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Abstract

We give anautomaticmethod for fitting T-spline surfaces to trian-
gle meshes of arbitrary topology. Previous surface fittirghnds
required tedious human interaction to accurately caphegéom-
etry and features. There are two main steps in our method.
first computes a curvilinear coordinate systemeeaformal net—

on the surface, induced by global conformal parametedgafr his
global net is then automatically partitioned to give selvezatan-
gular patches which locally have tensor product structuitalsle
for defining splines. In the second step, each rectangutahps
approximated to a desired positional and normal accuracy by
spline surface, with appropriate continuity between pdtobnd-
aries. Use of T-splines enables us to use a low number ofalontr
points while guaranteeing™ error behaviour. The only user inputs

required in the whole process are these two fitting tolerance
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1

Triangle meshes and spline surfaces are the most widelyrepest
sentations in computer graphics and geometric modellingngle
meshes are supported by graphics hardware and hence atg wide
used for visualization, computer games, etc. Spline sesfare
the main representation used for computer aided design and-m
facturing. Using 3D laser scanners, surface data from tejakcts
can easily be acquired [Bernardini and Rushmeier 2002]s E&hi
usually initially in the form of unorganized points, whicheathen
joined to form a triangular mesh. In order to use these meishes
many current CAD systems, and to facilitate interactiveiedi it

is necessary to convert them to spline surfaces. Furthermtier-
native representations are more suited to different agiidins, so
automatic conversion between them is of great importance.

Introduction

is also often important. Our approach combines positiondlreor-
mal tolerances in the objective function used for fittingpwing us
to bound both kinds of error.

To convert meshes of arbitrary topology to parametric sada
including T-splines, they must first be parameterized. \ecas-

Theformal parameterizationwhich preserves angles between the pa-

rameterization and the surface, ensuring that the paraizegion is
well behaved, thus helping to guarantee high-quality retanted
normals. Because T-splines ayebally defined on meshes, we do
not wish to partition the mesh into many separately pararzet:
patches: instead, we use a global parameterizatitwinal confor-
mal parameterizationintroduced in [Gu and Yau 2003].

The latter works by finding a smooth pair of vector fields mutu-
ally orthogonal to each other except at a numbezab points a
surface of genug has|2g— 2| zero points. The two families of inte-
gral curves of these fields are arbitrarily callemtizontalandverti-
cal trajectories and form aconformal net Locally, this has a tensor
product structure, enabling knots of a T-spline to be defiiezttly
on it. Globally, conformal nets have a particular structuhéch can
be directly used for T-spline fitting: horizontal trajedts through
the zero points segment the mesh into topological cylindeis
disks. Each segment can be mapped to a planar rectangle by map
ping the horizontal and vertical trajectories to iso-pag#iin lines
in the plane. T-spline patches can be defined on these réesang
directly. By using common knots and control points alongrthe
boundaries, the desired continuity can be achieved.

Novelty This work presents an automatic algorithm for convert-
ing triangle meshes to T-Spline surfaces, requiring onlysar-u
specifiedL” position tolerance and a normal tolerances. It works
surfaces with multiple handles and open boundaries. Toeidign

is based on the intrinsic Riemann structure of the surfabégiwis
independent of the triangulation: it is stable with resgecsmall
deformations. The parameter net of the T-spline surfaclb&do
conformal, which is valuable for purposes of texture maggnd

geometric computation.

2 Related work

NURBS surfaces are of widespread use, but they have several

disadvantages. Recently, Sederberg et al. generalized tieing
T-splines [Sederberg et al. 2003; Sederberg et al. 2004plifies
require significantlyfewercontrol points to represent complex ge-
ometric information: they have better local refinement &djiges,
because of the more flexible approach to joining T-splingheit
common boundaries.

Traditional surface fitting methods minimize global errarsa
least squares sense, and do not ensure a bourftledror norm,
which may be required by users. The local refinement method of
T-splines makes them well suited to mesh fitting, where aptada
algorithm can locally achieve the desired approximaticaiggiand
controlL® errors. The quality of normal vectors of the fitted surface

Before presenting our new method, we discuss related wdrkon
areas: fitting methods, and global parameterization msthod

2.1 L2 surface fitting

Surface fitting techniques can be classifiepproximatingtech-
nigues andnterpolationtechniques.

Finding a parametric surfac&which approximates a target sur-
faceT is usually performed by minimizing the distance between
them with respect to some metric. The distance metric usuatd
is a weighted sum of squared distances of sanmpkagen fromT

toS ) )
LA(T,S) = V1d(ti, )| 1
(T.9 ti;WH i, 9l 1)

Here,d(t,S) denotes the distance betweemd its image poirgon

S d(t,S) = ||t — s||. Weights typically reflect the sampling density,
which may not be uniform. Finding the image points is a keyp ste
in fitting, and can be done in two basic ways, with or withow th
aid of a parameterization.



Parameterization-free methods find image points by comguti
foot points of the samples on the approximating surface véth

2.3 Segmentation methods

spect to Euclidean distance. Much work has been done on this T0 fit a parametric surface to a polygon mesh of arbitrary gy

problem. A survey is given in [Sapidis 1994]; for more recent
advances, see [Dodgson et al. 2003; Marinov and Kobbelt]2004
Parameterization-based methods parameterize the tamjetes in

a planar domain, and then select the image points by idamgify
the parameter values. Such methods have also receivedieonsi
able attention; an extensive survey is given in [Weiss e2G02].

Both of these approaches are limited. In parameterizdtim-
methods, nearest point computation is time-consuming arut e
prone [Marinov and Kobbelt 2004]. Selecting a good initiafface
for iterative optimization is also difficult [Cheng et al. @4]—self-
intersection of the control mesh can easily result if thevature
of the target surface changes rapidly. To avoid this probkesur-
face fairness term is usually added, but choosing the bémshdm
smoothness and a good fit is tricky [Weiss et al. 2002].

Parameterization-based methods either rely on minimizng
global error function, or projecting samples projectecoocabase

the polygon mesh is usually segmented into a number of rectan
gular regions that are approximated by parametric patcktesy
previous methods, e.g. [Andersson et al. 1988; Krishnamiuahd
Levoy 1996], require the user to manually delineate the tpatc
boundaries. However, for surfaces of complicated topqldigig

is very tedious.

Instead of using manual interaction, Eck and Hoppe [Eck and
Hoppe 1996] describe a method for producing quadrilatextahes
based on a parameterization phase [Eck et al. 1995] and asheme
ing phase. The number of patches is adjusted to achievesddiir
ting tolerances. While this method produces high qualityeses,
many extra control points are needed to achieve continlityga
boundaries and at patch corners.

Katz et al [Katz and Tal 2003] give another mesh segmentation
approach based on fuzzy clustering and cuts. Their methbite w
useful, produces segments which do not always have redtngu

Surface which can again be hard to choose. Both approaches Canboundaries. AlSO, further parametrization is needed torenson-

introduce serious local distortions, resulting in unwadripples for
complicated surfaces.

Irregular distribution of data points on the target surfecan-
other serious problem for surface approximation techriégu€o
circumvent this issue, Pottmann et.al [Pottmann and Letygoler
2003] devised an approach in which the rolesTofand S are
swapped. One can compute the distance fieldsfas a prior, by-
passing the problem of irregularly spaced data points. Kewe
their approach still suffers from the other problems asgedi with
nearest point methods and is not well suited to approxirgatom-
plicated surfaces.

Interpolation schemes are an alternative to approximatitsu-
ally, a set of interpolation constraints [Halstead et a@3]9s gener-
ated, and fitting is performed by solving a linear system. e\,
this approach can suffer from poor conditioning. Litke eflaitke
et al. 2001] introduced a quasi-interpolation scheme inctvithe
control points are computed from the target surface diyettker-
polation schemes suffer from two problems. Again, like agpr
mation schemes, they need a parameterization; choosirigtére
polation constraints is also hard.

2.2 L surface fitting

Surface fitting using a fixed number of control points can ntrg
antee high approximation quality. To obtain bound€t fitting
errors, additional control points need to be inserted asditpro-
ceeds, to accommodate local shape details.

Multiresolution structures have been used in [Lee et al.0200
Litke et al. 2001] as a means of reducing ttfe error adaptively.
Although this approach can produce high approximation ityal
the usual approach subdivides the surfglmbally, making many
of the added control points redundant.

Instead, if we try to refine the surface locally, and insertkn
where the approximation error is high, we have the difficssuie
of deciding how many knots should be inserted. A common ap-
proach [Cham and Cipolla 1999; Yang et al. 2004] insertskimo
the region of maximurk.® error and then does global optimization.
This strategy works well for curve fitting, but for surfacdifig,
simply subdividing the region having maximuo® error does not
work well in practice. Marinov et al. [Marinov and Kobbelt 4]
suggest inserting knots in&dl regions where the® error exceeds a
given threshold. However, this has the disadvantage afdntring
redundant control points that need to be subsequently regnov

By using T-splines, we are able locally insert knots, andyonl
have to perform local fitting to adjust the surface, withontex-
pensive global computation—the surface elsewhere remains
changed.

tinuity along boundary curves.

We use global conformal parameterization as a means of pro-
viding automatic segmentation; it also gives the pararizztéon
needed for T-spline fitting, guaranteeing continuity algragch
boundaries.

2.4 Conformal parameterization

Several recent advances in surface parameterizationtfflaad
Horman 2004] have been based on solving a discrete Laplace sy
tem [Pinkall and Polthier 1993; Duchamp et al. 1997; Floa8%7;
Floater 2003]. Lévy et al. [Lévy et al. 2002] describe eht@que
for finding conformal mappings by least squares minimizatd
conformal energyand Desbrun et al. [Desbrun et al. 2002] for-
mulate a theoretically equivalent method of discrete conéd pa-
rameterization. Sheffer et al. [Sheffer and Sturler 200¢¢ @n
angle-based flattening method for conformal parametéoizat

Gu and Yau [Gu and Yau 2003] considered construction of a
global conformal structure for a manifold of arbitrary tdqgy by
finding a basis for holomorphic differential forms, basedHntge
theory [Schoen and Yau 1997].

Ni et al. [Ni et al. 2004] use the idea of a harmonic Morse
function to extract the topological structure of a surfaBang et
al. [Dong et al. 2005, to appear] give a method for quadritdte
remeshing of manifolds using harmonic functions. The metiso
theoretically equivalent to using a holomorphic diffeiahtorm as
described in [Gu and Yau 2003]. The differential forms in lttéer
have at least 4 fewer zero points than those in the formereher
For the current problem, it is desirable to have fewer zeintppas
they affect the global structure of the parameterizatigniicantly.
Thus, we have adapted Gu and Yau’s method. Note, however, tha
we do not remesh the surface, but fit a spline on the parameter d
main directly.

Figure 1 illustrates the idea of a conformal net, showingfro
and back of a sculpture of genus 3. The global conformal param
terization is visualized by mapping a checkerboard ontstinface.
The horizontal trajectories through the zero points partithe sur-
face into 6 cylinders. The red crosses indicate the positifrzero
points of the conformal net.

3 Parameterization

Basic concepts of Riemann surface theory used in this seati®
explained in the appendix.

We now explain in detail our algorithm to construct the caonfo
mal net. The conformal net is a natural curvilinear coortireys-



qu#re 1: Global conformal parameterization
tem on A surface. Locally, conformal nets have a tensor prbdu

structure, so are suitable for defining a T-spline surfadeyTalso
have a simple global structure: they can be treated as getan
with regular grids, glued along their edges and at zero pama
special pattern—see Figure 2. Figure 2(a) illustrates fegular
rectangles; the black dots are the zero points. Figure 2(bys
how each rectangle is mapped to a quadrant, and merged ¢ogeth
at the zero point. Figure 2(c) shows three at a central zeirtt.po
The red curves are the horizontal trajectories, and the dhgs

Figure 2: Global structure of conformal nets.

are the vertical trajectories. Note that in the general ,casactly
four patches meet at a zero point, and each rectangle is mhappe
to a quadrant. Gluing opposite sides of a single rectangiesgi
cylinder or a torus.

The input surface is represented by a triangular mesh, artd ea
vector field is represented as a function defined on the edgbs o
mesh.

SupposeK is a simplicial complex, and a mappimg K — R3
embedx in R®. ThenM = (K, f) is called atriangular mesh For
dimensionsn = 0,1,2, we denote the sets ofsimplicesby K.
Any given n-simplex is denoted b, Vv, --,Vvn], wherey; € Ko,

i.e. thev; are points. A holomorphic 1-form is represented as a
function defined on the edgesi: K; — R2.

The methods for constructing a conformal net vary different
types of surface. We now explain the details for each caseigz@
closed surfaces, genus-1 closed surfaces, higher geraesicoir-
faces and surfaces with boundaries.

3.1 Genus-0 closed surfaces

Every genus zero closed surfa8ean be conformally mapped to a
sphere. Practical algorithms for computing such maps arengi
in [Gu et al. 2004; C. Gotsman 2003]. The idea used in [Gu
et al. 2004] is that, for genus-0 closed surfaces, confomegbs
are equivalent to harmonic maps, which can be computed tising
heat flow method.

Having found the conformal map: S— 2 to the sphere, we use
spherical coordinated, ¢) as parameters. The horizontal trajec-
tories onSare the curved ~1(¢ = const), and the vertical trajec-
tories aref ~1(8 = const). The preimages of the North and South
poles are the zero points. The trajectories are orthogoraale
where except at the zero points and form the conformal net.

3.2 Genus-1 closed surfaces

In this case, to find the conformal net, we need to first compute
a holomorphic 1-formw which can be treated as a pair of vector
fields w = (ay, wy) satisyingw, = n x wy,, wheren is the surface
normal. Furthermoreq, and w, should be harmonic (informaly,
they should be as smooth as possible). The horizontal togjes
are the integral curves of,, the vertical trajectories are the integral
curves ofw.

For a surface of genug, all holomorphic 1-forms form a real
2g dimensional linear space. Algorithms for finding a holontacp
1-form basis are given in [Gu and Yau 2003], which can be summa
rized as computing in turn a homology basis, a cohomologishas
a harmonic 1-form basis and a holomorphic 1-form basis. beis
yond the scope of the current paper details this further[Geeand
Yau 2003] for thoroughly explanations.

In our implementation, the holomorphic 1-form basis
{w1,wp,---,apg} is represented by vector-valued functions
defined on the edges of the mesh,: K; — R%i=1,2,---,2g.
Any discrete holomorphic one-form is a linear combination of
them. There are an infinite number of holomorphic 1-formsSpn
we want to choose the best one for the purposes of splingfittin

Each holomorphic 1-formw induces a parameterization®&fWe
can choose a topological diskon S, an arbitrary poinp € U, and
define the parameterizatian U — RZ, for any pointq € U, using

Z(Q)=/pqw=(/pqah,/pqah),

where the path fronp to q is arbitrary as long as it lies insidé.

For the meshU is a set of neighboring triangles, amdandq
are vertices. The path connectipgo q is a series of consecutive
edges, and denoted Kg;, e, ---,en}. The parameter of vertexis
computed by the discrete sum

)

)~ 5 ole). @

Under a conformal parameterizati¢d, z}, z= (u,v), the metric
on Scan be represented in the simple form
ds = A2(u,v) (dP +dVP), 4)
where A (u,v)—the conformal factormeasures area stretching of

the parameterization. The uniformity of the parameteigratan
be measured by computing

E(w) :/U I0A [2dudv ©)

We select the holomorphic 1-form which minimizes this unifo
mity functional, using an automatic algorithm in [Jin et2004].

A holomorphic 1-formw on a genus-1 closed surfac® is
nonzero everywhere, so there are no zero points, and thereonf
mal net is simple. By integrating on S the whole surface can
be conformally mapped to a parallelogram on the plane, dfle
fundamental periodf S. In general, this is not a rectangle, but a
skewed parallelogram whose shape is determined by theroafo
structure ofS. If the fundamental period is a rectangle, then all the
horizontal and vertical trajectories forming the confolmat on
the surface are closed circles. Otherwise, we two familiesioes
parallel to the sides of the parallelogram are used as tjeetoaies.

3.3 Higher genus closed surfaces

The global structure of conformal nets on higher genus diese-
faces is more complicated due to the existence of zero poBits
the Poincaré-Hopf theorem, every vector field on a surfageus



g > 1 must have zero points. A holomorphic 1-form has the unique
property that it has the minimal number of zero points, whara
surface of genugis |2g—2|.

A horizontal trajectory starting from a zero point also eatis
zero point. In general there are four horizontal trajeetstarting
at each zero point. These trajectories partition the sarifato sev-
eral patches, each of which is either a topological cyliratetisk.

By integratingw on each patch using Eqns. 2,3, each patch can be

conformally mapped to a rectangle. The resulting conformeabn
each patch has a regular tensor product structure.

Using this, the conformal net of a higher genus closed serfac
can be constructed using the following steps: (i) Define ai+eg
lar tensor product grid structure on each rectangle. (i)eGairs
of opposite sides of each rectangle to form a cylinder. Giijie
the various rectangles and cylinders along their bounslariede-
termined by the conformal structure and the selected halphio
1-form.

In order to partition the conformal net into rectangles, st fi
need to locate th¢2g — 2| zero points, then trace the horizontal
trajectories through them.

Locating zero points Suppose we have computed a holomor-
phic 1-formw. We first estimate the inverse of thenformal factor
(see Eqn. 4) for each vertexof the input surface mesh, using the
following formula:

2

=27y = u,v e Ko,

(6)

Ly o
M ek, [r(u)—r(v)|2’

whereu runs over all vertices connected by an edge, tqu) is the
position of vertexy, [u,v] represents an edge fromto v, w([u,V])
is the value oftw on edg€u, V], andn is the valence of vertex At
zero pointsA approaches zero.

We select clusters of vertices whose conformal factors tave
lowest 5% of values as candidate locations for zero pointsmaa-
sure the geometric size of each cluster by computing its efiem
sort them by decreasing size and keep the ffagt- 2| clusters. For
each cluster, we select the vertex closest to the centemwitgiof
the cluster as the zero point associated with that cluster.

Tracing horizontal trajectories through zero points Next,
each of the four horizontal trajectories through each zenmtp
needs to be found.

Suppose is a zero point. We select an open Bebn the mesh
aroundp: a collection of neighboring faces forming a topological
disk. Let the boundary df bedU. We parameterize by integrat-

Ultimately, all the horizontal trajectories through zerirs par-
tition the surface into several patches, each of which iseeia
topological cylinder or a disk. If it is a cylinder, we pick am-
bitrary point on it, and trace the corresponding verticajeictory
through the point to slice it into a disk. Then all disks arefoo-
mally parameterized by a rectangle using

3.4 Surfaces with boundaries

For surfaces with boundaries, computing a conformal netis\ee
further step:double covering

Given a surfac&with boundarie® S, we replicate it, and reverse
the orientation of the copy; S, by reversing the vertex order around
each face. We glu&to —S along corresponding boundaries: if
0S=01U02---U0gg, thend —S= -0, U—0>---U—0y, andg;
is glued to—a;. The double covered surface is a closed surface
Each face oShas two copies of.

If Sis a topological sphere, we can conformally map it to a
sphere using a special conformal map which maps the boundary
of Sto the equator. The preimages of the lines of longitude and
latitude form the conformal net. _

More generally, ifShas genug andb boundariesSis a closed
surface with genus@+b—1. We compute the holomorphic 1-
form basis ofS, and then find a special holomorphic 1-fomm=
(ay, wy) on it such thatwy, is orthogonal ta?S everywhere, using
the approach in [Gu and Yau 2003]. Thisinduces a conformal
net onSitself for which all curves irdS are vertical trajectories.
The algorithm for locating zero points is similar to that fdosed
surfaces, except that in the tracing algorithm, horizomééctories
starting from zero points may end at the boundary.

3.5 Mesh thinning

Computing the global conformal parametrization for a fgien
mesh needs the solution of a linear system, which is expeffisiv
a large number of vertices. We use this parameterisatioivéatige
segmentation, and the topology of the initial T-spline. #ads, we
do not need a precise conformal parameter for every vertéeof
input mesh. Thus, for speed, we simply the intial mesh usiag G
land’s method [Garland and Heckbert 1997] and before coimgut
the global conformal parametrization.

4 T-splines

This section briefly reviews T-splines and their properfesder-
berg et al. 2003; Sederberg et al. 2004]. T-spline surfacesa

ing w as described in Eqgns. 2,3. We denote the parameterization bygeneralization of B-spline surfaces.

z:U = R, z(q) = (z(9),22(q)) = fg w. Let the horizontal trajec-
tory throughp bey; y is mapped to the-axis of the plane.

We next find all edgefu, V], such thatz([u,V]) intersects the-
axis, i.e. for whichzy(u) - z(v) < 0, and we split each edda, V]
by adding a new vertex afw) with parameteg(w):

riw)y=ar(v)+(1—a)r(u), zw)=azv)+(1-a)zu), (7)
wherea = z(u)/(z(u) — 22(v)). We now connect all newly in-
serted vertices to form the horizontal line in the plane dadori-
zontal trajectory on the mesh accordingly. We will find foures
which are part of the horizontal trajectoyy

Next, we select another open st on the mesh, overlapping
with U, to be the next chart. We parametefi¥en a similar way by
integratingw on it, givingZ : U’ — R2. The image of, Z(y), is still
a horizontal line. We select one of the inserted vertigesU NU’;
the liney = z,(w) is Z(r). Using the same approach as for finding
yinU, we can extengr onU’ accordingly. In this way we extend
chart by chart, until reaching another zero point.

The control mesh for a T-spline surface is called a T-mesh.
Figure 3 shows a pre-image of a T-mesh: it is a rectangular gri
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Figure 3: Pre-image of a T-mesh

allowing T-junctions. Each edge is a line segment alongutbev
direction. A T-junction is a vertex shared by onedge and two



v-edges, or vice versa. Each edge in a T-mesh is associatea wit
knot interval, constrained by the following rules:
Rule 1: The sum of the knot intervals on opposing edges of any
face must be equal. a
Rule 2 If two T-junctions on opposing edges of a face can be con-
nected without violating the previous rule, that edge musirb
cluded in the T-mesh. a

If a T-mesh does not contain any T-junctions, the corresimond
T-spline degenerates to a B-spline surface.

The knot information is used to represent a T-spline surface

P(U,V) = 'iWiPIBi(LLV)/‘iWi Bi(U,V), (8)

wherePR, = (X, Vi, ) are theN control points inR3 with associated
weightsw;, andB;(u,v) are blending functions defined in terms of
cubic B-spline basis functions:

Bi(u,v) = Nluio, Uj1, Uiz, U3, Ui4] (U) N[Vio, Vi1, Viz, Vi3, Via] (V). (9)

The knot wvectors u = [uip,Ui1,U2,Ui3,Uig] and
Vi = [Vio, Vi1, Vi2, Vi3, Vi4] are determined as follows:

Rule 3: Let (uj2,Vi2) be the knot coordinates &f. Consider a ray
in parameter spade(a) = (U2 + a,Vi2). Starting al?, ujz anduja
are theu coordinates of the first twa-edges intersected by the ray
going in the+a direction, andij; andu;g in the opposite direction.
Thev knots are found likewise. a
For example, in Figure 3, considey with knot valueu;. Following
a horizontal ray, we hit edges to the left giving knot valuésio—
d; — d» — d3 andu; — d3, and to the right, knot values of + dg
andug +ds +ds.

5 Surface fitting

We now consider how to find the optimal collection of T-spfine
minimizing the distance between the fitted surface and thegu-
lar mesh, while capturing the geometric shape.

After creating an initial approximate T-spline surface, oegry
out global and local optimization steps. The local stepsaaread
at minimizing theL*® errors for positions and normals by local ad-
justment, while global optimization is used to ensure appabe
positioning of the control points overall and to remove untea
ripples generated during the local approximation process.

Finding a good balance between global and local optimimatio
is essential for achieving high quality surface; we use daoraatic
strategy to do so. Between two successive global approiximat
phases, several phases of local optimization are perfqrchethg
which any one face of the T-mesh may only be subdivided once.
Faces generated in the local approximation phases are daage
if any face is to be subdivided again, we switch from localragp
imation back to global approximation. These two processes a
iterated until the desired tolerance is reached after aadjimiprox-
imation step.

We now consider these steps in detalil

5.1

Segmentation splits the simplified mesh into several regetizn
patches. We define a T-spline over each patch such that gentin
ity is preserved along their common boundary curves.

The initial T-splines are constructed in two steps. A togglo
step determines the structure of the T-mesh for each Tespmce
the required knots for each T-mesh have been specified, agggom
step computes the Cartesian coordinates of each knot. Wedfh
control points in the initial T-splines are set to 1.

Initial T-spline surface

In the topology step, for each T-mesh, interior knots anchdeu
ary knots are distributed separately. Using the conforrashim-
eterization, interior knots are distributed on a uniforratamgular
grid. Boundary knots are distributed to preserve contjnaiong
boundary curves and points. At ordinary boundary points Bnd
junctions, we follow the usual T-spline approa€? continuity is
obtained at such points as they locally form a T-mesh. Bognda
points arising near double covering fold points and zerotgcare
treated specially. See 4, left (before and after folding) &ght,
respectively. Certain control points around these poingscan-
strained to lie in the same plane. The red point is the poiquies-
tion, and the black points show the surrounding knots whieh a
constrained. This enforc&! continuity at these locations.

(a) (b)

Figure 4: Knots near double covering fold points and zero{soi

The geometry step is then posed as a constrained leasesquar
minimization problem. Under the continuity constraintsntiened
above, we minimize the sum of squared distances between ver-
tices in the simplified mesh and their images in the initigplines
at the corresponding parameter values. The objective imés
quadratic and the constraints linear, leading to a linestesy.

5.2 Notation

Before discussing global and local approximation, we gieeno-
tation used. LeV = {vi,...,vm} andF = {f1,..., fn} denote the
sets of vertices and faces of the input mésh We use(uy,,w,)

to denote the conformal parameteng, the normal direction, and
VLV, the first-order derivatives of the discrete mesh inuhsnd

v directions.S= {S} is the piecewise approximating T-spline sur-
face andT = {T;} is its T-mesh. The T-spline cells are collected
in C = {Cj}. Certain samples are selected from each Cgllas
explained later; let them be denoted py. The conformal param-
eters and their image points on the input méstare denoted by
(Ujk, Vik) andgj respectively.

5.3 Global approximation

In this phase, we attempt to find the optimal approximatiotof
with a fixed T-mesh structure and knot values, allowing afitoal
points in the T-mesh to move. First, we select samples fran th
approximating T-splines§. We then find their images on the in-
put meshM using the global conformal parametrization. Finally, a
weighted sum of position and first order derivative errorsvieen
the samples and their images is minimized.

5.3.1 Sampling and weighting

We now discuss how we perform the sampling and weighting.
In each cellCj, we select some sampl@gy, ..., pjn;. There are
many methods for sampling smooth surfaces based on cuevatur



criteria or budgets [Chhugani and Kumar 2003]. We simply uni
formly sample the parameter domain of each CglISince we will
adaptively subdivide any cell with complicated geometrgt hance
large approximation errors, we will thereby automaticakg more
samples in such cells.

The weight for each sample is determined as follows. Sample
points in each cell are eitherterior, boundary or corner samples.
We assign a neighboring region to each sanmgleby connecting
it to the adjacent sample points in the same cell. The neighdpo
region thus comprises 4, 2 and 1 triangles for an interiorpdem
a boundary sample, and a corner sample, respectively. Elaeohr
this neighboring region is used as the weight for this sample

5.3.2 Computing image points

The image pointjjx for each samplgjx is computed by identify-
ing its conformal parameters. In the parameter domain, wwes#
the facef; that contains(uj,vjk). Let the barycentric coordi-
nates of(uj, vjx) with respect to the vertices of ,v?, v of f; be
- A Ok

The position and derivative information gj are interpolated
from those at the| using thea}k:

1 2 3
XCIjk = erk-legk+djk~xvjzk+djk-xvlsk, (10)
whereX repesents the collection of position and derivative infor-
mation.

5.3.3 Optimization

We wish both to minimize the® norm for positional errors, and to
achieve good approximation of normal information. Theeetaro
problems with incorporating normal approximation with pios
approximation. Firstly, normal vectors for parametricfaces are
not a linear function of their control points, making theioptzation
problem non-linear. Secondly, a tradeoff must be made heaturee
error terms for positions and normals.

To avoid the first problem, instead of approximating the redrm
information, we use as a substitute approximating the firdero
derivatives. Thus, the normal error term we use for each Eaisp

1Su(ujk; vik) — dif 12
AR

1S (ujk: viK) —aif 12
AR

nor _
Pik

(11

Having bounde(EBj‘ir ensures bounded errors in normal.
The positional error term for each sample is simply defined as

Ep" = (S(ujk, Vik) — Ajk)>- 12)
The overall error for any sample is defined as
Ep; = EE;ESJF )\jkEBj‘f, (13)

Here Ajx determines the relative importance of positional and

normal errors during optimization. Initiall5y° is large, as each

pjk is far from its image pointjj. ConsequentlyAj should be
made small, in order to ensure that we first meet the posltiena
quirements. As we proceeflh° becomes smaller, and the geome-
try approaches the required position, so we can pay monetiatte
to the normal errors by increasiigy. Ultimately, we need to make
the normal terms compatible with the positional terms. @uple-
mentation setd j to:

Ajk = L0E j exp(—ER’/h?), (14)

whereh is a length relative to the length scdleof the bounding
box of the whole model; we set it to= 0.01L. Although these
constants are empirically chosen, the method is stableaioges in
these tuning parameters.

Figure 5 compares fitting using only positional error cohtad
fitting using a combination of positional and normal errontrol.

Figure 5: Iphigenia, 4000 control points: (a) mesh surfgbg,
spline with position tolerance only, (c) with position andrmal
tolerance

Optimization is performed by minimizing the weighted sum of
the error for each sample

E= ijkEpjkv (15)
Is

wherewj, are the weights explained earlier.

Becauses, S, andS, are linear in the control points, the objective
function is quadratic, and hence minimization requirestioh of a
linear system. As the T-spline basis has local supportsifstem is
sparse. We efficiently solve it using the conjugate descethoal.

6 Local approximation

Global approximation does not necessarily ensure bouh8eet-
ror. Thus, after each global approximation step, we needdgert
appropriate knots in regions where the approximation eemmains
large. Several local approximation steps are carried owtdsn
pairs of successive global approximation steps.

We now consider how to perform one local approximation step,
by first finding those regions where the approximation quatit
low and refinement is necessary, and then performing lod&l op
mization.

6.1 Refinement

We start by computing the approximation error of all cellshat
current optimization stage. The approximation error caddfmed
using anL® norm or anL* norm. In practice, we find that the latter
gives more stable results, especially during the initiapst For
each cellCj, the mearl! approximation erroMc; is defined as:

Mc, = Zij Ep;k/Zij- (16)

We refine the cell, denotelinay, With the largest value df/lci.
Sederberg et al [Sederberg et al. 2004] presented one ahpiara
carrying out local refinement. Extra knots are added so tmat t
initial surface retains the same geometry but is repredameng
more control points. Iterative fitting then starts, initzald with this
new surface.



We prefer an alternative approach, which avoids iteratioth a
keeps the number of additional control points low. We singuli-
divide Cay into four subcells. Where this results in new points
on the old cell boundary, a check must be made if additiona} co
nections are needed across neighboring cells. Figure Grdlies
such a case. A cell in the upper left diagram is subdivded asish
on the lower left; the additional edge colored red is alsaireq],
and added. We then compute the basis functions for the keats n

Figure 6: Local refinement
the local refinement performed. LBt= {R} denote all control
points whose basis function have changed, an@ luet{C'j} denote
all rectangles that have control pointsin The right hand side of
Figure 6 illustrated® andC for this example. The red points are
inserted points, additional points I are colored green, and the
affected cell<C are colored gray.

6.2 Optimization

We now perform local optimization by allowing the positiarfshe
control points inP to move.

We use samples taken uniformly from the cellsCab form the
objective function. Samples in those cellsathat have only one or
two control points infP must be given lower weights: as such cells
have few degrees of freedom, minimization without such g
would tend to move these control points too far, have a negati
impact on the quality of fit of cells surroundir@max. Thus, we
weight the samples with respect to their relative distamom fthe
center of the local refinement. Lebe the center of this refinement,
andh measure the radius @fin the direction frono to the current
sampleS at p/jk (see the right hand side of Figure 6). The weight

for this sample is set to:

W(pji) =W(||pj —oll/h),

whereW(+) is a function defined oveb, «) with support[0, 1]. We
use the cubic B-spline basis function:

w(t) ::{ (16t)3

The objective function for local approximation is the wetiggh
sum of error terms of the samplp%‘k:

7

0<t<1

t>1 (18)

Bocal= Y WiW(Pj)Ey, - (19)

pjkGC; eC

This objective function is also quadratic in the positiofishe
control points, and can optimized by solving a linear syst&ims
linear system is much smaller than the one used in globabappr
mation.

[ Model | L*(p) | L*(n) | Mesh | T-spline [ Time |

Fig.5 || 0.2% | 0.1 | 300k | 4000 | 456s

Fig. 7 0.15% 0.1 80k 5000 106s

Fig. 8 0.1% 0.1 120k 6800 870s

Fig. 9 0.1% 0.1 60k 2400 183s
7 Results

First, we compared our algorithm with the subdivision scefap-
proximation method in [Marinov and Kobbelt 2004]. At a compa
rable approximation quality to the one they report for thekes
arm model, our method takes aboy®Iof the time. See Figure 7.
Moreover, our method requires no choice of initial posision

We now show further results using of our method. The goal was
to achieve high-quality approximation of position and nalsn

Tests using head of Max Planck’s (Figure 9) and David's (Fig-
ure 8) show the ability of our approach to capture intricaerge-
try.

Table 7 gives the user selected position and normal tolesanc
the number of vertices in the triangulation, the number ofti
points in the final mesh, and the time taken to compute these re
sults. Position errors are as a percentage of the size ofagerhl
of the bonding box of the model. Normal errors are measured as
mearf|nT —ng|), wherent andng are normals of the triangulation
and the fitted surface; averaging is done over each cell.

Figure 7: Rocker arm: (a) mesh, 80k triangles, (b) initiapline,
(c) final T-spline, (d) overlaid T-mesh.

Our results shows the ability of our method to rapidly and au-
tomatically convert complex mesh geometries to splinef fatv
control points.

8 Conclusions

We have given an easy-to-use and efficient framework fomaato
ically converting surface meshes of arbitrary topology iftspline
surfaces. Our approach depends only on user-specifiedqmoaitd
normal tolerances, and no other user input. Our method gesvi
high quality approximation in a short time.
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Appendix

Details of Riemann surface theory used in this paper can lnedfo
in [Jost 2000], other results are in [Siegel 1957; SchoenYand
1997]. We summarize the main ideas used.

First we informally explain charts and atlases. A chart nzgps
of a surface, topologically equivalent to an open disk, toflane.
An atlas is a collection of overlapping charts which coveuidace,
and the transition map says how the planar coordinates ktede
between the two charts.

Definition 1 A complex functionp : C — C, where C indicates
the complex planeg : (x,y) — (u,v) is holomorphicif it satis-
fies the Cauchy-Riemann equation®i/dx = dv/dy, du/dy =
—0v/ox.

Definition 2 An atlas on a surface S with chartg zUgy — C is
called conformalif the transition maps go 751 1 24 (Uqg NUg) —

23(Uq NUg) are holomorphic.

Definition 3 Two conformal atlases are equivalent if their union is
still a conformal atlas. Each equivalence class of confdratiases

is called aconformal structure A Riemann surfacés a surface
together with a conformal structure.

Theorem 1 All oriented metric surfaces are Riemann surfaces,
and the metric on each conformal chart can be representetien t
form d€ = A2(u,v)(dW? +dv?), (u,v) are the local coordinates.

Definition 4 A holomorphic differential forn{Jost 2000] w is a
complex differential form, such that for each local cooata z,
w can be represented as = f(zy)dzy. Point p is called azeroif
f(zg) is zero.

Definition 5 Let S be a Riemann surface, aadbe a holomorphic
1-form on S. Aorizontal trajectorys a curve on S along whicty
is real, and avertical trajectoryis a curve on S along whick is
imaginary.

The definitions of zero points and horizontal and verticajetcto-
ries are independent of the choice of local coordinates.tifjac-
tory starts from a zero point, it will end at a zero point oeirsiect
the boundary. Zero points are also caliglo pointsn this paper.

The intersecting horizontal and vertical trajectoriesrfohecon-
formal net which locally has a tensor product structure. Its global
structure is described by the following theorem:

Theorem 2 Let S be a closed Riemann surface with genuslg
and let w be a holomorphic one-form. The horizontal trajecto-
ries through the zero points @b partition S into cylinders, each
of which can be conformally mapped to a rectangle by intéggat
.



