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Abstract

We give anautomaticmethod for fitting T-spline surfaces to trian-
gle meshes of arbitrary topology. Previous surface fitting methods
required tedious human interaction to accurately capture the geom-
etry and features. There are two main steps in our method. The
first computes a curvilinear coordinate system—aconformal net—
on the surface, induced by global conformal parameterization. This
global net is then automatically partitioned to give several rectan-
gular patches which locally have tensor product structure suitable
for defining splines. In the second step, each rectangular patch is
approximated to a desired positional and normal accuracy bya T-
spline surface, with appropriate continuity between patchbound-
aries. Use of T-splines enables us to use a low number of control
points while guaranteeingL∞ error behaviour. The only user inputs
required in the whole process are these two fitting tolerances.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Splines—T-Splines; I.3.5 [Computational Geometry and
Object Modeling]: Boundary Representations—Mesh;
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1 Introduction

Triangle meshes and spline surfaces are the most widely usedrepre-
sentations in computer graphics and geometric modelling. Triangle
meshes are supported by graphics hardware and hence are widely
used for visualization, computer games, etc. Spline surfaces are
the main representation used for computer aided design and manu-
facturing. Using 3D laser scanners, surface data from real objects
can easily be acquired [Bernardini and Rushmeier 2002]. This is
usually initially in the form of unorganized points, which are then
joined to form a triangular mesh. In order to use these meshesin
many current CAD systems, and to facilitate interactive editing, it
is necessary to convert them to spline surfaces. Furthermore, alter-
native representations are more suited to different applications, so
automatic conversion between them is of great importance.

NURBS surfaces are of widespread use, but they have several
disadvantages. Recently, Sederberg et al. generalized them, giving
T-splines [Sederberg et al. 2003; Sederberg et al. 2004]. T-splines
require significantlyfewercontrol points to represent complex ge-
ometric information: they have better local refinement capabilities,
because of the more flexible approach to joining T-splines attheir
common boundaries.

Traditional surface fitting methods minimize global errorsin a
least squares sense, and do not ensure a boundedL∞ error norm,
which may be required by users. The local refinement method of
T-splines makes them well suited to mesh fitting, where an adaptive
algorithm can locally achieve the desired approximation quality and
controlL∞ errors. The quality of normal vectors of the fitted surface

is also often important. Our approach combines positional and nor-
mal tolerances in the objective function used for fitting, allowing us
to bound both kinds of error.

To convert meshes of arbitrary topology to parametric surfaces,
including T-splines, they must first be parameterized. We use con-
formal parameterization, which preserves angles between the pa-
rameterization and the surface, ensuring that the parameterization is
well behaved, thus helping to guarantee high-quality reconstructed
normals. Because T-splines areglobally defined on meshes, we do
not wish to partition the mesh into many separately parameterized
patches: instead, we use a global parameterization:global confor-
mal parameterization, introduced in [Gu and Yau 2003].

The latter works by finding a smooth pair of vector fields mutu-
ally orthogonal to each other except at a number ofzero points; a
surface of genusg has|2g−2| zero points. The two families of inte-
gral curves of these fields are arbitrarily calledhorizontalandverti-
cal trajectories, and form aconformal net. Locally, this has a tensor
product structure, enabling knots of a T-spline to be defineddirectly
on it. Globally, conformal nets have a particular structurewhich can
be directly used for T-spline fitting: horizontal trajectories through
the zero points segment the mesh into topological cylindersand
disks. Each segment can be mapped to a planar rectangle by map-
ping the horizontal and vertical trajectories to iso-parametric lines
in the plane. T-spline patches can be defined on these rectangles
directly. By using common knots and control points along their
boundaries, the desired continuity can be achieved.

Novelty This work presents an automatic algorithm for convert-
ing triangle meshes to T-Spline surfaces, requiring only a user-
specifiedL∞ position tolerance and a normal tolerances. It works
surfaces with multiple handles and open boundaries. The algorithm
is based on the intrinsic Riemann structure of the surface, which is
independent of the triangulation: it is stable with respectto small
deformations. The parameter net of the T-spline surface is close to
conformal, which is valuable for purposes of texture mapping and
geometric computation.

2 Related work

Before presenting our new method, we discuss related work intwo
areas: fitting methods, and global parameterization methods.

2.1 L2 surface fitting

Surface fitting techniques can be classified asapproximatingtech-
niques andinterpolationtechniques.

Finding a parametric surfaceSwhich approximates a target sur-
faceT is usually performed by minimizing the distance between
them with respect to some metric. The distance metric usually used
is a weighted sum of squared distances of samplesti taken fromT
to S:

L2(T,S) = ∑
ti∈T

wi‖d(ti ,S)‖2. (1)

Here,d(t,S) denotes the distance betweent and its image pointson
S: d(t,S) = ‖t −s‖. Weights typically reflect the sampling density,
which may not be uniform. Finding the image points is a key step
in fitting, and can be done in two basic ways, with or without the
aid of a parameterization.
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Parameterization-free methods find image points by computing
foot points of the samples on the approximating surface withre-
spect to Euclidean distance. Much work has been done on this
problem. A survey is given in [Sapidis 1994]; for more recent
advances, see [Dodgson et al. 2003; Marinov and Kobbelt 2004].
Parameterization-based methods parameterize the target surface in
a planar domain, and then select the image points by identifying
the parameter values. Such methods have also received consider-
able attention; an extensive survey is given in [Weiss et al.2002].

Both of these approaches are limited. In parameterization-free
methods, nearest point computation is time-consuming and error
prone [Marinov and Kobbelt 2004]. Selecting a good initial surface
for iterative optimization is also difficult [Cheng et al. 2004]—self-
intersection of the control mesh can easily result if the curvature
of the target surface changes rapidly. To avoid this problem, a sur-
face fairness term is usually added, but choosing the best balance
smoothness and a good fit is tricky [Weiss et al. 2002].

Parameterization-based methods either rely on minimizinga
global error function, or projecting samples projected onto abase
surface, which can again be hard to choose. Both approaches can
introduce serious local distortions, resulting in unwanted ripples for
complicated surfaces.

Irregular distribution of data points on the target surfaceis an-
other serious problem for surface approximation techniques. To
circumvent this issue, Pottmann et.al [Pottmann and Leopoldseder
2003] devised an approach in which the roles ofT and S are
swapped. One can compute the distance field forSas a prior, by-
passing the problem of irregularly spaced data points. However,
their approach still suffers from the other problems associated with
nearest point methods and is not well suited to approximating com-
plicated surfaces.

Interpolation schemes are an alternative to approximation. Usu-
ally, a set of interpolation constraints [Halstead et al. 1993] is gener-
ated, and fitting is performed by solving a linear system. However,
this approach can suffer from poor conditioning. Litke et al. [Litke
et al. 2001] introduced a quasi-interpolation scheme in which the
control points are computed from the target surface directly. Inter-
polation schemes suffer from two problems. Again, like approxi-
mation schemes, they need a parameterization; choosing theinter-
polation constraints is also hard.

2.2 L∞ surface fitting

Surface fitting using a fixed number of control points can not guar-
antee high approximation quality. To obtain boundedL∞ fitting
errors, additional control points need to be inserted as fitting pro-
ceeds, to accommodate local shape details.

Multiresolution structures have been used in [Lee et al. 2000;
Litke et al. 2001] as a means of reducing theL∞ error adaptively.
Although this approach can produce high approximation quality,
the usual approach subdivides the surfaceglobally, making many
of the added control points redundant.

Instead, if we try to refine the surface locally, and insert knots
where the approximation error is high, we have the difficult issue
of deciding how many knots should be inserted. A common ap-
proach [Cham and Cipolla 1999; Yang et al. 2004] inserts knots into
the region of maximumL∞ error and then does global optimization.
This strategy works well for curve fitting, but for surface fitting,
simply subdividing the region having maximumL∞ error does not
work well in practice. Marinov et al. [Marinov and Kobbelt 2004]
suggest inserting knots intoall regions where theL∞ error exceeds a
given threshold. However, this has the disadvantage of introducing
redundant control points that need to be subsequently removed.

By using T-splines, we are able locally insert knots, and only
have to perform local fitting to adjust the surface, without an ex-
pensive global computation—the surface elsewhere remainsun-
changed.

2.3 Segmentation methods

To fit a parametric surface to a polygon mesh of arbitrary topology,
the polygon mesh is usually segmented into a number of rectan-
gular regions that are approximated by parametric patches.Many
previous methods, e.g. [Andersson et al. 1988; Krishnamurthy and
Levoy 1996], require the user to manually delineate the patch
boundaries. However, for surfaces of complicated topology, this
is very tedious.

Instead of using manual interaction, Eck and Hoppe [Eck and
Hoppe 1996] describe a method for producing quadrilateral patches
based on a parameterization phase [Eck et al. 1995] and a remesh-
ing phase. The number of patches is adjusted to achieve desired fit-
ting tolerances. While this method produces high quality surfaces,
many extra control points are needed to achieve continuity along
boundaries and at patch corners.

Katz et al [Katz and Tal 2003] give another mesh segmentation
approach based on fuzzy clustering and cuts. Their method, while
useful, produces segments which do not always have rectangular
boundaries. Also, further parametrization is needed to ensure con-
tinuity along boundary curves.

We use global conformal parameterization as a means of pro-
viding automatic segmentation; it also gives the parameterization
needed for T-spline fitting, guaranteeing continuity alongpatch
boundaries.

2.4 Conformal parameterization

Several recent advances in surface parameterization [Floater and
Horman 2004] have been based on solving a discrete Laplace sys-
tem [Pinkall and Polthier 1993; Duchamp et al. 1997; Floater1997;
Floater 2003]. Lévy et al. [Lévy et al. 2002] describe a technique
for finding conformal mappings by least squares minimization of
conformal energy, and Desbrun et al. [Desbrun et al. 2002] for-
mulate a theoretically equivalent method of discrete conformal pa-
rameterization. Sheffer et al. [Sheffer and Sturler 2001] give an
angle-based flattening method for conformal parameterization.

Gu and Yau [Gu and Yau 2003] considered construction of a
global conformal structure for a manifold of arbitrary topology by
finding a basis for holomorphic differential forms, based onHodge
theory [Schoen and Yau 1997].

Ni et al. [Ni et al. 2004] use the idea of a harmonic Morse
function to extract the topological structure of a surface.Dong et
al. [Dong et al. 2005, to appear] give a method for quadrilateral
remeshing of manifolds using harmonic functions. The method is
theoretically equivalent to using a holomorphic differential form as
described in [Gu and Yau 2003]. The differential forms in thelatter
have at least 4 fewer zero points than those in the former, however.
For the current problem, it is desirable to have fewer zero points, as
they affect the global structure of the parameterization significantly.
Thus, we have adapted Gu and Yau’s method. Note, however, that
we do not remesh the surface, but fit a spline on the parameter do-
main directly.

Figure 1 illustrates the idea of a conformal net, showing front
and back of a sculpture of genus 3. The global conformal parame-
terization is visualized by mapping a checkerboard onto thesurface.
The horizontal trajectories through the zero points partition the sur-
face into 6 cylinders. The red crosses indicate the positions of zero
points of the conformal net.

3 Parameterization

Basic concepts of Riemann surface theory used in this section are
explained in the appendix.

We now explain in detail our algorithm to construct the confor-
mal net. The conformal net is a natural curvilinear coordinate sys-
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Figure 1: Global conformal parameterization
tem on A surface. Locally, conformal nets have a tensor product
structure, so are suitable for defining a T-spline surface. They also
have a simple global structure: they can be treated as rectangles
with regular grids, glued along their edges and at zero points in a
special pattern—see Figure 2. Figure 2(a) illustrates fourregular
rectangles; the black dots are the zero points. Figure 2(b) shows
how each rectangle is mapped to a quadrant, and merged together
at the zero point. Figure 2(c) shows three at a central zero point.
The red curves are the horizontal trajectories, and the blueones

Figure 2: Global structure of conformal nets.

are the vertical trajectories. Note that in the general case, exactly
four patches meet at a zero point, and each rectangle is mapped
to a quadrant. Gluing opposite sides of a single rectangle gives a
cylinder or a torus.

The input surface is represented by a triangular mesh, and each
vector field is represented as a function defined on the edges of the
mesh.

SupposeK is a simplicial complex, and a mappingr : K → R3

embedsK in R3. ThenM = (K, f ) is called atriangular mesh. For
dimensionsn = 0,1,2, we denote the sets ofn-simplicesby Kn.
Any given n-simplex is denoted by[v0,v1, · · · ,vn], wherevi ∈ K0,
i.e. thevi are points. A holomorphic 1-form is represented as a
function defined on the edges:ω : K1 → R2.

The methods for constructing a conformal net vary different
types of surface. We now explain the details for each case: genus-0
closed surfaces, genus-1 closed surfaces, higher genus closed sur-
faces and surfaces with boundaries.

3.1 Genus-0 closed surfaces

Every genus zero closed surfaceScan be conformally mapped to a
sphere. Practical algorithms for computing such maps are given
in [Gu et al. 2004; C. Gotsman 2003]. The idea used in [Gu
et al. 2004] is that, for genus-0 closed surfaces, conformalmaps
are equivalent to harmonic maps, which can be computed usingthe
heat flow method.

Having found the conformal mapf : S→S2 to the sphere, we use
spherical coordinates(θ ,φ) as parameters. The horizontal trajec-
tories onSare the curvesf−1(φ = const.), and the vertical trajec-
tories aref−1(θ = const.). The preimages of the North and South
poles are the zero points. The trajectories are orthogonal every-
where except at the zero points and form the conformal net.

3.2 Genus-1 closed surfaces

In this case, to find the conformal net, we need to first compute
a holomorphic 1-formω which can be treated as a pair of vector
fieldsω = (ωu,ωv) satisyingωv = n×ωu, wheren is the surface
normal. Furthermore,ωu andωv should be harmonic (informaly,
they should be as smooth as possible). The horizontal trajectories
are the integral curves ofωu, the vertical trajectories are the integral
curves ofωv.

For a surface of genusg, all holomorphic 1-forms form a real
2g dimensional linear space. Algorithms for finding a holomorphic
1-form basis are given in [Gu and Yau 2003], which can be summa-
rized as computing in turn a homology basis, a cohomology basis,
a harmonic 1-form basis and a holomorphic 1-form basis. It isbe-
yond the scope of the current paper details this further. See[Gu and
Yau 2003] for thoroughly explanations.

In our implementation, the holomorphic 1-form basis
{ω1,ω2, · · · ,ω2g} is represented by vector-valued functions
defined on the edges of the mesh,ωi : K1 → R2, i = 1,2, · · · ,2g.
Any discrete holomorphic one-formω is a linear combination of
them. There are an infinite number of holomorphic 1-forms onS;
we want to choose the best one for the purposes of spline fitting.

Each holomorphic 1-formω induces a parameterization ofS. We
can choose a topological diskU onS, an arbitrary pointp∈U , and
define the parameterizationz : U → R2, for any pointq∈U , using

z(q) =

∫ q

p
ω = (

∫ q

p
ωu,

∫ q

p
ωv), (2)

where the path fromp to q is arbitrary as long as it lies insideU .
For the mesh,U is a set of neighboring triangles, andp andq

are vertices. The path connectingp to q is a series of consecutive
edges, and denoted by{e1,e2, · · · ,en}. The parameter of vertexq is
computed by the discrete sum

z(q) =
n

∑
i=1

ω(ei). (3)

Under a conformal parameterization{U,z}, z= (u,v), the metric
onScan be represented in the simple form

ds2 = λ 2(u,v)(du2 +dv2), (4)

whereλ (u,v)—the conformal factor–measures area stretching of
the parameterization. The uniformity of the parameterization can
be measured by computing

E(ω) =
∫

U
|∇λ |2dudv. (5)

We select the holomorphic 1-form which minimizes this unifor-
mity functional, using an automatic algorithm in [Jin et al.2004].

A holomorphic 1-formω on a genus-1 closed surfaceS is
nonzero everywhere, so there are no zero points, and the confor-
mal net is simple. By integratingω on S, the whole surface can
be conformally mapped to a parallelogram on the plane, called the
fundamental periodof S. In general, this is not a rectangle, but a
skewed parallelogram whose shape is determined by the conformal
structure ofS. If the fundamental period is a rectangle, then all the
horizontal and vertical trajectories forming the conformal net on
the surface are closed circles. Otherwise, we two families of curves
parallel to the sides of the parallelogram are used as the trajectories.

3.3 Higher genus closed surfaces

The global structure of conformal nets on higher genus closed sur-
faces is more complicated due to the existence of zero points. By
the Poincaré-Hopf theorem, every vector field on a surface of genus
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g > 1 must have zero points. A holomorphic 1-form has the unique
property that it has the minimal number of zero points, whichfor a
surface of genusg is |2g−2|.

A horizontal trajectory starting from a zero point also endsat a
zero point. In general there are four horizontal trajectories starting
at each zero point. These trajectories partition the surface into sev-
eral patches, each of which is either a topological cylinderor disk.
By integratingω on each patch using Eqns. 2,3, each patch can be
conformally mapped to a rectangle. The resulting conformalnet on
each patch has a regular tensor product structure.

Using this, the conformal net of a higher genus closed surface
can be constructed using the following steps: (i) Define a regu-
lar tensor product grid structure on each rectangle. (ii) Glue pairs
of opposite sides of each rectangle to form a cylinder. (iii)Glue
the various rectangles and cylinders along their boundaries as de-
termined by the conformal structure and the selected holomorphic
1-form.

In order to partition the conformal net into rectangles, we first
need to locate the|2g− 2| zero points, then trace the horizontal
trajectories through them.

Locating zero points Suppose we have computed a holomor-
phic 1-formω. We first estimate the inverse of theconformal factor
(see Eqn. 4) for each vertexv of the input surface mesh, using the
following formula:

τ(v) = λ−1(v) =
1
n ∑

[u,v]∈K1

|ω([u,v])|2

|r(u)− r(v)|2
, u,v∈ K0, (6)

whereu runs over all vertices connected by an edge tov, r(u) is the
position of vertexu, [u,v] represents an edge fromu to v, ω([u,v])
is the value ofω on edge[u,v], andn is the valence of vertexv. At
zero points,λ approaches zero.

We select clusters of vertices whose conformal factors havethe
lowest 5% of values as candidate locations for zero points. We mea-
sure the geometric size of each cluster by computing its diameter,
sort them by decreasing size and keep the first|2g−2| clusters. For
each cluster, we select the vertex closest to the center of gravity of
the cluster as the zero point associated with that cluster.

Tracing horizontal trajectories through zero points Next,
each of the four horizontal trajectories through each zero point
needs to be found.

Supposep is a zero point. We select an open setU on the mesh
aroundp: a collection of neighboring faces forming a topological
disk. Let the boundary ofU be∂U . We parameterizeU by integrat-
ing ω as described in Eqns. 2,3. We denote the parameterization by
z : U → R2, z(q) = (z1(q),z2(q)) =

∫ q
p ω. Let the horizontal trajec-

tory throughp beγ ; γ is mapped to thex-axis of the plane.
We next find all edges[u,v], such thatz([u,v]) intersects thex-

axis, i.e. for whichz2(u) · z2(v) < 0, and we split each edge[u,v]
by adding a new vertex atr(w) with parameterz(w):

r(w) = αr(v)+(1−α)r(u), z(w) = αz(v)+(1−α)z(u), (7)

whereα = z2(u)/(z2(u)− z2(v)). We now connect all newly in-
serted vertices to form the horizontal line in the plane and the hori-
zontal trajectory on the mesh accordingly. We will find four curves
which are part of the horizontal trajectoryγ .

Next, we select another open setU ′ on the mesh, overlapping
with U , to be the next chart. We parameterizeU ′ in a similar way by
integratingω on it, givingz′ :U ′ →R2. The image ofγ , z′(γ), is still
a horizontal line. We select one of the inserted verticesw∈U ∩U ′;
the liney = z′2(w) is z′(r). Using the same approach as for finding
γ in U , we can extendγ onU ′ accordingly. In this way we extendγ
chart by chart, until reaching another zero point.

Ultimately, all the horizontal trajectories through zero points par-
tition the surface into several patches, each of which is either a
topological cylinder or a disk. If it is a cylinder, we pick anar-
bitrary point on it, and trace the corresponding vertical trajectory
through the point to slice it into a disk. Then all disks are confor-
mally parameterized by a rectangle usingω.

3.4 Surfaces with boundaries

For surfaces with boundaries, computing a conformal net needs a
further step:double covering.

Given a surfaceSwith boundaries∂S, we replicate it, and reverse
the orientation of the copy,−S, by reversing the vertex order around
each face. We glueS to −S along corresponding boundaries: if
∂S= σ1∪σ2 · · · ∪σk, then∂ −S= −σ1 ∪−σ2 · · · ∪−σk, andσi
is glued to−σi . The double covered surface is a closed surfaceS̄.
Each face ofShas two copies on̄S.

If S̄ is a topological sphere, we can conformally map it to a
sphere using a special conformal map which maps the boundary
of S to the equator. The preimages of the lines of longitude and
latitude form the conformal net.

More generally, ifShas genusg andb boundaries,̄S is a closed
surface with genus 2g+ b− 1. We compute the holomorphic 1-
form basis ofS̄, and then find a special holomorphic 1-formω =
(ωu,ωv) on it such thatωu is orthogonal to∂S everywhere, using
the approach in [Gu and Yau 2003]. Thisω induces a conformal
net onS itself for which all curves in∂S are vertical trajectories.
The algorithm for locating zero points is similar to that forclosed
surfaces, except that in the tracing algorithm, horizontaltrajectories
starting from zero points may end at the boundary.

3.5 Mesh thinning

Computing the global conformal parametrization for a triangle
mesh needs the solution of a linear system, which is expensive for
a large number of vertices. We use this parameterisation to give the
segmentation, and the topology of the initial T-spline. Forthis, we
do not need a precise conformal parameter for every vertex ofthe
input mesh. Thus, for speed, we simply the intial mesh using Gar-
land’s method [Garland and Heckbert 1997] and before computing
the global conformal parametrization.

4 T-splines

This section briefly reviews T-splines and their properties[Seder-
berg et al. 2003; Sederberg et al. 2004]. T-spline surfaces are a
generalization of B-spline surfaces.

The control mesh for a T-spline surface is called a T-mesh.
Figure 3 shows a pre-image of a T-mesh: it is a rectangular grid

Figure 3: Pre-image of a T-mesh

allowing T-junctions. Each edge is a line segment along theu or v
direction. A T-junction is a vertex shared by oneu-edge and two
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v-edges, or vice versa. Each edge in a T-mesh is associated with a
knot interval, constrained by the following rules:
Rule 1: The sum of the knot intervals on opposing edges of any
face must be equal. �

Rule 2: If two T-junctions on opposing edges of a face can be con-
nected without violating the previous rule, that edge must be in-
cluded in the T-mesh. �

If a T-mesh does not contain any T-junctions, the corresponding
T-spline degenerates to a B-spline surface.

The knot information is used to represent a T-spline surface:

P(u,v) =
N

∑
i=1

wiPiBi(u,v)/
N

∑
i=1

wiBi(u,v), (8)

wherePi = (xi ,yi ,zi) are theN control points inR3 with associated
weightswi , andBi(u,v) are blending functions defined in terms of
cubic B-spline basis functions:

Bi(u,v) = N[ui0,ui1,ui2,ui3,ui4](u)N[vi0,vi1,vi2,vi3,vi4](v). (9)

The knot vectors ui = [ui0,ui1,ui2,ui3,ui4] and
vi = [vi0,vi1,vi2,vi3,vi4] are determined as follows:
Rule 3: Let (ui2,vi2) be the knot coordinates ofPi. Consider a ray
in parameter spaceR(α) = (ui2 +α,vi2). Starting atPi , ui3 andui4
are theu coordinates of the first twou-edges intersected by the ray
going in the+α direction, andui1 andui0 in the opposite direction.
Thev knots are found likewise. �

For example, in Figure 3, considerP1 with knot valueu1. Following
a horizontal ray, we hit edges to the left giving knot values of u1−
d1 − d2 −d3 andu1 − d3, and to the right, knot values ofu1 + d4
andu1 +d4 +d5.

5 Surface fitting

We now consider how to find the optimal collection of T-splines
minimizing the distance between the fitted surface and the triangu-
lar mesh, while capturing the geometric shape.

After creating an initial approximate T-spline surface, wecarry
out global and local optimization steps. The local steps areaimed
at minimizing theL∞ errors for positions and normals by local ad-
justment, while global optimization is used to ensure appropriate
positioning of the control points overall and to remove unwanted
ripples generated during the local approximation process.

Finding a good balance between global and local optimization
is essential for achieving high quality surface; we use an automatic
strategy to do so. Between two successive global approximation
phases, several phases of local optimization are performed, during
which any one face of the T-mesh may only be subdivided once.
Faces generated in the local approximation phases are flagged, and
if any face is to be subdivided again, we switch from local approx-
imation back to global approximation. These two processes are
iterated until the desired tolerance is reached after a global approx-
imation step.

We now consider these steps in detail

5.1 Initial T-spline surface

Segmentation splits the simplified mesh into several rectangular
patches. We define a T-spline over each patch such that continu-
ity is preserved along their common boundary curves.

The initial T-splines are constructed in two steps. A topology
step determines the structure of the T-mesh for each T-spline. Once
the required knots for each T-mesh have been specified, a geometry
step computes the Cartesian coordinates of each knot. Weights of
control points in the initial T-splines are set to 1.

In the topology step, for each T-mesh, interior knots and bound-
ary knots are distributed separately. Using the conformal param-
eterization, interior knots are distributed on a uniform rectangular
grid. Boundary knots are distributed to preserve continuity along
boundary curves and points. At ordinary boundary points andT-
junctions, we follow the usual T-spline approach.C2 continuity is
obtained at such points as they locally form a T-mesh. Boundary
points arising near double covering fold points and zero points are
treated specially. See 4, left (before and after folding) and right,
respectively. Certain control points around these points are con-
strained to lie in the same plane. The red point is the point inques-
tion, and the black points show the surrounding knots which are
constrained. This enforcesG1 continuity at these locations.

Figure 4: Knots near double covering fold points and zero points.

The geometry step is then posed as a constrained least-squares
minimization problem. Under the continuity constraints mentioned
above, we minimize the sum of squared distances between ver-
tices in the simplified mesh and their images in the initial T-splines
at the corresponding parameter values. The objective function is
quadratic and the constraints linear, leading to a linear system.

5.2 Notation

Before discussing global and local approximation, we give the no-
tation used. LetV = {v1, . . . ,vm} andF = { f1, . . . , fn} denote the
sets of vertices and faces of the input meshM. We use(uvi ,vvi )
to denote the conformal parameters,nvi , the normal direction, and
vu

i ,v
v
i , the first-order derivatives of the discrete mesh in theu and

v directions.S= {Si} is the piecewise approximating T-spline sur-
face andT = {Ti} is its T-mesh. The T-spline cells are collected
in C = {Cj}. Certain samples are selected from each cellCj , as
explained later; let them be denoted byp jk. The conformal param-
eters and their image points on the input meshM are denoted by
(u jk,v jk) andq jk respectively.

5.3 Global approximation

In this phase, we attempt to find the optimal approximation ofM
with a fixed T-mesh structure and knot values, allowing all control
points in the T-mesh to move. First, we select samples from the
approximating T-splines,Si . We then find their images on the in-
put meshM using the global conformal parametrization. Finally, a
weighted sum of position and first order derivative errors between
the samples and their images is minimized.

5.3.1 Sampling and weighting

We now discuss how we perform the sampling and weighting.
In each cellCj , we select some samplesp j1, ..., p jN j . There are

many methods for sampling smooth surfaces based on curvature
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criteria or budgets [Chhugani and Kumar 2003]. We simply uni-
formly sample the parameter domain of each cellCj . Since we will
adaptively subdivide any cell with complicated geometry and hence
large approximation errors, we will thereby automaticallyuse more
samples in such cells.

The weight for each sample is determined as follows. Sample
points in each cell are eitherinterior, boundary, or cornersamples.
We assign a neighboring region to each samplep jk by connecting
it to the adjacent sample points in the same cell. The neighboring
region thus comprises 4, 2 and 1 triangles for an interior sample,
a boundary sample, and a corner sample, respectively. The area of
this neighboring region is used as the weight for this sample.

5.3.2 Computing image points

The image pointq jk for each samplep jk is computed by identify-
ing its conformal parameters. In the parameter domain, we choose
the face fl that contains(u jk,v jk). Let the barycentric coordi-
nates of(u jk,v jk) with respect to the vertices ofv1

l ,v
2
l ,v

3
l of fl be

α1
jk,α

2
jk,α3

jk.
The position and derivative information atq jk are interpolated

from those at thevi
l using theα i

jk:

Xqjk = α1
jk ·Xv1

jk
+α2

jk ·Xv2
jk

+α3
jk ·Xv3

jk
, (10)

whereX repesents the collection of position and derivative infor-
mation.

5.3.3 Optimization

We wish both to minimize theL∞ norm for positional errors, and to
achieve good approximation of normal information. There are two
problems with incorporating normal approximation with position
approximation. Firstly, normal vectors for parametric surfaces are
not a linear function of their control points, making the optimization
problem non-linear. Secondly, a tradeoff must be made between the
error terms for positions and normals.

To avoid the first problem, instead of approximating the normal
information, we use as a substitute approximating the first order
derivatives. Thus, the normal error term we use for each sample is

Enor
pjk

=
‖Su(u jk,v jk)−qu

jk‖
2

‖qu
jk‖

2 +
‖St (u jk,v jk)−qv

jk‖
2

‖qv
jk‖

2 . (11)

Having boundedEnor
pjk

ensures bounded errors in normal.
The positional error term for each sample is simply defined as

Enor
pjk

= (S(u jk,v jk)−q jk)2. (12)

The overall error for any sample is defined as

Epjk = Epos
pjk

+λ jkEnor
pjk

, (13)

Here λ jk determines the relative importance of positional and
normal errors during optimization. Initially,Epos

pjk is large, as each
p jk is far from its image pointq jk. Consequently,λ jk should be
made small, in order to ensure that we first meet the positional re-
quirements. As we proceed,Epos

pjk becomes smaller, and the geome-
try approaches the required position, so we can pay more attention
to the normal errors by increasingλ jk. Ultimately, we need to make
the normal terms compatible with the positional terms. Our imple-
mentation setsλ jk to:

λ jk = 10E jk exp(−Epos
jk /h2), (14)

whereh is a length relative to the length scaleL of the bounding
box of the whole model; we set it toh = 0.01L. Although these
constants are empirically chosen, the method is stable to changes in
these tuning parameters.

Figure 5 compares fitting using only positional error control, and
fitting using a combination of positional and normal error control.

(a) (b) (c)

Figure 5: Iphigenia, 4000 control points: (a) mesh surface,(b)
spline with position tolerance only, (c) with position and normal
tolerance

Optimization is performed by minimizing the weighted sum of
the error for each sample

E = ∑
j,k

w jkEpjk , (15)

wherew jk are the weights explained earlier.
BecauseS,Su andSv are linear in the control points, the objective

function is quadratic, and hence minimization requires solution of a
linear system. As the T-spline basis has local support, thissystem is
sparse. We efficiently solve it using the conjugate descent method.

6 Local approximation

Global approximation does not necessarily ensure boundedL∞ er-
ror. Thus, after each global approximation step, we need to insert
appropriate knots in regions where the approximation errorremains
large. Several local approximation steps are carried out between
pairs of successive global approximation steps.

We now consider how to perform one local approximation step,
by first finding those regions where the approximation quality is
low and refinement is necessary, and then performing local opti-
mization.

6.1 Refinement

We start by computing the approximation error of all cells atthe
current optimization stage. The approximation error can bedefined
using anL∞ norm or anL1 norm. In practice, we find that the latter
gives more stable results, especially during the initial steps. For
each cellCj , the meanL1 approximation errorMCj is defined as:

MCj = ∑
k

w jkEpjk/∑
k

w jk. (16)

We refine the cell, denotedCmax, with the largest value ofMCj .
Sederberg et al [Sederberg et al. 2004] presented one approach for
carrying out local refinement. Extra knots are added so that the
initial surface retains the same geometry but is represented using
more control points. Iterative fitting then starts, initialized with this
new surface.

6



We prefer an alternative approach, which avoids iteration and
keeps the number of additional control points low. We simplysub-
divide Cmax into four subcells. Where this results in new points
on the old cell boundary, a check must be made if additional con-
nections are needed across neighboring cells. Figure 6 illustrates
such a case. A cell in the upper left diagram is subdivded as shown
on the lower left; the additional edge colored red is also required,
and added. We then compute the basis functions for the knots near

Figure 6: Local refinement
the local refinement performed. LetP = {Pi} denote all control
points whose basis function have changed, and letC = {C

′

j} denote
all rectangles that have control points inP. The right hand side of
Figure 6 illustratesP andC for this example. The red points are
inserted points, additional points inP are colored green, and the
affected cellsC are colored gray.

6.2 Optimization

We now perform local optimization by allowing the positionsof the
control points inP to move.

We use samples taken uniformly from the cells ofC to form the
objective function. Samples in those cells ofC that have only one or
two control points inP must be given lower weights: as such cells
have few degrees of freedom, minimization without such weighting
would tend to move these control points too far, have a negative
impact on the quality of fit of cells surroundingCmax. Thus, we
weight the samples with respect to their relative distance from the
center of the local refinement. Leto be the center of this refinement,
andh measure the radius ofC in the direction fromo to the current
sampleS at p

′

jk (see the right hand side of Figure 6). The weight
for this sample is set to:

W(p
′

jk) = W(‖p
′

jk −o‖/h), (17)

whereW(·) is a function defined over[0,∞) with support[0,1]. We
use the cubic B-spline basis function:

w(t) :=

{

(1− t)3 0≤ t ≤ 1
0 t > 1

. (18)

The objective function for local approximation is the weighted
sum of error terms of the samplesp

′

jk:

Elocal = ∑
pjk∈C

′
j∈C

w jkW(p
′

jk)Ep
′
jk
. (19)

This objective function is also quadratic in the positions of the
control points, and can optimized by solving a linear system. This
linear system is much smaller than the one used in global approxi-
mation.

Model L∞(p) L∞(n) Mesh T-spline Time
Fig. 5 0.2% 0.1 300k 4000 456s
Fig. 7 0.15% 0.1 80k 5000 106s
Fig. 8 0.1% 0.1 120k 6800 870s
Fig. 9 0.1% 0.1 60k 2400 183s

7 Results

First, we compared our algorithm with the subdivision surface ap-
proximation method in [Marinov and Kobbelt 2004]. At a compa-
rable approximation quality to the one they report for the rocker
arm model, our method takes about 1/2 of the time. See Figure 7.
Moreover, our method requires no choice of initial positions.

We now show further results using of our method. The goal was
to achieve high-quality approximation of position and normals.

Tests using head of Max Planck’s (Figure 9) and David’s (Fig-
ure 8) show the ability of our approach to capture intricate geome-
try.

Table 7 gives the user selected position and normal tolerances,
the number of vertices in the triangulation, the number of control
points in the final mesh, and the time taken to compute these re-
sults. Position errors are as a percentage of the size of the diagonal
of the bonding box of the model. Normal errors are measured as
mean(|nT −nS|), wherenT andnS are normals of the triangulation
and the fitted surface; averaging is done over each cell.

(a) (b)

(c) (d)

Figure 7: Rocker arm: (a) mesh, 80k triangles, (b) initial T-spline,
(c) final T-spline, (d) overlaid T-mesh.

Our results shows the ability of our method to rapidly and au-
tomatically convert complex mesh geometries to splines with few
control points.

8 Conclusions

We have given an easy-to-use and efficient framework for automat-
ically converting surface meshes of arbitrary topology into T-spline
surfaces. Our approach depends only on user-specified position and
normal tolerances, and no other user input. Our method provides
high quality approximation in a short time.
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Appendix

Details of Riemann surface theory used in this paper can be found
in [Jost 2000], other results are in [Siegel 1957; Schoen andYau
1997]. We summarize the main ideas used.

First we informally explain charts and atlases. A chart mapspart
of a surface, topologically equivalent to an open disk, to the plane.
An atlas is a collection of overlapping charts which cover a surface,
and the transition map says how the planar coordinates are related
between the two charts.

Definition 1 A complex functionφ : C → C, where C indicates
the complex plane,φ : (x,y) → (u,v) is holomorphic if it satis-
fies the Cauchy-Riemann equations:∂u/∂x = ∂v/∂y, ∂u/∂y =
−∂v/∂x.

Definition 2 An atlas on a surface S with charts zα : Uα → C is
called conformalif the transition maps zβ ◦ z−1

α : zα(Uα ∩Uβ ) →

zβ (Uα ∩Uβ ) are holomorphic.

Definition 3 Two conformal atlases are equivalent if their union is
still a conformal atlas. Each equivalence class of conformal atlases
is called aconformal structure. A Riemann surfaceis a surface
together with a conformal structure.

Theorem 1 All oriented metric surfaces are Riemann surfaces,
and the metric on each conformal chart can be represented in the
form ds2 = λ 2(u,v)(du2 +dv2), (u,v) are the local coordinates.

Definition 4 A holomorphic differential form[Jost 2000] ω is a
complex differential form, such that for each local coordinate zα ,
ω can be represented asω = f (zα )dzα . Point p is called azeroif
f (zα) is zero.

Definition 5 Let S be a Riemann surface, andω be a holomorphic
1-form on S. Ahorizontal trajectoryis a curve on S along whichω
is real, and avertical trajectoryis a curve on S along whichω is
imaginary.

The definitions of zero points and horizontal and vertical trajecto-
ries are independent of the choice of local coordinates. If atrajec-
tory starts from a zero point, it will end at a zero point or intersect
the boundary. Zero points are also calledzero pointsin this paper.

The intersecting horizontal and vertical trajectories form thecon-
formal net, which locally has a tensor product structure. Its global
structure is described by the following theorem:

Theorem 2 Let S be a closed Riemann surface with genus g> 1,
and let ω be a holomorphic one-form. The horizontal trajecto-
ries through the zero points ofω partition S into cylinders, each
of which can be conformally mapped to a rectangle by integrating
ω.

9


