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Abstract We present a method for learning a meta-filter
from an example pair comprising an original image A and its
filtered version A′ using an unknown image filter. A meta-
filter is a parametric model, consisting of a spatially vary-
ing linear combination of simple basis filters. We introduce
a technique for learning the parameters of the meta-filter f
such that it approximates the effects of the unknown filter, i.e.,
f (A) approximates A′. The meta-filter can be transferred to
novel input images, and its parametric representation enables
intuitive tuning of its parameters to achieve controlled vari-
ations. We show that our technique successfully learns and
models meta-filters that approximate a large variety of com-
mon image filters with high accuracy both visually and quan-
titatively.
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1 Introduction

Image filtering is one of the most fundamental operations
in computer graphics. It is the key building block in many
graphics algorithms as well as an important tool in many
image editing and image enhancement applications. In this
paper we examine the problem of learning an image filter
from a pair of example images, transferring it to new inputs,
and intuitively tuning its parameters. Learning filters from
examples is an important task, because the exact functioning
principles behind many image filters in commercial software
are undisclosed. Even if the algorithmic details are known,
source code is often not available and the filter might be
difficult to re-implement from scratch. Moreover, applying
image filters often involves manual tuning of (spatially vary-
ing) parameters, which might require expert knowledge and
can be time consuming.

The task of learning an image filter from an example pair
can be challenging since in its widest sense image filtering is a
very general concept. Filters are implemented using a variety
of techniques, including iterative, recursive, and data-driven
approaches. Often several filters are applied in sequence to
achieve a desired compound effect. Even some manual oper-
ations, such as retouching skin blemishes in portraits can be
considered as a kind of image filter.

To alleviate this task we introduce the parametric meta-
filter. The meta-filter is a linear combination of elementary
basis filters from small filter bank. Given an example pair
comprising an original image A and its filtered version A′
(Fig. 1a), our method learns the spatially varying combina-
tion weights of the meta-filter f , so that f (A) ≈ A′ (Fig.
1b). The learnt meta-filter can then be applied to novel input
images, B → f (B) (Fig. 1c). Since our basis filters are para-
metric we can intuitively tune their parameters to achieve
controlled variations (Fig. 1d).
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(a) (b) (c) (d)

Fig. 1 Given an example pair comprising an input image and a fil-
tered version (a), our method learns the parameters of a meta-filter that
approximates the latent filter (b). The meta-filter can be transferred to

novel input images (c). Its parametric representation enables intuitive
parameter tuning to achieve controlled filtering variations (d)

The Image Analogies algorithm [1] attempts a simi-
lar problem using a non-parametric texture synthesis algo-
rithm. As such, it works well for “texture-like” effects (e.g.,
painterly filters); however, we show that it does not perform
as successfully on many other typical image filter categories.
In addition, the non-parametric nature of the algorithm makes
it difficult to tune filter parameters to achieve variations. Our
parametric method, in contrast, is applicable to a wider range
of image filters, including artistic filters (e.g., from the Photo-
shop Filter Gallery), tone adjustment, color transfer, curves,
and some manual image enhancement tasks such as skin
smoothing.

We tested our method on more than 50 examples from the
aforementioned categories. We show that our learnt meta-
filters approximate the latent filter on the given exemplar
pairs near perfectly and also transfer well to novel input
images. We evaluate our results numerically using common
image similarity metrics, as well as perceptually through a
user study. In addition to the results shown in the paper, we
include further results and more extensive comparisons and
evaluations in the supplementary material.

2 Related work

2.1 Filter estimation

An ongoing area of research in the field of image restoration
is filter estimation, where an original image is sought to be
recovered from a given “filtered” image. The most impor-
tant instance of this problem is removing blur from images.

Here, the filters are typically modeled as convolutions with
blur kernels, and their inversion is referred to as deconvolu-
tion [11]. When the filter is unknown, the result is a blind
deconvolution problem. These techniques use some priors
and regularization to constrain the solution and restrict the
search space [5,9,10,15–19,30]. Most filter estimation meth-
ods assume that a homogenous filter is applied to the whole
image (or a sufficiently large region). The recent work of
Joshi et al. [17] estimates the point-spread functions in local
windows and, thus, allows recovering spatially varying blur
kernels. Li et al [14] apply a nonlinear filter bank to the neigh-
borhood of each pixel. Outputs of these spatially varying fil-
ters are merged using global optimization, which benefit a
set of applications. The problem we address in this paper is
different from image restoration in two important ways: first,
we have no knowledge of the nature of the unknown filter; we
are dealing with general and spatially varying filters. Second,
we do have the original image available as part of the input.

2.2 Learning from Pairs

Our work is strongly related to various transfer techniques.
These techniques often work by taking one or more example
pairs, where each consists of an image A and a modified
version A′. Then for a given input image B, the aim is to
produce B ′ that somehow mimics the transform from A to
A′. Image analogies [1,26] is a well-known technique that
uses non-parametric texture synthesis. By using appropriate
example pairs, a large variety of effects can be achieved,
from simple smoothing to sophisticated artistic effects. Our
approach explicitly learns and models the filter from example
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pairs and avoids various artifacts associated with a direct
patch work in image space. As mentioned earlier, having a
parametric model offers control and efficiency.

There are more techniques that learn from pairs or exam-
ples. For example, the works by Kang et al. [20] and
Bychkovsky et al. [23] consider learning global tone map-
ping from a training set using machine learning techniques,
the work of Wang et al. [2] considers example-based learn-
ing of color and tone mapping, Ling et al. [27] introduce an
adaptive tone-preserved method for image detail enhance-
ment, and Huang et al. [8,28] consider example-based con-
trast enhancement by gradient mapping. By analyzing the
relation between the color theme and affective word, Wang
et al. [24,25] introduce an example-based affective adjust-
ment method with a single word. Unlike these techniques,
our method is generic and learns a more general filter struc-
ture.

Our work is also related to the work of Berthouzoz
et al. [7], who introduce a framework for transferring
photo manipulation macros to new images. Multiple train-
ing demonstrations are used to learn the relationship between
the image features and macro parameters of selections, brush
strokes and image processing operations, using image label-
ing and machine learning. While having similar goals to
our work, their method requires Photoshop macros to be
recorded. Our method fully automatically learns the filter
from a single pair of input images.

2.3 Linear combination of filters

In this work we model a compound filter by a linear combina-
tion of basis filters. Sahba and Tizhoosh [6] also use a linear
combination of four filters to produce an improved denoising
filter for a given input image using a reinforced learning algo-
rithm. Their algorithm is only suitable for a specific type of
filter, which cannot be spatially varying. Given an additional
guide image, which can be identical to the input image, He
et al. [12] construct a linear combination of local mappings
within windows of the guided image. Simple linear mappings
are derived within each overlapping window such that when
applied to the guided image, the results approximate the input
image. In our work, we consider locally linear combinations
of general filters that approximate a large variety of many
different composite filters.

3 Overview

We define the parametric meta-filter as a linear combination
of elementary basis filters fk :

f (p) =
∑

k

wk(p) fk(p), (1)

where p is a pixel coordinate. To facilitate the operation we
precompute the basis filters, i.e., fk is an image that contains
the result of applying the basis filter to the input image A. The
spatially varying weights wk(p) comprise the parameters of
the meta-filter. Note that we do not restrict the weights at a
pixel to be a partition of unity, i.e.,

∑
wk is not required to be

1. This flexibility is essential since the original and filtered
images may differ in contrast, brightness, or tone.

Our basis filter bank contains instances from a few fami-
lies of filters, in particular, Gaussian, Box, Motion Blur (i.e.,
directional Gaussians), Sobel edge, Color Offset, and Iden-
tity filters. The Motion Blur and Sobel edge filters include
horizontal and vertical variants. Since most basis filters are
parameterized we include for each family a number of vari-
ations in our filter bank:

Filter Para. Count Instances

Gaussian Stdev. σ 20 σ = {0.5, 1, . . . , 10}
Box Size s 10 s = {5, 10, . . . , 50}
Motion Blur Size s, 20 s = {5, 10, . . . , 50}

Angle α α = {00, 900}
Sobel n/a 2 horizontal, vertical
Color Offset n/a 3 red, green, blue
Identity n/a 1∑

56

A linear combination of these basis filters enables approx-
imating more complex filters; for example, a Laplacian fil-
ter can be approximated using a difference of Gaussians.
Even many non-linear filters can be well approximated by
the meta-filter due to its spatially varying nature. Figure 1a,b
shows a visualization of the optimized meta-filter weights
for a highly non-linear example filter pair.

In Sect. 4 we describe how we learn meta-filters from
example pairs using constrained optimization in the filter
space. Optimizing the meta-filter over all basis filters, how-
ever, is prohibitively expensive. Therefore, we first select
a smaller subset that is able to represent the latent filter
A → A′ well (Sect. 4.1) and carry out the optimization
over this smaller set using an energy minimization formula-
tion (Sect. 4.2) that can be efficiently optimized (Sect. 4.3).
In Sect. 5 we discuss transferring the learnt filters to novel
input images as well as editing the meta-filter parameters. In
Sect. 6 we present our results, discuss optimization objective
alternatives, and present extensive numerical and perceptual
evaluations of our method.

4 Learning meta-filter parameters

Given an image A and its filtered version A′ produced by
some latent filter or potentially a sequence of filters, our goal
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is to compute the parameters (i.e., weight maps) for the meta-
filter f such that f (A) ≈ A′.

4.1 Filter selection

Our first task is to select a subset S = { fi } from the full
filter bank that is still sufficient to represent the example
A → A′ well. This selection process makes the following
optimization computationally tractable while still achieving
high accuracy.

The following filters are always included in the subset, as
our experiments showed they are almost always needed:

1. The identity filter, fID(p) = A(p), which passes through
the input color unchanged. It is useful when certain parts
of the image are either unchanged or only changed by a
linear mapping (e.g., contrast adjustments).

2. Three color offset filters, which provide a constant color
offset for a specific channel:

fR(p)=(c, 0, 0)�, fG(p)=(0, c, 0)�, fB(p)=(0, 0, c)�,

where c = 0.01 is a small empirically determined constant.
The amount of actual offset is controlled by the weight map.
The offset filters are particularly useful when the intensity or
color of a region is shifted by a certain amount (e.g., bright-
ness or tonal adjustments).

The initial filter subset S(0) = { fID, fR, fG, fB} is now
augmented by additional candidate filters fc /∈ S(0) that are
found to be effective.

Each candidate filter is evaluated independently by finding
the optimal weight map for the reduced meta-filter f̂c that
contains only the initial filter subset and the candidate itself,

f̂c = wc fc +
∑

i∈S(0)

wi fi , (2)

such that f̂c(A) ≈ A′. The details of this optimization are
provided in the next subsections. The contribution of fc is
measured as the approximation error when it is used in isola-
tion, i.e.,

∑
p

(
wc fc(p) − A′(p)

)2. We include the two filters
from each family that exhibit the lowest approximation errors
into S.

Overall, S contains 12 filters: two from each of family
of Gaussian, Box, Motion Blur, and Sobel, as well as the
three color offset filters, and the identity filter. Our results
demonstrate that this empirically determined filter selection
heuristic works well in practice.

4.2 Energy formulation

We formulate the task of determining the optimal weight
maps for a given meta filter and filter example pair as an

energy minimization problem. Our objective function com-
prises three terms.

The data fitting term, Edata, aims at approximating the
filtering effect:

Edata =
∑

p

((∑
i∈S

wi (p) fi (p)
) − A′(p)

)2
. (3)

The smoothing term, Esmooth, aims at reducing spatial
variation in the weight maps:

Esmooth =
∑

p

∑

i∈S

∥∥∇wi (p)
∥∥1

1. (4)

The term forces spatially close pixels to have similar weights
and concentrates necessary changes into few pixels, yielding
less fragmented and more homogeneous weight maps. Note,
that we minimize the term in the L1 norm,

∥∥∇wi (x, y)
∥∥1

1 = ∣∣wi (x+1, y) − wi (x, y)
∣∣+∣∣wi (x, y+1) − wi (x, y)
∣∣.

(5)

In Sect. 6.4 we compare our L1 minimization against L2 min-
imization and show that ours leads to significantly improved
results. Our formulation is related to total variation [13]; how-
ever, here we seek sparsity of filter weights rather than of
pixel intensities.

The third term, Esparse, is essential to ensure the unique-
ness of the solution:

Esparse =
∑

p

∑

i∈S

∣∣wi (p)
∣∣. (6)

Without this term the system would become singular and
numerically unstable. It also improves the concentration of
weights at each pixel to fewer basis filters.

The overall energy is given as

E = λEdata + Esmooth + αEsparse. (7)

The balancing coefficients are empirically determined: λ =
50 prefers accuracy over smoothness, and α = 10−4 takes a
small value just to ensure the stability of the solution.

Figure 2 demonstrates the ability of our meta-filters to
approximate several non-linear filters from the Photoshop
Filter Gallery.

We measure the approximation quality using the Structure
Similarity Image Metric (SSIM) [29], which is widely used
and known to be more consistent with perception than root
mean square (RMS) errors. In the supplementary material we
provide extensive results to show that we can successfully
approximate a wide range of filters.
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Fig. 2 Our learnt meta-filters approximate a wide variety of non-linear filters with high accuracy. The top left of the split figures shows the ground
truth result A′, while the bottom right shows our meta-filter approximation f (A)

4.3 Implementation

Let n denote the number of basis filters and m the number of
pixels in A/A′. In matrix notation, we can rewrite Eq. 7 as

E = λ ‖FW − V‖2
2︸ ︷︷ ︸

Edata

+‖GW‖1
1︸ ︷︷ ︸

Esmooth

+α ‖W‖1
1︸ ︷︷ ︸

Esparse

= λ‖FW − V‖2
2 + ‖ (G α I )� W‖1

1,

(8)

where Fm×mn is the matrix of precomputed basis fil-
ter results fi (p), Wmn×1 is the vector of unknown basis
weights wi (p), Vmn×1 is the vector of pixel values from A′,
G is the matrix of the gradient operator in Eq. 6, and Imn×mn

is the identity matrix.
This is an L1 regularized convex problem. The global

minimum can be efficiently obtained using the Split Breg-
man method [21]. Let � = (G α I )�. Using two additional
vectors b and d and the unknown vector W (all initialized
as zero vectors of length mn), we apply the following three
steps iteratively until convergence:

S1: Wk+1 = min
W

λ
2 ‖FW − V‖2

2 + γ
2 ‖dk − �W − bk‖2

2

S2: dk+1 = min
d

‖d‖1
1 + γ

2 ‖d − �Wk+1 − bk‖2
2.

S3: bk+1 = bk + �Wk+1 − dk+1.

Here, k is the iteration number, and γ = 10 is a relax-
ation constant which affects the convergence rate but not
the final result. Step 1 involves a quadratic function of W.
Denote N (W) = λ

2 ‖FW−V′‖2
2 + γ

2 ‖dk −�W−bk‖2
2. The

minimizer is computed using ∂ N (W)
∂W = λF�(FW − V′) +

γ��(�W + bk − dk) = 0. This is equivalent to solving the
linear system (λF�F + γ���)W = λF�V′ − γ��(bk −
dk). The matrix (λF�F +γ���) is symmetric positive def-
inite and does not change over the course of the optimiza-
tion. We use sparse Cholesky factorization [22] to efficiently
decompose this matrix into L DL� where L is a lower trian-
gular matrix and D is a diagonal matrix. This only needs to
be factorized once; during iteration the linear systems have
triangular matrices and can be solved efficiently using sub-
stitution. Step 2 can be solved in linear time using the shrink
operator (see [21]), and Step 3 is direct.

5 Applications

5.1 Filter transfer

Once a meta-filter is learnt from an example pair A → A′,
it can be applied to novel input images B to obtain a filtered
result f (B) that approximates the (unknown) ground truth
B ′. To transfer the filter we establish pixel correspondence
between A and B and copy the weights of the elementary
filters using the correspondence warp map.

Computing reliable correspondence between general
images is a challenging problem. However, since we are
only transferring basis filter weights between the images,
obtaining exact correspondence is less critical. We use the
state-of-the-art SIFT flow algorithm [4] to find an initial cor-
respondence map that globally aligns the two images while
well preserving spatial coherence. We found that SIFT flow
sometimes does not work reliably around strong image edges.
For that reason we refine (replace) the initial correspondence
around strong edges with one that is computed using the
PatchMatch algorithm [3] on Canny edge images extracted
from A and B.

Figure 3 shows examples from the aforementioned cat-
egories. The first row shows curve adjustment (see the
inset figure in the filtered image). The second row shows
an example of tone transfer. A similar result could be
achieved by Wang et al.’s method [2]. However, while their
method learns the tone adjustment filter from a dataset
containing several examples, our method requires only a
single example pair, as shown here. Rows three to six
show various artistic stylization filters. These kinds of fil-
ter are more challenging to transfer. Finally, in the last
row we learn and transfer a manual face polishing job
(includes removing blemishes and wrinkles, and improving
skin tone). Many more results are provided in the supple-
mentary material.

The correspondence for all of our results is computed fully
automatically, with the only exception being the face polish-
ing results (last row in Fig. 3). Here, we found it necessary
to interactively select the skin regions. These are set as hard
constraints and the remaining correspondence is computed
as described above.
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Fig. 3 Transferring learnt meta-filters to novel input images. A more extensive set of results can be found in the supplementary material
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Fig. 4 Filter editing results. Given the original (first column) and filtered (second column) input images, the effect can be easily manipulated to
obtain reduced (third column) and strengthened (fourth column) results

5.2 Filter editing

The parameters of the meta-filter comprise the per-pixel
weights of the basis filters wi (p), and their global parameters
(i.e., the size of the Box, Gaussian, Motion Blur filters, as well
as the Motion Blur angle). By manipulating these parame-
ters, we can edit the learnt meta-filter in a semantic manner
and obtain interesting controlled variations. For instance, we
can increase or reduce all or some of the weights to yield a
strengthened or weakened filter.

In Fig. 4 we show some filter variations that were obtained
through simple manipulations of the meta-filter parameters.
The first row shows a manipulation of the Motion Blur basis
filters: the blur size s is reduced to 0.5s to obtain a reduced
“Motion Blur” effect (third column) and enlarged to 4.5s to
obtain a strengthened motion blur (the forth column), while
keeping the per-pixel weights unchanged. The second row
shows a manipulation of the Sobel basis filters: the filter
per-pixel weights wi (p) are uniformly reduced to 0.5× and
increased by 8× to obtain reduced and strengthened “Poster
Edge” effects. The third row shows results of a manipulation
for the Box basis filters: the blur size s is reduced/increased
to 0.5s/4s to obtain a reduced/ strengthened “Color Cut”
effect. Many other filter editing results are provided in the
supplementary material.

In Fig. 1d we compare a simple meta-filter manipulation
of the Box blur size against the result achieved by naïve filter
strengthening.

6 Results and evaluation

We tested our algorithm with a wide range of common image
filters, including artistic filters, tone adjustment, color trans-
fer, curves, and manual image edits. For effects generated by
automatic algorithms (such as Photoshop filters), the same
algorithms are used to obtain the ground truth images. More
complicated effects involve manually applying various fil-
ters to selected regions. For example, the “Gouache” effect
in Fig. 3 was created by an artist using a combination of
smart blur, overlay, paint daubs, hue/saturation adjustment,
curve adjustment, etc. to selected regions using manual lay-
ering. The ground truth results of such effects were also cre-
ated by artists. It typically takes 15–20 min for an artist to
create such effects for a given image. Apart from face pol-
ishing, which required minimal user interaction, all results
were achieved fully automatically using the same algorithm
settings (as described in the paper).

6.1 Comparison to image analogies

In Fig. 5 we compare our method against Image Analo-
gies [1]. In contrast to their method, ours does not synthesize
a new image by stitching small patches, but rather transfers a
set of basis filters. For this reason our method is less sensitive
to exact correspondence and avoids several artifacts present
in the Image Analogies results.
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Fig. 5 Comparing our results with Image Analogies [1]

In the supplementary material we include a more exten-
sive ground truth comparison with their method on a larger
number of image filters and target images. Our numerical
analysis shows that our method increases the average SSIM
score from 0.34 (Image Analogies) to 0.61 (Our results).

6.2 User study

We validated our algorithm further by conducting a formal
user study with 20 participants (25 % females, ages ranging
from 18 to 29). For this study we generated 72 filter transfer
examples with our method and Image Analogies [1] using the
software provided on their project page. The images we used
for our study are included in the supplementary material.

In each test we showed the participant the input images
A, A′, B and two choices for B ′, one produced by our algo-
rithm, and the other either produced by Image Analogies, or
the actual ground truth result. Participants were asked which
result was closer to the transfer result they would imagine
(Two-Alternative Forced Choices, or 2AFC).

The results of our study are summarized in Fig. 6. When
comparing against Image Analogies participants chose our
method in 73.7 % of all cases. When comparing against
ground truth participants still chose our method in 45.8 %
of all cases.

6.3 Filter bank

We validate that our filter bank contains enough variation in
filter families and instances to support our target applications
and is minimal in a sense that it does not contain more filters
than necessary. Our results throughout the paper and sup-
plementary material demonstrate that the filter bank is able
to represent a wide range of common image filters well. To

show that it is minimal we perform a series of “leave-one-
out” tests, in which we show that each subset of the filter
bank where one whole family is removed yields poor results
at least for some input pairs.

We evaluate the approximative power of the meta-filter as
well as its ability to transfer filters to novel input images.
For this task we prepared images A, A′, B, B ′ using fil-
ters from the Photoshop Filter Gallery and then compare
the approximation results ffull(A)/ fsubset(A), and transfer
results ffull(B)/ fsubset(B) against their respective ground
truths A′ and B ′. Here, ffull is the meta-filter learnt using
the full filter bank, and fsubset is a meta-filter learnt using a
filter bank in which one of the filter families is removed. We
compare the images both numerically using SSIM score, as
well as through visual inspection.

Our experiments showed that the approximation quality
does not suffer much from removing single filter families.
However, we found that it can have significant impact on
the ability to transfer filters to novel input images, which is
our main application. In the supplementary material we show
results from our experiments that demonstrate how leaving
each of the basic filter families out significantly affects the
quality of transferred meta-filters on at least one important
class of image filters. These experiments support our claim
that all families in our filter bank are necessary for our target
application.

6.4 L1 minimization

Our meta-filter learning algorithm uses L1 minimization
objectives. In order to validate this design choice we tested
two alternatives: (1) leaving out the sparsity term Esparse

and (2) replacing the smoothness term Esmooth with an L2
objective.
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Fig. 6 Results of the user
study. Top the percentage in
which participants chose our
result (OUR) over Image
Analogies (IA), broken down
per participant. Bottom results
for our method compared
against ground truth (GT)

Removed Sparsity Term Esparse: As mentioned in Sect. 4.2,
the sparsity term Esparse is necessary to ensure the numeri-
cal stability of the solution. When removing this term from
the optimization objective, the S1 term of the Split-Bregman
method reduces to

Wk+1 = min
W

λ

2
‖FW − V′‖2

2 + γ

2
‖dk − GW − bk‖2

2,

which amounts to solving the least square problem

Wk+1 = min
W

‖(λ
2

F G)T W − (V′ dk − bk)�‖2
2.

The problem lies with the least square matrix A = ( λ
2 F G)�,

which is highly singular. Solving for it is numerically unsta-
ble and very time consuming. Adding the sparsity term yields
A = ( λ

2 F G α I )T , which is non-singular and can be robustly
solved.

The Smoothness Term Esmooth: An interesting design alter-
native is to replace the smoothness term with a L2 version:

E L2
smooth =

∑

p

∑

q∈N (p)

∑

i∈S

(
wi (p) − wi (q)

)2 (9)

This leads to a simpler optimization that can be solved much
more quickly than solving the L1 energy (about 3× faster

in our experiments). However, the approximation and trans-
fer quality suffers dramatically for some filters, especially
around edges in the images. We show some exemplary com-
parisons between results achieved with L1 and L2 optimiza-
tion in the supplementary material.

6.5 Performance

We tested our MATLAB implementation on a dual Intel
Core2Quad CPU at 2.4GHz. Our implementation is not opti-
mized. Given an image of size 500 × 375 our filter learning
algorithm implemented requires 1–3 min for filter selection
and 1–2 min for meta-filter learning. Once the filter is learned,
transferring it to novel images takes only about 2 s.

6.6 Limitations

Our current filter transfer algorithm performs less success-
fully for filters that create texture-like structures, as shown
in Fig. 7. This is partially due to our method for establish-
ing correspondence which does not transfer structures in the
filtering effect well. Alternative methods may be adopted to
alleviate this.
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Fig. 7 Limitation of our
method: our method performs
sometimes less successfully for
transferring texture effects

Filters that depend not on image content, but only on the
spatial position within the image (e.g., tilt-shift effect) can be
well approximated by our meta-filter, but they do not transfer
well to novel image, because the correspondence algorithm
takes only the image content into account but not the position
within the image.

Our current algorithm assumes that the example image
pairs are well aligned. Effects that involve warping, projec-
tive transform, or any transform that involves moving pix-
els around cannot be approximated by the meta-filter. We
are considering extending our method and integrating image
registration methods to establish correspondences between
pairs of images. However, these are not simple problems and
are left for future research.

7 Conclusions

We have introduced a meta-filter that linearly combines spa-
tially varying filters. We have presented a minimization tech-
nique with an L1 regularization term that optimizes the
weights of the meta-filter to approximate a general filter
whose operation is determined from a before and after pair
of examples.

Our meta-filter is a simplified model that, nevertheless,
spans a surprisingly large space of filters that can well approx-
imate various effects that were generated by applying a
sequence of a number of unknown filters. We speculate that
part of the power of our meta-filter stems from the fact that
it is spatially varying, enriching the possible effects consid-
erably.

In the future we want to explore the possibility of learning
the generation of intermediate level filters. Such filters can
be learnt from a large set of common and useful filters and

encapsulate the functionality of a series of low level filtering
operations. We believe that such intermediate level filters
can further strengthen the quality of the meta-filter, as well
as improving its speed and expanding its capabilities.
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