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Metric-Driven RoSy Fields Design

Figure 1: Metric-driven N-RoSy field design. From left to right, a 3-RoSy field, a 4-RoSy field, a flat cone metric visualized as an obelisk,
triangle-quad mixed remeshing based on the metric, quad-remeshing, woven Celtic knot design over the surface based on the quad-remeshing.

Abstract

Designing rotational symmetries on surfaces is an important task
for a wide range of graphics applications. This work introduces a
rigorous and practical algorithm for automatic N-RoSy design on
arbitrary surfaces with user defined field topologies. The user has
full control of the number, positions and indices of the singulari-
ties, the turning numbers of the loops, and is able to edit the field
interactively.

We formulate N-RoSy field construction as designing a Riemannian
metric, such that the global symmetry of the metric is compatible
with the local symmetry of N-RoSy. We prove the compatibility
condition using discrete parallel transportation.

The complexity of N-RoSy field design is caused by curvatures. In
our work, we propose to simplify the Riemannian metric to make it
flat almost everywhere. This approach greatly simplifies the process
and improves the flexibility, such that, it can design N-RoSy fields
with single singularity, and mixed-RoSy. This approach can also be
generalized to construct regular remeshing on surfaces.

To demonstrate the effectiveness of our approach, we apply our
design system to pen-and-ink sktetching and geometry remeshing.
Furthermore, based on our remeshing results with high global sym-
metry, we generate Celtic knots on surfaces directly.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object represen-
tations

Keywords: metric, rotational symmetry, design, surface

1 Introduction

Many objects in computer graphics and digital geometry process-
ing can be described by rotational symmetries, such as brush strokes
and hatches in non-photorealistic rendering, regular patterns in tex-
ture synthesis, and principle curvature directions in surface param-
eterizations and remeshing. N-way rotational symmetry (N-RoSy)
has been proposed to model these objects.

The most important requirement for an N-RoSy field design system
is to allow the user to fully control the topology of the field, in-
cluding the number, positions and indices of the singularities, and
the turning numbers of the loops [Palacios and Zhang 2007; Ray
et al. to appear]. Automatic generation of N-RoSy fields with user
prescribed topologies remains a major challenge.

The method in [Palacios and Zhang 2007] generates fields with
user defined singularities, but it also produces excess singularities,
which requires further singularity pair cancellation and singularity
movement operations. The method in [Ray et al. to appear] is the
first one that guarantees the correct topology of the field, but it re-
quires the user to provide an initial field with all singularities at the
desired positions. In practice, finding such an initial field is the most
challenging step. For example, a common user can hardly imagine
a smooth vector with only one singularity as shown in Figure 8 and
Figure 2. Whereas fields with less singularities are often preferred,
because singularities cause visual artifacts in real applications.

In this work, we provide a rigorous and practical method which
allows the user to design N-RoSy fields with full control of the
topology and without inputting any initial field. Furthermore, the
algorithm can automatically generate a smooth field with the de-
sired topology and allow the user to further modify it interactively.

1.1 Main Idea

Our method is based on the following intuition inspired by the work
in [Ray et al. to appear]. An N-RoSy field has local symmetry that
is invariant under rotations of an integer multiple of 2π

N
. A sur-

face has global symmetry, which is intrinsically determined by the
Riemannian metric. If the global symmetry is compatible with the
N-RoSy symmetry, then smooth N-RoSy fields can be constructed
on the surface directly.

Roughly speaking, if a surface admits an N-RoSy field, then for any
loop on the surface the total turning angle of the tangent vectors
along the loop cancels the total turning angle of the N-RoSy field
along the loop. Figure 7 provides such an example where a genus
one polycubic surface admits 4-RoSy fields.
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Figure 2: Algorithm pipeline (a). User specifies the desired singularities with both positions and indices. Here one singularity at the
blue point with the index −2. The curves are homotopy group basis. (b) We compute a flat metric, the curvature at the singularity is −4π,
everywhere else 0. The surface is cut along the base curves and flatten to the plane. Note that the boundaries of the same color can match
each other by a rigid motion. (c) Parallel vector field. The field has discontinuities along the red curve. (d) Compute a harmonic 1-form to
compensate the holonomy. (e) The smooth vector field after rotation compensation. (f)(g) User inputs geometric constraints (red arrows) to
guide the direction of the field, then the field is modified from (f) to (g).

Most existing N-RoSy design methods focus on adjusting the rota-
tion of the field and keep the underlying surface untapped. While
these approaches have been effective in some cases, it is difficult
to enforce topological guarantees such as minimal number of sin-
gularities. Furthermore, these methods all require a constant N in
the N-RoSy fields. In this paper, we describe a novel approach that
modifies both the rotation of the field and the rotations of the loops
by deforming the surface.

This approach greatly simplifies the process and produces results
that are quite challenging for the alternatives, such as mixed-RoSy
and remeshing in Figure 1, as well as fields with only one singular
point in Figure 2 and 8.

1.2 Algorithm Pipeline

Our algorithm pipeline can be summarized as follows. In the first
stage, an initial smooth vector field is constructed with the follow-
ing steps: 1. the user specifies the desired singularities of the vector
field; 2. we compute a flat cone metric, such that all the cone sin-
gularities coincide with those of the field; 3. we parallel transport a
tangent vector at the base point to construct a parallel vector field;
4. if the parallel field has jumps when it goes around handles or cir-
culates singularities, we apply two methods to eliminate the jumps:
rotation compensation adjusts the rotation of the vector field; met-
ric compensation modifies the rotation of the loops by deforming
the surface. In the second stage, the vector field is further mod-
ified. we interactively edit the rotation and the magnitude of the
vector field to incorporate user constraints. Figure 2 illustrates the
pipeline using rotation compensation method.

1.3 Contributions

In this work, holonomy plays the central role, which refers to the
total turning angle of the tangent vectors along a loop. Holonomy
represents the global symmetry of the surface.

This work introduces a metric-driven method for N-RoSy design
(and re-meshing). The major goal is to make the global symmetry
of the metric represented as holonomy to be compatible with the
local symmetry of N-RoSy field.

• We convert the N-RoSy field design problem (and remeshing
problem) to flat cone metric design with constrained holon-
omy, and propose to use flat cone metric to simplify holon-
omy and improve the efficiency and efficacy of the algorithm.
Furthermore, we give an explicit compatibility condition for
a parallel N-RoSy field with the metric and generalize it for
symmetric tessellations.

• We give rigorous and practical algorithms to construct N-
RoSy fields with user fully controlled singularities on gen-
eral surfaces. The method produces RoSy fields with arbitrary
homotopy types, without excess singularities, and even with
mixed-RoSy types. The algorithm is automatic and interac-
tive.

Furthermore, we apply our remeshing method for the geometric
texture synthesis application to construct knotwork on general sur-
faces, which requires highly global symmetries.

Note that, this work focuses on the design and manipulation of met-
rics, it has the potential to be utilized for other graphics applica-
tions.

The organization of the paper is as follows. In Section 2, we briefly
review the most related works. In Section 3 we give a brief intro-
duction of the major concepts in Riemannian geometry and gen-
eralize them to discrete surfaces, and describe the theories for the
compatibility between N-RoSy and metric. In Section 4, we explain
the algorithm in detail. Finally we report our experimental results
in Section 5 and conclude in Section 6 with insights and future di-
rections of research. All the proofs of our theoretic results can be
found in the appendix.

2 Previous Work

There has been a significant amount of work in the analysis and
design of N-RoSy fields, especially when N = 1(vector) and
2(tensor). For a survey, we refer the readers to Palacios and Zhang
[2007] and references therein. Here, we will only mention the most
relevant work.

There have been a number of vector field design systems for sur-
faces, most of which are generated for a particular graphics appli-
cation such as texture synthesis [Praun et al. 2000; Turk 2001; Wei
and Levoy 2001], fluid simulation [Stam 2003], and vector field vi-
sualization [van Wijk 2002; van Wijk 2003]. Systems providing
topological control include [Theisel 2002; Zhang et al. 2006]. The
system of Zhang et al. has also been extended to create periodic
orbits [Chen et al. 2007] and to design tensor fields [Zhang et al.
2007]. Fisher et al. introduce a vector field design algorithm based
on discrete exterior calculus [Fisher et al. 2007], which produces
smooth fields incorporating user constraints interactively through
weighted least squares.

There has been some work on N-RoSy fields when N > 2. Hertz-



mann and Zorin [2000] and Ray et al. [2006] demonstrate that
4-RoSy fields are of great importance in surface illustration and
remeshing, respectively. Both works also develop algorithms that
can smooth the 4-RoSy fields in order to reduce the noise in the
fields. Later, Ray et al. [to appear] provide the analysis of singular-
ities on N-RoSy’s by by extending the Poincaré-Hopf theorem as
well as describe an algorithm in which a field with a minimal num-
ber of singularities can be constructed based on user-specified con-
straints and the Euler characteristic of the underlying surface [Ray
et al. to appear]. This is the first algorithm that performs provably
correct direction field design. Palacios and Zhang provide com-
prehensive analysis for rotational symmetry fields on surfaces and
present efficient algorithms for locating singularities, separatrices,
and effective design operations in [Palacios and Zhang 2007].

2.1 Pen-and-ink Sketching of Surfaces

Pen-and-ink sketching of surfaces is a non-photorealistic style of
shape visualization. The efficiency of the visualization and the
artistic appearance depend on a number of factors, one of which is
the direction of hatches. Girshick et al. [2000] show that 3D shapes
are best illustrated if hatches follow principle curvature directions.
However, curvature estimation on discrete surfaces is a challenging
problem. While there have been several algorithms that are the-
oretically sound and produce high-quality results [Hertzmann and
Zorin 2000; Meyer et al. 2002; Cohen-Steiner and Morvan 2003;
Rusinkiewicz 2004], most of them still rely on smoothing to reduce
the noise in the curvature estimate. Consequently, these methods
do not provide control over the singularities in the field. Hertzmann
and Zorin [2000] propose the concept of cross fields, which are 4-
RoSy fields obtained from the curvature tensor (a 2-RoSy field) by
removing the distinction between the major and minor principle di-
rections. They demonstrate that smoothing on the cross field tends
to produce more natural hatch directions than smoothing directly
on the curvature tensor. They also point out the need to control
the number and location of the singularities in the field. Zhang et
al. [2007] address this issue by providing singularity pair cancella-
tion and movement operations on the curvature tensor field. How-
ever, their technique cannot handle a 4-RoSy field.

2.2 Texture synthesis

In [Wei and Levoy 2001], 2 and 4-symmetry direction fields are
used to steer synthesizing using 2 and 4-symmetry texture samples.
[Zelinka and Garland 2004] steer their texture generation method
using a direction field defined as the gradient of a fair Morse func-
tion (it has the same singular points as the function). Based on the
study of the Morse complex of smooth harmonic functions [Ni et al.
2004], this allows a user-controllable number and configuration of
singularities. The gradient of the harmonic function is a direction
field. The first work on computer generated Celtic knot was intro-
duced by Kaplan and Cohen in [Kaplan and Cohen 2003]. [Zhou
et al. 2006] introduces mesh quilting method for geometric texture
synthesis through local stitching and deformation. Our method for
constructing Celtic knots on surfaces is a global method without
partitioning the surface and stitching the texture patches.

2.3 Quad-Dominant Remeshing

The problem of quad-dominant remeshing, i.e., constructing a
quad-dominant mesh from an input mesh, has been a well-studied
problem in computer graphics. The key observation is that a nice
quad-mesh can be generated if the orientations of the mesh ele-
ments follow the principle curvature directions [Alliez et al. 2003].
This observation has led to a number of efficient remeshing algo-
rithms that are based on streamline tracing [Alliez et al. 2003; Mari-
nov and Kobbelt 2004; Dong et al. 2005]. Ray et al. [2006] note
that better meshes can be generated if the elements are guided by a
4-RoSy field. They also develop an energy functional that can be
used to generate a periodic global parameterization and to perform
quad-based remeshing. The connection between quad-dominant

remeshing and 4-Rosy fields has also inspired Tong et al. [2006]
to generate quad meshes by letting the user design a singularity
graph that resembles the behavior of the topological skeleton of a
4-RoSy field. On the other hand, Dong et al. [2006] perform quad-
remeshing using spectral analysis, which produces quad meshes
that in general do not align with the curvature directions. A seminal
method is introduced in [Kälberer et al. 2007], which converts a 4-
RoSy field on a surface to a vector field by using 4 layer branched
covering.

2.4 Metric Design
Kharevych et al. used circle patterns for discrete conformal map-
pings in [Kharevych et al. 2006]. The Euclidean flat cone metric
with user prescribed singularities can be obtained by two stage op-
timizations. Jin et al. used circle packing to design flat cone met-
rics in [Jin et al. 2007], which handles spherical, Euclidean and
hyperbolic discrete metrics. The algorithm is the discrete analogy
of Ricci flow [Hamilton 1982]. A linear metric scaling method for
computing Euclidean flat cone metric with prescribed curvatures is
introduced in [Ben-Chen et al. 2008], where the cone singularities
can be automatically selected to minimize the distortion. Circle
pattern and discrete Ricci flow are non-linear methods, requires a
preprocessing stage, and get an accurate metric; the metric scal-
ing method is linear and flexible for general meshes but with less
accuracy.

3 Theoretic Foundations

In this section, we first briefly introduce Riemannian geometry the-
ories, and then generalize them to discrete settings. Next we present
our major theoretical results. The detailed proofs can be found in
the Appendix.

3.1 Basic Concepts in Riemannian Geometry
In order to quantitatively measure the rotation of a vector field along
a curve and the rotation of curve itself on a surface, we need to
introduce some tools from Riemannian geometry. Parallel trans-
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Figure 3: Parallel transport and holonomy. θ is the holonomy
along γ.

portation on a curved surface plays the central role. Suppose γ is
a curve on the surface S. The envelope of all the tangent planes
along γ is a developable surface S̃, we develop the envelope to the
plane, γ becomes a planar curve. Suppose v is a tangent vector at
a point p, we translate it to ṽ on the plane along the development
of γ. This corresponds to the parallel transportation on the surface.
The angle between the resulting transported vector and the initial
vector is called the rotational component of the holonomy along γ,
or simply the holonomy of γ. Holonomy describes the global sym-
metry of the surface. Figure 3 illustrates a parallel transportation on
a sphere S, where γ is a circle, S̃ is a conic surface, angle θ is the
holonomy along γ.

Suppose a vector field v (in red) is along a path γ, connecting p



and q. We parallel transport the tangent vec-
tor at the starting point p to the ending ver-
tex q, this parallel vector field is w in blue.
The rotation θ between from w(q) to v(q)
is called the absolute rotation of the vector
field v along the path γ. The absolute ro-
tation of the tangent direction of γ is equal
to its holonomy. The relative rotation of the
vector field v along the path γ is the dif-
ference between the absolute rotation of v
and the holonomy of γ, which indicates the
change of the angle between v and the tan-
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w
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θ

Figure 4: Absolute ro-
tation.

gent vector of γ along γ. The compatibility condition for a smooth
N-RoSy field on a surface is that for any loop γ, the relative rotation
of v along γ is an integer times of 2π

N
. Our central task is to make

the absolute rotation of a vector field and the holonomy to cancel
out each other.

Parallel transportation and holonomy along loops on curved
surfaces are very complicated, which
contributes to the difficulty of N-RoSy
design. For example, if γ is the boundary
of a surface patch Ω, then the holonomy
of γ equals to the total curvature on Ω,∫
Ω
K, where K is the Gaussian curvature.

Therefore, the parallel transportation is
path dependent. If K is zero everywhere,
namely, the surface is flat, then parallel
transportation is path independent. The
surface global symmetry is extremely easy
to analyze. Unfortunately, according to the

θ

N

S

Ω

Figure 5: Holonomy
vs. curvature.

Gauss-Bonnet theorem, the total Gaussian curvature of the surface
is a constant 2πχ(S), where χ(S) is the Euler characteristic
number of the surface. If the surface is not of genus one, then its
Riemannian metric cannot be flat everywhere.

Figure 6: Flat cone metrics on a genus one kitten mesh. The first
metric has no cone singularities, the second metric has 16 cone
singularities, i.e.corners of polycube.

Fortunately, we can design a flat cone metric of an arbitrary sur-
face, such that the curvature is zero almost everywhere except at
finite number of cone singularities. Let g be the induced Euclidean
metric tensor on S. Suppose a user has selected the position and
curvatures of the singularities on a surface, the target curvature is
K̄, then the target metric can be deformed by the Hamilton’s surface
Ricci flow [Hamilton 1982], dg(t)

dt
= (K̄ − Kg(t))g(t). Figure 6

demonstrates two different flat cone metrics of a genus one surface
obtained by using Ricci flow.

3.2 Discrete Theories

All the aforementioned Riemannian geometric concepts are defined
on smooth surfaces. In the following, we generalize the major con-
cepts to the discrete settings.

Let M be a triangular mesh in R3. A metric of M is a configu-
ration of edge lengths, such that the triangular inequality holds on
all faces. The vertex curvature is the angle deficit, i.e., 2π-the total

angle around the vertex. A flat cone metric is a metric such that the
curvatures are zero for almost all the vertices, except at a few ones.
The vertices with non-zero curvatures are called the cone singular-
ities. Note that metric determines curvatures. Reversely, given the
curvatures on vertices, we can uniquely determine a metric using
the methods in [Kharevych et al. 2006; Jin et al. 2007; Ben-Chen
et al. 2008]. Figure 6 shows two flat cone metrics for a genus one
kitten model. The mesh is developed onto the plane by a flat metric
without singularities. While the curvature is determined by the met-
ric, the total curvature of the surface is determined by the topology
of the mesh, which is equal to 2πχ(M), where χ(M) is the Euler
characteristic number.

LetM be a mesh with a flat cone metric, and S = {s1, s2, · · · , sn}
be the cone singularity set. Let M̄ denote the mesh obtained by
removing all the cone singularities from M , M̄ = M\S.

v0

v1 v0

v1

Figure 7: Discrete parallel transportation and holonomy. Homo-
topic loops sharing the base vertex have the same holonomy.
Parallel Transport Parallel transportation is the direct general-
ization of planar translation. Let γ be a path consisting of a se-
quence of consecutive edges on M̄ , the sorted vertices of γ are
{v0, v1, · · · , vn}. Let Ni denote the one-ring neighborhood of vi

(the union of all the faces adjacent to vi), then the one-ring neigh-
borhood of γ is defined as the union of allNi’s: N(γ) =

⋃n
i=0Ni.

The development of N(γ) refers to the following process: first we
flatten N0 on the plane, and then we extend the flattening to N1,
such that the common faces in both N0 and N1 coincide on the
plane. This process is repeated until Nn is flattened. In this way,
we develop N(γ) to the plane. We denote the development map as
φ : N(γ) → R2. Note that the restriction of the development map
on each triangle is a planar rigid motion. Parallel transportation on
the mesh along γ is defined as the translation on the development
of N(γ). See Figure 7 for the illustration of parallel transportation.

Holonomy In practice, we are more interested in the loop case,
i.e. v0 = vn. When parallel transporting a tangent vector at v0
along γ to vn, the resulting vector differs from the original vector
by a rotation, which is the holonomy of the loop, denoted as h(γ).
Given a vector field v along γ, we parallel transport the vector at
the starting point. The vector at the ending point differs from the
transported vector, which is the absolute rotation of the field along
γ, denoted as Rv(γ).

Two loops γ1, γ2 sharing a base point p are homotopic, if one can
deform to the other. The concatenation of γ1, γ2 through p is still a
loop, which is the product of them. All homotopy classes of loops
form a group, the so-called homotopy group π(M̄). Suppose M
has g handles, and n cone singularities. Then the basis of π(M̄) is
depicted in Figure 9, where each handle has two loops ak, bk, and
each singularity si has one loop ci. Details are explained in [Ray
et al. to appear].

Homotopic loops have the same holonomy if the underlying surface
has a flat cone metric. In this case, we can define the holonomy map,



h : π(M̄) → SO(2), where SO(2) is the rotation group in the
plane. Its image h(π(M̄)) is the holonomy group of M , denoted as
holo(M̄).

Compatibility N-RoSy The relative rotation of a vector v along
γ is defined as the difference of the absolute rotation of v and the
holonomy of γ, Tv(γ) = Rv(γ) − h(γ). The relative rotation is
equivalent to the turning number defined by [Ray et al. to appear].
Ray et al. proved that for a smooth N-RoSy field, the turning num-
ber along any loop must be integer times of 2π

N
.

Tv(γ) = Rv(γ)− h(γ) ≡ 0,mod
2π

N
. (1)

Furthermore, the turning numbers on a basis of the homotopy group
π(M̄)

{Tv(a1), Tv(b1), · · · , Tv(ag), Tv(bg), Tv(c1), · · · , Tv(cn)} (2)

determine the homotopy class of the N-RoSy field. We develop our
theoretical results based on these fundamental facts. All the proofs
are given in the appendix.

The following theorems lay down the theoretical foundation of our
metric-driven method, which claims that the topological properties
of a vector field are preserved by metric deformation.

Theorem 3.1 Suppose v is a smooth vector field on a surface
M . g(t) is a one parameter family of Riemannian metric tensors.
Then for any closed loop γ on M , the relative rotation Tv(γ) on
(M,g(t)), i.e. M with the metric g(t), is constant for any t.

The simplest N-RoSy field is the parallel field, the following theory
leads us to design our algorithm.

Theorem 3.2 Suppose M is a surface with a flat cone metric. A
parallel N-RoSy field exists on the surface, if and only if all the
holonomic rotation angles of the metric are integer times of 2π

n
.

For genus zero closed surfaces, the curvature of cone singularities
determine the holonomy.

Corollary 3.3 SupposeM is a genus zero closed surface with finite
cone singularities. M has a parallel N-RoSy field, if and only if the
curvature for each cone singularity is 2kπ

N
.

According to this corollary, it is easy to verify the symmetry of pla-
tonic solids. If a platonic solid has N vertices, then the vertex cur-
vature is 4π

N
, therefore the rotational homology group is generated

by the rotation of angle 4π
N

, a N
2

-RoSy field exists on it. For exam-
ple, an octahedron is with 6 vertices and 3-RoSy; a dodecahedron
is with 20 vertices and 10-RoSy.

The following existence theorem gurantees the existence of N-
RoSy fields on surfaces with arbitrary flat cone metrics.

Theorem 3.4 Suppose M is a surface with flat cone metric, then
there exists a smooth N-RoSy field.

Suppose M̃ is a branch covering of M (defined in [Kälberer et al.
2007]), then the holonomy group of M̃ is a subgroup of that of M ,
M̃ may have more N-RoSy fields with lower N . For example, in
[Kälberer et al. 2007], M has a parallel 4-RoSy field, its 4-layer
branch covering M̃ allows a parallel 1-RoSy field, namely, a vector
field.

Tessellation We wish to generalize planar tessellation to general
surfaces. If the symmetry of the metric on the surface is compatible
with the symmetry of the planar tessellation, then the surface can
be re-meshed according to the planar tessellation.

We generalize holonomy to include both translation and rotation.
Figure 7 shows the concept. Given a loop γ, the starting vertex

v1 coincides with the ending vertex vn, we develop its neighbor-
hood N(r) onto the plane, then the development of N1 and that of
Nn differs by a planar rigid motion, which is defined as the gen-
eral holonomy along γ. Two loops sharing the common base vertex
share the same general holonomy. Therefore, general holonomy
maps the homotopy group to a subgroup of planar rigid motion
E(2). We denote the image as Holo(M̄), and call it the general
holonomy group of M̄ .

Suppose T is a tessellation of the plane R2, τ is a rigid motion
preserving T , τ(T ) = T . The symmetry group of T is defined as

GT = {τ ∈ E(2)|τ(T ) = T}.

Theorem 3.5 Suppose M is with a flat cone metric, the holonomy
group of M̄ is Holo(M̄), if Holo(M̄) is a subgroup of GT , then
T can be defined on M .

4 Algorithm

Suppose the user specifies topological and geometric constraints for
the N-RoSy field: topological constraint means the singularities,
including the number, positions and indices; geometric constraint
means the directions and lengths of the fields at some regions on
the surface.

Our algorithm has two major stages: stage one is to compute an ini-
tial N-RoSy field, which satisfies the topological constraints; stage
two is to edit the N-RoSy field, locally rotate and scale the initial
field to satisfy the geometric constraints.

4.1 Initializing N-RoSy Field
This stage has 3 steps: compute the metric, compute the holonomy,
and holonomy compensation. For genus zero meshes, we only need
the first step, because the metric will be compilable with N-RoSy
fields automatically according to corollary 3.3.

4.1.1 Computing the Flat Cone Metric

The cone singularities are fully determined by the singularities on
the desired N-RoSy field. Let v be a cone singularity, then its curva-
ture and its index are closely related by the formula Ind(v) = k(v)

2π
,

where Ind(v) is the index of v. If the index is non-positive, then
it is easy to define the curvature of v. For vertex with a positive
index, it is more complicated to find the curvature. We handle this
situation in the following way. We punch a small hole at the cone
singularity. Suppose the boundary vertices of the small hole are
{v1, v2, · · · , vm}. Then the index of the singularity and the total
curvature of the boundary are related by Ind(v) =

∑m
i=1 ki

2π
+ 1.

Given the desired curvature, we can compute a flat metric using
one of the conventional methods. Figure 8 illustrates a vector field
constructed using this method on the Michelangelo’s David head
surface,which is a genus zero closed surface, with one singularity
of index +2.

According to corollary 3.3, the flat cone metrics on a genus zero
closed mesh satisfy the compatible condition automatically. Figure
10 shows one example, both 3-RoSy and 4-RoSy fields on a genus
zero surface are constructed by parallel transportation on the flat
cone metric directly.

4.1.2 Computing the holonomy

For genus zero closed meshes, if the cone singularity curvatures
satisfy the compatibility condition 1, then the flat cone metric of
the surface satisfies the same condition. For high genus meshes, the
cone singularity curvatures cannot guarantee the holonomy compat-
ibility. Explicit computation is required, as shown by the following
example on a genus three surface.



Figure 8: A vector field on a genus zero closed surface with a single
singularity with index +2.

We compute a basis of the homotopy group π(M̄) using the
method in [Kälberer et al. 2007].
The base loops are shown in Fig-
ure 9. Then we compute the de-
velopment of each base loop γ to
obtain the holonomy h(γ). The
holonomies of all the base loops
form the generators of the holon-
omy group. For example, Figure
9 shows a genus three mesh with
four cone singularities, which are la-
beled with different colors. The cur-
vatures of the red, orange and blue
singularities are −π,−3π,−2π, re-

a1

a2

a3

b1

b2

b3

c1

c2

c3

Figure 9: Homotopy basis for a
3-hole torus with 4 singularities.

spectively. The holonomic rotation angles for c1,c2,c3 are 0,π and
0 (modulo 2π).

The holonomic rotation angles (with respect to a modulus of 2π)
are as follows:

a1 b1 a2 b2 a3 b3
1.5551π 0.9683π 1.3704π 1.5175π 1.5975π 1.0574π

4.1.3 Holonomy Compensation

There are two methods for holonomy compensation, rotation com-
pensation and metric compensation. The first one is to adjust the
absolute rotation of the direction field Rv(γ); the second one mod-
ifies the metric to change the holonomy h(γ), such that the relative
rotation is equal to 2kπ

N
along arbitrary loops.

Rotation Compensation This method is similar to the method in
Ray et al. [to appear]. The rotation angle of the field is represented
as a closed 1-form. The key difference is that, their method further
rotates an existing smooth field and change the topology of the field;
our method rotates a non-smooth field and make it smooth, it can
also be applied to change the topology of a non-smooth field.

The homotopy class of the N-RoSy field is determined by the rel-
ative rotations on the basis of homotopy group in equation 2. We
use a conventional method to compute a harmonic 1-form ω on M̄ ,
such that for any homotopy group generator γ, the following con-
dition holds: for N-RoSy field design,∫

γ

ω = Tv([γ])− h([γ]),

such a harmonic 1-form exists and is unique. Conceptually, the
tangent field corresponding to the 1-form ω is constructed in the
following way. We select a tangent vector w0 at the base vertex.
Suppose v is another vertex, the shortest path on M̄ from v0 to v
is γ, then we parallel transport w0 to v along γ to obtain w, then

we rotate w clock-wisely about the normal by an angle θ =
∫

γ
ω.

By this way, we propagate the tangent vector w0 to cover the whole
mesh.

In practice, we use an equivalent fast marching method to propagate
the vector field.
1. Select a tangent vector w0 at v0, put v0 in a queue.
2. If the queue is empty, stop. Otherwise, pop the head vertex vi of
the queue. Go through all the neighbors of vi. For each neighboring
vertex vj , which hasn’t been accessed, parallel transport wi from
vi to vj , rotate it counter-clock-wisely by angle ω(vi, vj). Enqueue
vj .
3. Repeat step 2, until all the vertices have been processed.
Figure 2 illustrates a vector field on a genus two amphora model
with one singularity.

Metric Compensation For designing smooth N-RoSy fields, au-
tomatic rotation compensation is already enough. For the purpose
of remeshing, metric compensation method will be required. In
contrast to rotation compensation, this approach modifies the flat
cone metric to achieve the desired general holonomy which satis-
fies the compatibility condition in Theorem 3.5.

Conventional algorithms [Kharevych et al. 2006; Jin et al. 2007;
Ben-Chen et al. 2008] for flat cone metrics cannot produce metrics
satisfying the holonomy constraint in Eqn.1. We observe that the
flat cone metric on a polycube [Tarini et al. 2004] satisfies the com-
patibility condition in Eqn.1 for 4-RoSy fields. The flat metric on
a mesh with all faces are equilateral triangles is compatible with
6-RoSy fields.

The following algorithm computes the desired flat cone metric for
genus zero surfaces.
1. First, the user specifies the singularities of the N-RoSy field
for both positions and indices, such that the curvatures satisfy the
holonomy condition in Eqn.1 and are positive. Furthermore, the
user specifies the connectivity of a polyhedron P , whose vertices
are the cone singularities, and faces are either quadrilaterals or tri-

Figure 10: The Pensatore surface is a genus zero closed mesh.
A 3-RoSy field is shown in the first row, where there are 6 cone
singularities with the curvatures of 2π

3
. A 4-RoSy field is shown in

the second row, there are 8 cone singularities with the curvatures
of π

2
.



angles.
2. We use the discrete Ricci flow method [Jin et al. 2007] to com-
pute a flat cone metric. If {si, sj} is an edge in P , we compute the
shortest path connecting si, sj under the flat metric. P becomes a
convex polyhedron.
3. We use Alexandrov embedding method in [Bobenko and Iz-
mestiev 2007] to embed P in R3.
4. We adjust the positions of all the vertices of P to make the gen-
eral holonomy of P to satisfy the condition in Theorem 3.5.
For high genus surfaces, we apply polycube map method in [Tarini
et al. 2004].

Figure 1 illustrates several remeshing results based on the metric
compensation.

4.2 N-RoSy field Editing

Suppose users add some geometric constraints to the N-Rosy field,
our method can incorpo-
rate them easily. We de-
compose the constraints as
orientation constraints and
length constraints. Sup-
pose user specify the direc-
tions of the vectors at spe-
cial point set ω ⊂ M . Let
p ∈ ω, the angle between
w(p) and the desired di-
rection is ψ(p). Then we
compute a harmonic func- Figure 11: Vector field editing.

tion using the method described in [Ni et al. 2004], ψ : M → R
with the boundary condition on Ω. Then at each point q ∈ M , we
rotate w(q) by an angle ψ(q). The length constraint can be satisfied
using the similar harmonic function method. Figure 11 demonstrate
a vector field editing process on the kitten surface, the red arrows
are specified directions, the vector field is modified to follow these
directions interactively.

5 Experimental Results

We implemented our algorithm in C++ on an Intel Core2Duo 2GHz
Laptop with 2GB memory. We report the timings for the major
steps in Table 1, which include the computations for the flat metric,
rotational compensation, and user editing. The flat metric computa-
tion accounts for most of the time, which can be taken offline. The
rotation compensation and feedback to editing can be performed at
an interactive rate. Also, if no user editing is involved, the whole
pipeline is fully automatic.

Remeshing In the holonomy compensation step of stage one
(section 4.1.3), we use the metric compensation method to adjust
the metric to satisfy the tessellation compatibility condition in The-
orem 3.5. Then we develop the mesh to the plane, and tessellate the
development. This induces a desired tessellation.

Table 1: Running times for different steps of our algorithm. (F -No.
of faces, g-genus, s- No. of singularities)

Model F g s Metric(s) Comp.(s) Edit(s)
kitten 19350 1 0 100 0.078 0.410
amphora 20078 2 1 169 0.266 0.452
venus 20308 0 5 126 0.087 0.453
bimba 22412 0 6 67 0.098 0.522
3holes 3514 3 4 4 0.157 —
Pensatore(3-RS) 21304 0 6 28 0.079 —
Pensatore(4-RS) 21304 0 8 25 0.083 —
Buddha(3-RS) 20828 0 6 10 0.078 —

Figure 1 demonstrates the results of N-RoSy field on the buddha
model. Frame (a) and (b) show a 3-RoSy field and a 4-RoSy field
on the buddha model respectively. In frame (c), a flat cone met-
ric deforms the mesh in the shape of an obelisk, which induces a
mixed 4-RoSy and 3-RoSy field on the mesh. (d) shows a mixed
quadrilateral and triangle tessellation based on the flat cone met-
ric. The Celtic knot in the last frame is constructed based on the
quad-remeshing in frame (e).

Celtic Knot on Surface Celtic knot refers

to a variety of endless knots, which in most
cases contain delicate symmetries and entan-
gled structures. Figure 12 shows a simple
Celtic knot. To the best of our knowledge,
Kaplan and Cohen [2003] were the first to
present a technique for computer generated
Celtic design. Most of their results focused
on planar Celtic knot design, whereas our work emphasizes Celtic

Figure 12: A planar
Celtic knot.

knots on surfaces with highly global symmetry.

The local symmetry and the quality of remeshing of the surfaces
play crucial roles for the knotwork on surfaces. Based on our
remeshed results, those uniform quads and triangles provide a per-
fect canvas for Celtic knot design. Similar to the method in [Kaplan
and Cohen 2003], we set control points directly on surfaces, con-
necting them using polynomials based on the knot designing rules.
Compared with traditional geometric texture synthesis approaches,
we do not need shell mapping from planar domains to surfaces.
Figures 1,13,16 show our Celtic knots synthesis results on several
surfaces. The knotwork has complicated structures and rich sym-
metries.

Figure 13: Two woven Celtic knot designs on the Moai surface,
which have different global symmetries.

Pen-and-ink Sketching

of Surfaces Pen-and-ink
sketching of surfaces is a
non-photorealistic style of
shape visualization. In this
work, we follow Hertzmann
and Zorin [2000] by treating
hatch directions as a 4-RoSy
field.

Our method neither requires
the user to input an initial
field, nor generates excess
singularities except those
specified by the user. It
enables the user to fully
control the number, po-
sitions and the indices of Figure 14: Pen-and-ink sketching.

singularities, and edit the field interactively. These merits make our
system rather desirable for NPR applications.

For example, we perform the pen-and-ink sketching on the Venus



model in Figure 14 and Bimba model in Figure 15. The left
columns show the 4-RoSy fields with user specified singularities,
6 for Bimba, 5 for Venus. Comparing with the algorithm in [Pala-
cios and Zhang 2007], our method reduces the number of singu-
larities by one order of magnitude, and locates them at the natural
positions. This greatly reduces the visual artifacts and simplifies
the designing process. The editing process improves the hatching
quality on the Bimba model shown in 15.

Figure 15: Pen-and-ink sketching of bimba before (top row) and
after editing (bottom row). The hatch directions follow the natural
directions better (e.g. neck,arm).
More experimental results are reported in our supplementary video
and images.

6 Conclusion
This work introduces rigorous and practical algorithms for auto-
matic N-RoSy field design on arbitrary surfaces with prescribed
topologies. The user has full control of the number, positions and
indices of the singularities, as well as the turning numbers of the
loops.

We have also proved the compatibility condition between the metric
and N-RoSy fields (and regular tessellation). Based on the theoreti-
cal findings, we turn the problem of N-RoSy field design to a metric
design problem with constrained holonomy. By changing the met-
ric of the surface, we enforce the global symmetry of the surface
to be compatible with the local symmetry of the N-RoSy field. By
using the flat cone metric, we greatly reduce the complexity of the
design process. We also generalize the method for tessellation and
mixed N-RoSy design.

We applied our algorithm for NPR rendering, remeshing, and geo-
metric texture synthesis. We develop a global approach to design
Celtic knot on surfaces.

Metric design is a very general approach, and we believe that it has
potential of being applied for many other graphics tasks, such as
parameterizations, mesh editing, and efficient rendering, etc. Our
work demonstrates the effectiveness of using flat cone metrics to
produce high quality N-RoSy fields. We also conjecture N-RoSy
fields can be utilized to produce a special flat cone metric. In the
future, we will explore further in these directions.
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Appendix
Theorem 3.1 Suppose v is a smooth vector field on a surface M with an
initial metric g(0). g(t) is a one parameter family of Riemannian metric
tensors. Then for any closed loop γ on M , the relative rotation Tv(γ) on
(M,g(t)) is a constant for any t.
Proof The Levi-Civita connections are continuously determined by g(t),
therefore the parallel transportation is continuously determined by g(t).
The absolute rotation of v along γ, Rv(γ) is a continuous function of t,

and so is the holonomic rotation of γ, h(γ). We have that the relative rota-
tion Tv(γ) is a continuous function. Because v is smooth on (M,g(0)),
therefore N

2π
Tv(γ)|t=0 is an integer. Because it is also continuous, there-

fore, it must be a constant for all t. Because γ is arbitrary, therefore the
homotopy type of v, the indexes of the singularities are preserved during
the continuous metric deformation g(t). Q.E.D.
Theorem 3.2 Suppose M is a surface with a flat cone metric. A parallel
n-RoSy field exists on the surface, if and only if all the holonomic rotation
angles of the metric are integer times of 2π

n
.

Proof If the holonomic rotations of the flat cone metric are 2kπ
N

, then par-
allel transporting an N-RoSy at the base point results in a field v, Rv(γ)

= 0 for any loop γ. Consequently the compatibility is satisfied and the field
is smooth. Reversely, if there exists a smooth parallel N-RoSy field v, then
Rv(γ) is zero for any loop γ. Therefore, h(γ) must be integer times of 2π

N
.

Q.E.D.
Corollary 3.3 Suppose M is a genus zero closed surface with a finite num-
ber of cone singularities. M has a parallel N-RoSy field, if and only if the
curvature for each cone singularity is 2kπ

N
.

Proof Let γ be a loop, which is the boundary of a region Ω on the surface.
Suppose there are m cone singularities {s1, s2, · · · , sm} inside Ω. Ac-
cording to Gauss-Bonnet theorem, the holonomic rotation angle of γ equals
to the total curvature of Ω, h(γ) =

∑m
i=1 ki, where ki is the curvature of

si. Let γi be a loop surrounding si without enclosing any other singulari-
ties, then {γi, i = 1, 2, · · · , m− 1} is a set of generators of π(M̄). M has
a smooth parallel N-RoSy field, if and only if all h(γi)

′s are 2kπ
N

. Q.E.D.
Theorem 3.4 Suppose M is a surface with flat cone metric, then there exists
a smooth N-RoSy field.
Proof There exists a unique harmonic 1-form ω, such that

∫
γ ω = h(γ),

for any loop γ on M̄ . We parallel transport an N-RoSy from the base point,
and rotate it during the transportation by an angle

∫
γ ω, where γ is any path

from the base to the current point. The resulting field is smooth. Q.E.D.
Theorem 3.5 Suppose M is with a flat cone metric, the holonomy group of
M̄ is H(M̄), if H(M̄) is a subgroup of GT , then T can be defined on M .
Proof Let M̃ be the universal covering space of M̄ . We equip M̃ with the
flat cone metric and immerse M̃ onto the plane R2. Then the deck trans-
formation group is a subgroup of the holonomy group H(M̄). If T is a
tessellation on R2, it is invariant under the action of G. H(M̄) is a sub-
group of G, so is the deck transformation group. Therefore, T is invariant
under all the deck transformations of M̃ , and so T can be defined on M̄ .
Q.E.D.
For a mesh with a flat cone metric, homotopic loops have the same holon-
omy. It can be further proved that homologic loops have the same holonomy.
But only homotopy loops have the same generalized holonomy. For the sake
of simplicity, we don’t introduce the concept of homology.




