
avoids topological problem encountered with the use of a
global parameterization. The produced mesh is already
nearly isotropic in almost all cases. However, in rare
cases, especially near the boundary of two patches when
the parameterization has relatively large distortions, we
may still use a few iterations of Delaunay like edge swap
to further improve the results.

The parameterization used in the reconstruction is a
mapping from the 2-manifold embedded in R6 to a
planar domain. Various parameterization methods can

be adapted for this purpose. For a recent survey of
parameterization methods, see [39]. The adaptation is
usually straightforward, as the algorithms almost solely
depend on edge lengths and related measurements. The
parameterization is desirable if it can be computed effi-
ciently, and if it is guaranteed to be a one-to-one mapping
when the outer boundary is fixed to a convex polygon.
Quasi-conformal parameterization is preferable, as it
keeps Delaunay property after the mapping. We used
the mean value parameterization proposed in [40] in our
experiments, which satisfies the requirements and is an
approximation of harmonic maps, which is in practice
close to conformal parameterization.

Remeshing results of our method are shown in Fig. 4.

Fig. 4. Results of feature sensitive remeshing. Note that triangles
are isotropic in flat regions while anisotropic in feature regions.
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III. FEATURE EXTRACTION

A. Feature Filter

Most feature detectors are based on differential in-
variants. Although this is reasonable for highly accurate
and dense data, this is no longer the case for increasing
noise or sparsity. From the viewpoint of stability, it
is preferable to use integral invariants. This has been
shown in the context of planar curve matching by Manay
et al. [9] and for feature extraction by Clarenz et al. [10].
Although the latter approach would also serve very well
for our purposes, we prefer the following approach which
uses the result of fs remeshing.

The computation of such invariants requires the de-
finition of neighborhoods of points and later also the
measuring of distances. As to neighborhoods, Fig. 2 and
the considerations of geometric properties of Φf lead
to the idea to bound the local neighborhood of a point
v ∈ Φ by a fs geodesic circle C(v, r), i.e., the points
whose fs distance from v equals r. The corresponding
curve Cf in Φf is the boundary of a geodesic fan [41].
Thus, an efficient computation can be based on the latter
reference. Moreover, fs isotropic meshes provide a good
and efficient approximation of fs geodesic disk using
topological disk with discrete radius r, the number of
edges away from the center. More accurate geodesic
disks can be approximated. Geodesic distance at each
vertex to the center is first approximated, similar to pre-
vious geodesic distance computation method(e.g. [37]).
Based on isotropic meshes, the computation can avoid
backtracking, and as vertices on the same topological
ring are similar in distance, a fixed number of rings
are sufficient. Approximated geodesic disks can thus
be formed by connecting points on edges that intersect
with geodesic disk of desired radius. The asymptotic
complexity of this approximation is identical (with a
different global coefficient) to that of use of topological
distance, and is still easy to implement.

As to the invariants themselves, we e.g. use the com-
pactness measure fcom = A/L2, where A and L are area
and circumference of C(v, r) in Φ, respectively. This
invariant assumes its highest values for nearly circular
C(v, r); fcom is smaller if C is elongated. These facts
follow from the isoperimetric inequality (fcom ≤ 1/(4π)
for all planar curves and fcom = 1/(4π) only for cicles).
A curvature-like integral invariant “κmax” is estimated
via the shortest distance dmin of C(v, r) from v: it
satisfies dmin = r/

√
1 + w2κ2

max. Thus dmin and its
dependence on r serves as an invariant.

For various values of r, we obtain invariants at dif-
ferent scales. A feature detector combines thresholds on
fcom and dmin. We use the following elementary feature

responses, which are defined via threshold values Ti:
—R1(T1) is true ⇐⇒ dmin < T1. R1 detects feature

regions which exhibit small curvature radius in at least
one direction.

—R2(T2) is true ⇐⇒ fcom < T2. R2 in combination
with R1 detects elongated features (ridges, valleys, suffi-
ciently narrow bridges, tunnels, but also parts of prongs).

—R3(T3) is true ⇐⇒ fcom > T3. Both R3 and R1

are true for the top of a prong (if it is not detected as a
ridge).

Good thresholds are found via a statistical analysis
of the values for fcom and dmin in a few user-selected
feature and non-feature regions. Mean and deviation of
these values in feature and non-feature regions can be
estimated from the training data, and linear discriminant
model with Gaussian distribution assumption can be used
to derive the thresholds. Use R1(T1) alone also works
reasonably well in practice.

B. Morphological improvement of the filter result

The filtering described above elicits a positive re-
sponse for some vertices of the mesh. Triangles with
at least two positive vertices are then marked as candi-
dates for a feature region (“black” triangles), others are
not (“white” triangles). We may view this as a binary
image on a triangulation and can apply methods of
mathematical morphology [12] to it. Because we have
a fs isotropic triangulation, it is appropriate to derive
morphological operations with topological disks rather
than fs geodesic disks as structuring elements. This is a
special case of graph morphology [42]. We use a closing
operation (morphological dilation followed by erosion)
to fill small holes in feature regions and a cleaning
operation to remove sufficiently small regions that are
possibly caused by noise.

In some cases, however, the closing operation may
happen to connect two disconnected, yet close regions.
This is not desirable and may lead to misclassification
in later steps. morphological opening (morphological
erosion followed by dilation) may be performed before
or after closing to work in an opposite way, i.e. avoid
misleadingly connecting two regions. However, either
way has its limitation. We suggest to further improve
the results by using hysteresis thresholding initially
proposed in image processing by Canny et al. [43].
The idea usually uses two thresholds rather than one
used in simple thresholding. The first threshold is used
to compute a preliminary classification of whether a
face belongs to a feature region. Then fs morphological
operations are used to improve the result. The opening
operation does not remove faces that have higher feature
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Fig. 5. Results of the feature filter using dmin for neighborhood
size 1,2,3, increasing from top to bottom.

response (using a tighter threshold) from feature regions.
Similarly, the closing operation only recognizes faces
that are sufficiently close to features (using a looser
threshold) as feature regions. In this way, the results tend
to reduce the possibility of misleading connection and
disconnection of regions.

C. Feature Sensitive Polygon Smoothing.

The second stage of processing is to form connected
components of feature triangles. Here two faces are
considered adjacent if they share a common edge. De-
pending on the type of the feature, we may have a
certain number of closed boundary curves of a feature

Fig. 6. Results of the feature filter based on fcom for neighborhood
size 1,2,3, increasing from top to bottom.

region. The boundary is actually a polygon on the mesh,
formed by edges of the triangles which belong to the
black feature region. To obtain a nicer result and better
basis for further processing, we may apply smoothing to
the boundary polygon. This should be done on Φf ⊂
R6, in order to maintain a good alignment with the
feature shape. We present fs polygon/curve smoothing;
its applications go beyond the present one.

Let x1, . . . ,xn ∈ Φf ⊂ R6 be the current (closed)
sequence of vertices (i.e. xn+1 = x1) of the polygon
which shall be smoothed. In the spirit of splines in
manifolds [44], we may minimize a discretized tension
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Fig. 7. Steps in the feature classification procedure: Filter response
(top left); morphological closing (top right); boundary extraction
(bottom left); skeleton and classification (bottom right).

spline energy,

F =
1
2

∑

i

[
(xi+1 + xi−1 − 2xi)2 + λ(xi+1 − xi)2

]
,

(4)
with a tension factor λ. The energy’s partial derivative
with respect to xj is given by ∂F/∂xj = ∆4xj−λ∆2xj ,
where ∆2xj and ∆4xj are centralized second and fourth
differences.

For a minimizer of F , which is restricted to Φf , at
each vertex xj , the vector ∆4xj − λ∆2xj has to be
orthogonal to Φf (by the Lagrangian multiplier rule). For
the purpose of smoothing, we propose to simply apply a
few iterations of a projected gradient descent as follows:

1) At the current vertex position xj , compute the
negative gradient vector vj := −∆4xj + λ∆2xj .

2) Compute the orthogonal projection tj of vj into
the tangent plane of Φf at xj .

3) Project the point xj + stj onto Φf where s is the
step size.

For stability reasons, the step size s is controlled by
the Armijo rule [45]. Fast projection onto the mesh in
R6 can be done with the approximate nearest neighbor
algorithm [36].

IV. FEATURE CLASSIFICATION AND MANIPULATION

We describe how to classify feature regions and to cap-
ture them in a form which simplifies further processing.
Inspired by modeling techniques such as ‘wires’ [46],
we represent the feature region by its boundary and a
skeleton.

A. Skeleton computation.

The skeleton of a feature region (with respect to the fs
metric) could be computed by a fast marching algorithm
which generates a distance field on the mesh in R6 [47].
However, we already have a fs isotropic mesh and thus
we can compute an approximate skeleton in a more
efficient way based on graph morphology [42]. For a
similar approach, see [13].

In order to further improve the quality of this skeleton,
post-pruning removes short side branches. Smoothing
according to Section III-C produces a final skeleton.
The difference to Section III-C is that the skeleton does
not consist of a single polygon. We may view it as
a collection of poly-lines to be smoothed such that
connectivity is maintained. Some results are shown in
Fig. 8. Note that the skeleton is in general not formed
of crest lines.

Fig. 8. Feature regions with smoothed boundary and skeleton.

B. Feature classification.

The developments above provide the basis for an
automatic classification of feature regions. Feature clas-
sification is a wide and rather unexplored area. Here we
confine ourselves to a few basic types: ridges and valleys,
prongs, bridges and tunnels, as shown in Figures 1
and 10. Ridges and valleys are actually the same, and so
are bridges and tunnels, if we switch from the interior
of the surface to its exterior. Note that we may have
aggregates of various feature region types, and that our
classification is far away from being complete. We rather
want to show how well the present framework helps in
automatic feature classification.

Ridges and valleys have a skeleton s well aligned
with the boundary of the feature region. The skeleton
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may be branching, and the feature region may have a
quite complicated structure globally. However, in any
case, the skeleton ratio rskel := ls/lb between the
Euclidean boundary length lb and the skeleton length ls
is approximately 0.5. Moreover, the Euclidean surface
area A of the region is close to ls · θ, with the average
feature thickness θ. From this we may compute θ, which
we expect to be of the same magnitude as the feature size
ρ. Feature size means the smallest radius of curvature of
a feature. To distinguish between a ridge and a valley,
one may investigate points p′ in local profile sections
with planes through points p ∈ s and orthogonal to s. If
the inner product (p′−p) ·n with the outward normal n
at p is < 0 (> 0), we have local convexity (concavity)
of the profile section and thus a ridge (valley).

A simple prong always has a single boundary loop,
which is not well aligned with the skeleton s; the latter
is typically small. However, due to instabilities of the
skeleton computation on a long prong with a comparably
short boundary, we do not use it for classification.
Rather, the surface area A is a further good indicator.
Approximating the ‘shortest’ prong by a hemisphere, we
see that A should be greater than l2b/2π. To find the top
region of the prong, we search for a region with high
curvature in both directions. It corresponds to a positive
response of feature filters R1 and R3 with appropriate
thresholds. A central point in this region serves as top
point. This simple prong detection works well if the
top region is not too far away from a spherical region,
i.e., cross sections normal to the main direction of the
prong are not far away from circles (high compactness
measure).

There are more complicated prongs, seen e.g. at some
toes of the dragon in Fig. 1, which get classified as ridges
with this simple procedure. This is actually correct,
if one judges such features at a smaller scale. At a
larger scale, however, one may want to classify the same
feature as a prong. This motivates our approach of using
multiple thresholds for feature filtering. Improved feature
classification uses the inclusion tree of feature regions
detected at different scales.

A basic bridge or tunnel (without branches) has two
closed boundary loops. The skeleton is not well aligned
with the boundary, and there is no top region as for a
prong. The triangles in the fs isotropic mesh should be
elongated in a direction transversal to the boundary.

Feature Classification Algorithm. Based on these
simple characteristics of elementary feature types, we
implemented a feature classification algorithm (not con-
sidering bridges and tunnels) which produced the results
shown in Figures 1 and 10. The basic classification
decision is made by properties of elementary features

discussed above. Here, we will present the algorithm
structure used for classifying models. They are designed
to handle some practical issues in classification like
small holes in continuous regions etc. As the problem
is itself ill posed, the classification process will make a
few assumptions in decreasing order of possibilities and
slightly modify feature regions (e.g. fill small holes) until
a reliable result is obtained.

Pseudo-code of the Algorithm:

FeatureClassify (): Feature classification for fs
isotropic meshes:

Input: fs isotropic mesh.
Output: detected feature regions with recognized la-

bels.
1) Feature filter;
2) Morphological improvements;
3) Extract connected components by Breadth First

Search;
4) For each component,

a) smooth the patch boundary using fs smooth-
ing;

b) discard very small patches after smoothing;
c) use FeatureClassifyPatch() to classify it;

5) Combine the results in each patch;

FeatureClassifyPatch (): Classification for a detected
region:

Input: A feature region;
Output: The feature type it is supposed to be. However,

this might also be a list, in cases the patch is further
segmented.

1) Compute the skeleton for the patch;
2) Classify the patch into prong, ridge/valley etc.

using properties of elementary features and a tight
threshold;

3) If the patch is classified as ridge/valley:
a) Try to segment the patch based on convexity;
b) Extract segmented parts;
c) Smooth the boundary for each part using fs

smoothing;
d) Discard patches that are too small;
e) If more than one sub-patch exist, recursively

call FeatureClassifyPatch() to classify them.
4) Fill small holes to simplify the boundary, and

recursively call FeatureClassifyPatch() to classify
it;

5) Classify the patch with properties of elemental
features again, using a looser threshold.

Feature detection and classification for a specific scale
is done as follows: By using the feature filter, a few
faces are selected as features. Morphological operations
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are carried out to improve the filter result. Each con-
nected component is considered as a feature region. The
boundary is smoothed, and the smoothed boundary is
snapped back to the mesh, which causes the boundary
to be still made up of a continuous set of edges on the
mesh. The region bounded by the updated boundary is
treated as smoothed version of the feature region. We
now check which type it most probably belongs to, by
using characteristics discussed above. We assume that
prongs have only one boundary; however, it is common
in practice that ridges, valleys, or even a combination of
ridges and valleys appear in a complicated configuration.
There may even exist several holes in them. Simply
counting the number of boundary loops is not reliable
in practice. We then always check if it satisfies the
two properties of ridges/valleys, namely following the
feature, and satisfying the rskel threshold. If these are
satisfied well, they can be classified as a ridge or valley.
For patches detected as ridges or valleys, which have a
significant number of both convex and concave faces,
a further segmentation is employed. This is due to the
observation that ridges and valleys commonly appear
side by side. Using local convexity checking described
above, each feature face in the current feature region
is marked as either convex or concave. Then morpho-
logical operations are employed (morphological opening
followed by morphological closing for example, and
now these two types will be considered as foreground
and background respectively) to smooth out segmented
regions. Sufficiently large connected regions of either
of these two types will be formed, and then further
classified (by the same process). If segmented feature
regions are classified well, the segmentation is granted.
If some feature region cannot be simply classified as
any of these kinds, some small modifications can be
performed. Very small holes with just a few non-feature
faces will be filled, and such an operation will alter the
statistical quantities of the feature region, thus change
the classification result. Therefore, these operations must
be done with care. Specifically, they can be carried out
only for rejected region by the first classification. This
recursive process is performed until each elementary part
is either well classified, or rejected as unknown feature
type.

Multiscale prong detection: For ridges and valleys, one
scale of classification suffices to get reasonably good
results. However, for a moderate scale, some prongs
cannot be reliably detected, as it may be merged into
a larger region, typically ridges. They will then be
classified as part of ridges. Though this may also be
correct in some sense, it would be more desirable to
detect them as prongs, at least for some applications.

Multi-scale prong detection can be performed, by de-
tecting prongs at various scales (from stricter to looser
thresholds). The feature regions will become larger, and
prongs may be merged into nearby ridges in some scale.
This phenomenon can be detected, and the largest prong
before merging is fixed as the prong. In the desired scale,
even the prong is directly adjacent to ridges, by this
process, they can still be recognized as prongs, and the
left part can well be considered as a ridge.

C. Feature manipulation.

After feature classification, a feature region F is
outlined by its boundary and a central part: the latter is a
point on the top for a prong and the smoothed skeleton
for a ridge or valley. Therefore, we have the input to
known modeling paradigms, e.g. based on a handle [48]
or on wires [46]. Modifications may change the boundary
of F by a dilation or erosion (performed with respect
to the fs metric if appropriate). We may also change the
central part, either automatically or in an interactive way
and recompute the surface with known methods in the
literature. In view of the wide area of possibilities, which
are not really the focus of our work, we just give two
examples illustrating the usefulness of our classification
results and show how they work well in automatic or
interactive modeling applications.

For prongs, typical operations include erosion and
dilation. Erosion of a prong can make it thinner, shorter,
or both. Dilation works in exactly the opposite way. It
is performed by changing the boundary and/or central
point, respectively. Both the central point and the bound-
ary (as well as their near neighbors, which are required
by the method to ensure smoothness) are considered
as handles, and the positions of other vertices can be
derived by the modeling approach in [48]. Fig. 11 shows
the dilation and erosion effects for prongs of the dragon
head model.

For ridges and valleys, sharpening and smoothing
are useful operations. Ridge and valley sharpening can
be performed by wire deformation [46]. The skeleton
for a ridge or valley region may have complicated
configuration, and we model each continuous segment
of skeleton without branching as a wire. The skeleton
part is smoothed with similar technique as boundary
smoothing (but not closed), and then the smoothed result
is considered as the reference curve. The wire curve is
derived from moving vertices on the smoothed skeleton
in the direction (for ridges) or opposite direction (for val-
leys) of local normals. To make the result visually better,
the normals could be smoothed along the skeleton. The
effective radius r is derived from the average distance
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of patch boundary to the nearest point on the smoothed
skeleton. Only vertices that are no more than distance r
away from the smoothed skeleton will be affected by
the deformation. In regions affected by two or more
wires, the combination formula in [46] is applied to get
smooth transitions. We may choose as scaling factor s
a value slightly smaller than 1 (e.g. 0.95) to make the
region sharper. A similar idea can be used to achieve
ridge/valley smoothing, but it works in an opposite way.
To make the result smoother, a post-smoothing operator
could be applied. One example of ridge sharpening is
shown in Fig. 12.

V. EXPERIMENTAL RESULTS

Fig. 4 shows a few results of feature sensitive remesh-
ing. The dragon model (top and middle left, two close-
ups) is remeshed with w = 0.05, the Max Planck head
model (middle right) is remeshed with w = 0.04, and the
Armadillo model (bottom, two close-ups) is remeshed
with w = 0.03. All the models are scaled to fit within
a bounding cube of size 1. Due to this resizing, it will
be better to use smaller w for complicated models. As
meaningful features are relatively small, a smaller w
will be sufficient to add feature sensitivity. Smoother
models can usually work with relatively larger w as
noise levels are lower and features are not as sharp.
For models with similar scale, smoothness and noise
level, the same w is sufficient to provide results of high
quality. Note that in these examples, sample points are
aggregated in feature regions and triangles are elongated
along the feature edges. Fig. 9 shows the same rocker
arm model remeshed with different weights. Note that
for the purpose of feature classification, a wide range
of weights are all possible, with appropriately selected
thresholds.

Fig. 9. Feature sensitive remeshing with different weights. Left:
w = 0; center: w = 0.1, right: w = 0.2.

Remeshing can be implemented efficiently. We sug-
gest here a few improvements for performance.

The sampling before iterative optimization can be
improved by error diffusion similar to the one used

in [19]. We diffuse sampling errors from one face to its
neighbors, keeping average number of samples almost
identical in local regions. In this way, the initial guess
would be a better one for isotropic remeshing. The
surface area used for estimating the budget of samples
should be computed in R6.

Geodesic distances are critical for achieving high
quality results. However, even with an efficient esti-
mation method, they are more expensive to compute,
and we suggest to compute geodesic distances only
when necessary, i.e., near sharp features. We can use
a very rough dihedral based detector for this purpose,
and then grow detected regions, to include almost all
the regions when geodesic distances are crucial. For
every vertex in such regions, geodesic information in its
local neighborhood could be pre-computed and stored in
window structures [37] on a per edge base. These data
need to be computed only once, and are applicable in
each iteration.

The relatively expensive projection in R6 can also be
reduced in later iterations, when most sampling points
will not move much, by checking if the last projected
face is still applicable in the new iteration. This check
is inexpensive, and can greatly reduce the number of
required ANN queries.

The remeshing time for all the models in this paper
are no more than a few minutes. The most complicated
example, remeshing Lucy model from about 800K trian-
gles to about 200K triangles shown in Fig. 10(left) took
7 minutes on a Pentium IV 2.4GHz computer.

Fig. 10 gives two examples of automatic feature clas-
sification. The weight w used for remeshing is between
0.07 and 0.05, respectively. Features are extracted and
classified into ridges (orange), valleys (blue) and prongs
(pink). See also Fig. 1. The feature extraction and
classification took about 5 seconds for the Max Planck
head model shown in Fig. 8 and one minute for more
complicated examples like the Lucy model.

Fig. 11 presents results of automatic dilation and ero-
sion of prongs on the dragon head model. The features
shown in this figure follows color-coding used in other
figures. They are detected and classified automatically,
and then used for corresponding modification. Fig. 12
shows an example of ridge sharpening. All the ridges
in the Happy Buddha model are sharpened. Two close-
ups of the original model and the sharpened results are
on the left and right of the figure. The modification of
prongs took 1 second and sharpening all the ridges took
about 3 seconds.
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Fig. 10. Automatic detection and classification of features: ridges
(orange), valleys (blue), prongs (pink). cf. Fig. 1.

VI. CONCLUSIONS AND FUTURE WORK

Based on a feature sensitive metric and the idea of
integral invariants, we have presented a robust feature
extraction and classification algorithm. The by-product
of feature sensitive remeshing is itself a useful tool for
efficient computation of some integral quantities that
reflect local characteristics of surface. We believe that
the basic ideas in this paper can be applied to more
applications: model segmentation or patch layout for
fitting seem to be promising directions.

Our future research will mainly concentrate on feature
extraction, classification and surface matching using fur-
ther geometric invariants and statistical methods from
pattern classification [49].
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