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Abstract

We present a method for modifying the topology of a 3D model
with user control. The heart of our method is a guided topology
editing algorithm. Given a source model and a user-provided target
shape, the algorithm modifies the source so that the resulting model
is topologically consistent with the target. Our algorithm permits
removing or adding various topological features (e.g., handles, cav-
ities and islands) in a common framework and ensures that each
topological change is made by minimal modification to the source
model. To create the target shape, we have also designed a con-
venient 2D sketching interface for drawing 3D line skeletons. As
demonstrated in a suite of examples, the use of sketching allows
more accurate removal of topological artifacts than previous meth-
ods, and enables creative designs with specific topological goals.

CR Categories: I.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object representations—
Geometric algorithms, languages, and systems

Keywords: topology repair, sketching, skeleton

1 Introduction

The topology of a 3D solid model is characterized by its islands
(i.e., connected pieces of solid), cavities (i.e., voids inside the solid)
and handles (i.e., rings and tunnels). Ensuring that a model has
the correct topology is crucial for a number of model-related tasks
such as simplification, surface parameterization, and finite element
analysis. Topology modification becomes necessary when artifacts,
such as extraneous handles resulted from surface reconstruction,
need to be removed (i.e., topology repair), or when the user desires a
variation of the model with a different topology (i.e., shape design).

Prior to performing topology modification, we first need to know
what is the objective topology. A commonly used objective is the
genus, which is the number of handles minus the sum of the num-
bers of cavities and islands. However, having the right genus does
not warrant a satisfactory result. In the example of Figure 1, the
original model (a) contains an erroneous handle (hence is genus-
1), which is removed in both (b,d). However, (b) is unsatisfac-
tory as the paper clip is cut open in the middle. The problem is
worsened when both the source model and the objective topology
contain handles, cavities or islands, where the desired set of topo-
logical features would be difficult to be characterized precisely and
robustly using genus or using any numerical measures of feature
sizes (see more such examples in Section 5).
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(a) (b) (c) (d)

Figure 1: The Clip model (a) incorrectly merges two parts (high-
lighted) and has genus 1. A typical topology repair method would
produce a model with the right genus (b) yet cutting the model at an
undesired location. Our approach utilizes a simple target (purple
in c) created by sketching and produces a satisfactory result (d).

In this work we adopt a target shape provided by the user as our
objective in topology modification. Our motivation is that a large
number of 3D models used in practice have a simple topology
known to the user, and that the user is the ultimate judge of correct-
ness. While the target can assume any geometric shape, we have
designed a convenient 2D sketching interface where the user may
easily create 3D line skeletons without having to tediously specify
the 3D locations of end-points. An example of the sketched lines is
shown in Figure 1 (c).

Given a source and a target, the core of our method is a guided
topology editing algorithm that produces a modified source model
topologically consistent (to be defined in Section 3) with the target.
Guided by the target, our algorithm applies topological changes in
a sequential manner, and each change is made with minimal modi-
fication to the source model. In the example of Figure 1, the use of
a target in (c) combined with the guided topology editing algorithm
allows accurate removal of the artifact handle, shown in (d).

Contributions: While sketching has been widely used in editing
the geometry of 3D models, we introduce a similar user guidance
into topology editing and develop a sound mathematical foundation
for topology editing guided by a user-defined target. This founda-
tion is built on top of a previous method [Zhou et al. 2007], which
utilizes the skeleton of a solid model for removing topological han-
dles without user intervention. Comparing to [Zhou et al. 2007] and
previous approaches, we present three key theoretical contributions:

1. While existing topology repair approaches are typically re-
stricted to removing topological handles, we show that a full
range of topological modifications, including addition and re-
moval of islands, cavities and handles, can be easily achieved
by modifying a skeleton representation of the model.

2. Given any user-specified target, our method automatically
modifies the source 3D model to be topologically consistent
with the target. To the best of our knowledge, this is the first
method with such topological guarantee, which is essential for
the purpose of user-guidance.

3. While most volume-based techniques including [Zhou et al.
2007] modifies a source model solely by expanding or by
shrinking, our method considers both expanding and shrink-
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ing when making each topology change, hence preventing un-
necessarily large volume modifications.

2 Previous work
Topology repair and simplification With the exception of a few
methods that globally alter the shape of the input model, such as the
multi-resolution simplification approach of [Andujar et al. 2002]
and the morphological approach of [Nooruddin and Turk 2003],
the majority of topology repair methods are designed to simplify
the topology of the input model by locally removing redundant han-
dles. Common to these methods is the use of either genus or some
measure of feature size in describing the objective topology. For
example, [El-Sana and Varshney 1997] identifies small tunnels as
regions not accessible to a sphere of user-specified radius rolling
on the surface. The method of [Guskov and Wood 2001] removes
small handles that are completely contained in a mesh neighbor-
hood of a given size. Using a volumetric representation, [Szymczak
and Vanderhyde 2003] applies topology-preserving carving opera-
tions to extract iso-surfaces with the desired genus. [Wood et al.
2004] detects each surface handle as a cycle in the Reeb graph of
an iso-surface, whose size is measured as the shortest geodesic cir-
cle around the handle. Similar graph approaches were adopted in
the work of [Shattuck and Leahy 2001], [Han et al. 2002] and [Zhou
et al. 2007], where a handle corresponds to a cycle in the graph en-
coding the topology of the solid (instead of the surface), and the
size of the handle is measured as the thickness of the solid.

Another common difficulty for most existing approaches is to en-
sure the geometric or topological correctness of their results. For
example, mesh-based approaches such as [Guskov and Wood 2001]
may introduce geometric errors in the form of self-intersecting
polygons, while volume-based approaches may introduce new han-
dles as the result of removing existing ones [Nooruddin and Turk
2003; Wood et al. 2004] or may not be able to identify and remove
all handles for models with complex topology [Zhou et al. 2007].

Surface reconstruction with topology control This class of
methods [Mangin et al. 1995; Aktouf et al. 1996; Kriegeskorte
and Goebel 2001; Bischoff and Kobbelt 2002; Sharf et al. 2006]
is designed to reconstruct iso-surfaces from volumetric data with a
known topology type. Starting from an initial solid with the correct
surface topology, these methods grow the solid so that the grown
solid is topologically consistent with the initial one. While such
methods have been effective in reconstructing genus-0 models, ap-
plication to non-spherical cases has been limited due to the diffi-
culty in defining the initial solid. While the method of [Sharf et al.
2006] allows topology change in the growing process by merg-
ing growing fronts, this method suffers from the same drawback
as topology simplification methods as the merging is controlled by
a size parameter. Furthermore, surface reconstruction by growing
can only result in a subset of the original model. Hence these meth-
ods may introduce a much larger modification to the original model
than necessary, for example, when thin tunnels or large islands are
present and a genus-0 topology is desired.

Sketching interfaces Sketching has emerged as a popular inter-
action technique in recent years. A number of sketching tools, such
as the Teddy system presented by [Igarashi et al. 1999], allow cre-
ation and editing of 3D models using 2D line sketches. In anima-
tion, [Davis et al. 2003] use 2D sketches as queries to find match-
ing 3D poses in order to speed up animation creation. Sketches
have also been used to guide geometric editing and deformation of
meshes by [Nealen et al. 2005] and [Kho and Garland 2005]. In
these methods, the sketch interface back-projects 2D screen lines
onto the surface of a 3D model or a tangent plane on the surface by
computing camera projection of mesh elements or performing ray
intersection with the surface. In our work, the 2D lines are used

(a) (b) (c)

Figure 2: Topological consistency between the source (gray) and
the target (purple): while both modifications (b,c) of the source (a)
have a single handle, only (c) is topologically consistent with the
target. (See definition in Section 3.)

to create 3D skeletons lying interior to a 3D model, which is then
utilized for topology editing.

3 Guided topology editing

We first present a general algorithm for modifying a source model
guided by some subset of the source, called the target. We call this
process guided topology editing. Note that the target model can be
any subset of the source and is not restricted to the line shapes that
the user will be able to draw using our interface (discussed in the
next section). Our goal is to produce a modified source model that is
topologically consistent with the target. Here, consistency implies
that the modified source not only has to have the same genus as the
target, but can also be continuously retracted onto the target with-
out changing its genus in the retraction process1. As illustrated in
Figure 2, the retractability requirement is necessary to differentiate
two shapes with the same genus.

As shown in Figure 3, our algorithm proceeds in two stages. Given
a source model represented as a discrete volume and a target model
as a subset of the source (Figure 3 (a)), our algorithm first computes
a subset of the source, known as a fat skeleton (or FS), which con-
tains the target while being topologically consistent with the source
(Figure 3 (b)). Next, the FS is reduced to the target through a se-
quence of reduction operations. Each reduction removes a portion
from the FS and modifies the source accordingly, if necessary, to
maintain its topological consistency with the reduced FS (two of
these operations are shown in Figure 3 (c,d)). Upon completion,
the modified source model is topologically consistent with the re-
mainder of the FS, which is the target (Figure 3 (e)).

Our algorithm guarantees topological consistency given any target,
which may have a different number of handles, cavities or islands
as the source. In addition, the algorithm identifies the least modifi-
cation to the source, either additions (Figure 3 (c)) or subtractions
(Figure 3 (d)), that is necessary to maintain topological consistency
after each FS reduction. This method builds upon the skeleton-
based handle-removal approach in [Zhou et al. 2007], while sub-
stantially extending the theoretical results of the latter to form a
complete framework for guided topology editing. Specifically, our
method allows a full range of topological editions through skele-
ton modification (Section 3.3.1), considers both addition and sub-
traction when making each topological change (Section 3.3.2), and
guarantees to meet the user’s demand using an novel iterative rou-
tine (Section 3.3.3). These extensions are detailed in Section 3.3.
For completeness, we will start by briefly describing the data repre-
sentation (Section 3.1) and FS generation (Section 3.2), which are
similar to those in [Zhou et al. 2007].

3.1 Cell complexes

To facilitate computing and manipulating fat skeletons, we repre-
sent a solid model as a collection of points, edges, faces and cells

1In algebraic topology, this retraction is known as deformation retraction

[Hatcher 2002], a continuous map f : X× [0,1]→Y where Y ⊂ X such that

f (x,0) = x and f (x,1) ∈Y for x ∈ X , and f (x, t) = x for x ∈Y and t ∈ [0,1].

42-2        •        Ju et al.
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(a) (b) (c) (d) (e)

Figure 3: Guided topology editing. (a): The source (gray) and target (purple) represented as cell complexes. (b): An FS (red) of the source
that contains the target. (c,d): FS reductions that modify the source to maintain topological consistency with the reduced FSs (modifications
shown in yellow). (e): When the FS is reduced to the target, the modified source is topologically consistent with the target.

on a 3D grid. In particular, we require that if an element f be-
longs to this collection and f contains some element e (for example,
each face on a uniform grid contains four grid edges and four grid
points), than e also belongs to the collection. Such collection of grid
elements is called a cell complex. In our work, both the source and
the target models are represented as cell complexes on an adaptive
octree grid, as illustrated in 2D in Figure 3. The main advantages
of using the cell complex representation, to be revealed in more
details soon, are a simple procedure for generating topologically
consistent subsets (Section 3.2) and the flexibility in representing
isolated grid elements that make various topological modifications
possible (Section 3.3).

The conversion between a cell complex and other mainstream solid
representations, in particular, a polygonal mesh, was detailed in
[Zhou et al. 2007]. In short, to construct a cell complex, the mesh is
first scan-converted into an adaptive inside/outside volume, and the
cell complex is the collection of all inside grid points and all grid
elements that contain only inside points. Note there are a number of
robust scan-conversion algorithms [Ju 2004; Bischoff et al. 2005]
capable of handling arbitrary meshes (or triangle soups). To pre-
serve the geometric features of the polygonal mesh, sampled mesh
points are stored on the cell complex, which can be used to recon-
struct the mesh from the modified cell complex using an adaptive
iso-surfacing routine [Zhou et al. 2007].

3.2 FS generation

One advantage of representing a solid model as a cell complex is
that it permits a simple procedure for generating topologically con-
sistent subsets. Let D give the dimensionality of an element such
that D(e) = 0,1,2,3 when e is a point, edge face or cell. A simple
removal from a cell complex V is the deletion of a pair of elements
{δ ,σ} ⊂ V such that D(δ ) = D(σ)+ 1 and that δ is the only ele-
ment in V that contains σ . For example, σ can be a grid edge that
is contained in no other elements of V except a grid face δ . We de-
fine a fat skeleton (FS) of V as the remainder of V after a sequence
of simple removals. An example of a sequence of simple removals
and the FSs after each removal are shown in Figure 4.

It is not hard to show that an FS is also a cell complex [Zhou et al.
2007]. More importantly, a cell complex V is topologically consis-
tent with an FS of V , since each simple removal simulates a contin-
uous retraction2 that does not alter the genus of V .

σ

δ

σ σ

σ

δ δ
δ

Figure 4: A sequence of simple removals from a cell complex.

2Formally, a simple removal is a type of elementary collapse, which is a

discrete example of deformation retraction [Matveev 2003]

In the first stage of our algorithm, we compute an FS of the source
model, which contains the target model. To reduce the computation
later in our algorithm, we wish to minimize the size of the resulting
FS. To this end, we adopt the iterative thinning procedure in [Zhou
et al. 2007], which performs simple removals to a cell complex on
an adaptive grid in a layer-by-layer manner until no more simple
removals are possible. We modify this procedure by protecting el-
ements of the target model from being removed during thinning.

3.3 FS reduction

In the second stage, we will modify the source model to be topolog-
ically consistent with the target. This is achieved by FS reductions.
Given a triple of cell complexes {V,S,K} where K ⊂ S and S is
a skeleton of V , an FS reduction produces a new triple {V ′,S′,K}
where K ⊆ S′ ⊂ S and S′ is an FS of V ′. Starting with V as the
source model, S as the initial FS computed in the first stage, and K
as the target model, a finite sequence of FS reductions will reduce
the initial skeleton to the target while modifying the source to adopt
the target as its FS (hence topologically consistent to the target).

A trivial form of FS reduction is a simple removal, where S′ is still
an FS of the original cell complex V (i.e., V ′ = V ). More generally,
we consider FS reduction by removing a single element e∈ S. Note
that e is necessarily isolated, meaning that no other elements in S
contains e, so that the remainder S′ = S\{e} is still a cell complex.
In this general case, S′ is no longer the FS of V . In the following,
we demonstrate two possible ways of computing the modified cell
complex V ′ by either subtracting from or adding to V so that S′ is
an FS of V ′.

3.3.1 Subtraction

We first consider shrinking a cell complex as a result of removing
an isolated element from its FS. Let RV,S be the sequence of simple
removals that reduce V to S, which consists of pairs {δ ,σ} where
D(δ ) = D(σ)+1 and δ contains σ . We define:

Definition 1 A path associated with an isolated element e ∈ S is
any sequence {σ0,δ1,σ1, . . . ,δk,σk} ⊆ V where k ≥ 0 such that
σ0 = e and, for all 1≤ i≤ k, {δi,σi} ∈ RV,S and δi contains σi−1.

Definition 2 The generating set of an isolated element e ∈ S, de-
noted as WV,S(e), is the union of all paths associated with e.

Intuitively, the generating set consists of the subset of simple re-
movals reducing V to S that contribute to the “isolation” of e, or the
removal of elements in S that contain e. We illustrate the generating
set of an isolated edge in 2D in Figure 5 (a). We next show:

Proposition 1 Let S be an FS of cell complex V and e be an iso-
lated element of S. Then V ′=V \WV,S(e) is a cell complex, of which

S′ = S\{e} is an FS.

Editing the Topology of 3D Models by Sketching        •        42-3
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Figure 5: FS reduction. (a): An isolated edge e on the FS (red) and
its generating set (yellow and showing the simple removals {δ ,σ}
in the set as arrows δ → σ ). (b): Subtracting the generating set of
e from the ring. (c): A compatible isolated point f on the FS of the
complement (both inside and outside the ring), its generating set,
and the unique paths associated with e and f (blue). (d): Adding
the dual of the generating set of f to the ring.

Proof: Observe that if f ∈ V contains some element in a path as-
sociated with e, f is also in a path associated with e. Hence f ∈V ′

only if all elements f contains are in V ′, implying V ′ is a cell com-
plex. S′ is an FS of V ′, as V ′ can be reduced to S′ using the simple
removals in RV,S that are not in WV,S(e). �

In Figure 5 (b), the subtraction of the generating set breaks the han-
dle ring. Note that the generating set was first introduced in [Zhou
et al. 2007], where it was defined differently and restricted to iso-
lated edges. Our extension allows e to assume different type of iso-
lated elements. In particular, removing e from S (and subtracting
WV,S(e) from V ) results in a variety of topological changes, includ-
ing losing an island (when e is a point), gaining an island or losing
a handle (when e is an edge), gaining a handle or losing a cavity
(when e is a face), and gaining a cavity (when e is a cell).

3.3.2 Addition

Besides shrinking, it is often possible to expand a cell complex V
to admit the remainder S′ = S\{e} as its FS. For example, the han-
dle in Figure 5 (a) can be removed either by breaking the handle
ring (Figure 5 (b)) or by filling the interior hole (Figure 5 (d)). To
achieve such expansion, we consider the complement of the cell
complex V and its FS. This complement, V , is another cell complex

defined as Ĝ\V [Zhou et al. 2007]. Here, G is the set of all grid
elements (including an infinite outside cell), and̂ is a dual operator
such that ê is formed by connecting the centroids of the grid cells

containing or equal to e, and that ̂̂e = e. In 3D, the dual of a grid
point, edge, face and cell respectively have dimensions 3, 2, 1 and
0. A 2D example of this complement is shown in Figure 5 (c). Let
T be the FS of V , we consider:

Definition 3 Isolated elements e ∈ S and f ∈ T are compatible if

D( f̂ ) = D(e)+ 1 and there are unique paths {e, . . . ,σe} ⊆ V and
{ f , . . . ,σ f } ⊆V associated with e and f such that σ̂ f contains σe.

To illustrate the definition in 2D, we highlight two compatible el-
ements and their paths in Figure 5 (c), where e is an isolated grid

edge and f is an isolated point (whose dual f̂ in 2D is a grid face).
Note that there is only one path between e and f that satisfies the
properties in Definition 3. We further observe that either subtract-
ing the generating set WV,S(e) from V (Figure 5 (b)) or adding the
dual of the generating set WV ,T ( f ) to V (Figure 5 (d)) will remove

the handle and adopt the remainder S′ = S \ {e} as the FS of V .
More generally, we prove (in Appendix A):

Proposition 2 Let S,T be the FSs of cell complexes V,V , and
e ∈ S, f ∈ T be two compatible isolated elements. Then V ′ =

V ∪ŴV ,T ( f ) is a cell complex, of which S′ = S\{e} is an FS.

In 3D, the isolated element e may assume a grid point, edge or
face, whose compatible element f by definition would be an iso-
lated face, edge or point on the complement FS T . Subtracting
WV,S(e) from V or adding the dual of WV ,T ( f ) to V would achieve

a same topological change by different means, such as losing an
island by either removing the island or bridge two islands (when
e is a point), losing a handle by either breaking the handle ring or
filling the handle hole (when e is an edge), and losing a cavity by
either bridging two cavities or filling the cavity (when e is a face).
Note that, however, not every isolated element on the FS may have
a compatible element on the complement FS. For example, creating
a new tunnel by subtracting WV,S(e) from V when e is a face may
not be achieved by adding the dual of WV ,T ( f ) to V for any element

f on the complement FS T .

3.3.3 Iterative FS reductions

To reduce the initial FS to the target, FS reductions are invoked iter-
atively. To minimize the amount of modification to the source, we
select the FS reduction that would introduce least modification at
each iteration. Given a triple {V,S,K}, this is performed by com-
puting a weight w(e) for each isolated element e ∈ S\K as the min-
imal volume that would be subtracted from or added to V if e is
removed from S. The element e with the minimum weight is re-
moved (if no more simple removals can be made), and V is updated
by either subtracting or adding, whichever modifies V least. The
algorithm terminates when S = K, when the modified V becomes
topologically consistent with the target.

Based on the above discussions, the weight w(e) is computed as the

minimum of |WV,S(e)| and |ŴV ,T ( f )| for all compatible elements f

of e (if f exists), where | · | is the total volume occupied by a set of
grid elements. We consider every non-cell grid element occupying
an ε-thick space disjoint from the space of other elements. Hence
the volume of the space is ε3 for a point, ε2(l− ε) for an edge of
length l, ε(l− ε)(w− ε) for a face of size l×w, and (l− ε)(w−
ε)(h−ε) for a cell of size l×w×h. In our implementation, ε = 0.5
is used (assuming leaf cells of the octree have unit size).

The pseudo-code of the iterative routine is presented in Figure 6.
Note that the routine utilizes the FS of the complement V , T . To
avoid computing T from V every time V is updated, we only com-
pute T once when the initial FS S is generated. During FS reduc-
tion, T is updated to remain as an FS of V . Observe from Propo-
sitions 1 and 2 that if T contains some element f compatible with
the isolated element e removed from S, it suffices to update T by
simply subtracting f . If no compatible elements exist, we note that
V is an FS of T (see Lemma 1 in Appendix A), hence S is also an
FS of T . Adding the dual of the generating set WT ,S(e) to T yields

an FS of the complement V \WV,S(e) (see Lemma 2 in Appendix

42-4        •        Ju et al.
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// Source V , FS S,T , Target K ⊆ S
Repeat until S = K

If ∃ a simple removal {δ ,σ} ⊂ S\K
S← S\{δ ,σ}

Else If ∃ a simple removal {δ ,σ} ⊂ T
T ← T \{δ ,σ}

Else
e← IE in S\K with minimum w(e)
S← S\{e}
f← Compatible IE in T with minimum |WV ,T ( f )|
If f = /0

V← V \WV,S(e)

T← T ∪ŴT ,S(e)
Else

If |WV,S(e)|< |WV ,T ( f )|
V← V \WV,S(e)

Else

V← V ∪ŴV ,T ( f )
T← T \{ f}

Figure 6: Pseudo code for iterative FS reductions (IE stands for
isolated element).

A). Finally, to maintain the minimality of T , simple removals are
performed whenever possible.

To efficiently compute the paths (and hence generating sets and
compatible elements) on an adaptive octree, we maintain point-
ers between elements in each simple removal when S and T are
first computed. During FS reduction, the paths can be found in a
breadth-first search starting from an isolated element using fast re-
cursive neighbor-finding procedures [Ju et al. 2002]. Furthermore,
to avoid re-computing the weights of each isolated element after
each iteration, the weights only have to be updated locally, after re-
moving an isolated element e, for elements of S whose generating
sets intersect that of e and for elements of T compatible with e.

4 A sketching interface

Editing the topology of a 3D model needs a target shape. Ideally,
the user should be able to create the target quickly from the source
model. As a first step towards this goal, we have designed a unique
interface for drawing skeleton-like targets. While such skeletons
can be created in animation design tools, users are typically re-
quired to provide the 3D location of each skeleton joint, which can
be tedious. In contrast, our interface lets the user sketch 2D lines
on the computer screen while automatically “back-projecting” the
sketch to the interior of the 3D model at interactive rates.

4.1 User interaction

We first show how a user can quickly draw 3D lines in our 2D
sketching interface using the example of Figure 7. Given a 3D
model, the user may chose any view of the model to start sketch-
ing. The model is then rendered semi-transparently to ease viewing,
shown in Figure 7 (a). As the user moves the mouse over the screen,
the layers of solid materials projected to the mouse location are
displayed in realtime (besides the cursor). By scrolling the mouse
wheel, a desired layer can be selected easily without interrupting
sketching. When combined with a hot key, the user may also ad-
just a depth value within each layer (indicated by the blue arrow
beside the layers), initially set to the middle of that layer. Depth
adjustment can be useful when drawing overlaying sketches within
a same layer of solid. Each click of the left mouse button places
a new point at the selected depth in the selected layer of solid and
forms a line from the previously placed point, and clicking the right
mouse button stops line connection. In addition, new points can be
snapped onto nearby, existing points and lines, making it easy for

(a) (b)

Figure 7: The sketching interface. See description in Section 4.1.

creating junctions and closures, as shown in (b). Although seldom
necessary in practice, the user may continue sketching on different
views of the model.

4.2 Depth peeling

The key that enables fast drawing of 3D lines on a 2D screen is
the knowledge of depths of different layers of solids projected on
to the mouse location. For efficiency, such depth information is ob-
tained by using depth peeling. Depth peeling is a fragment-level
depth sorting technique [Mammen 1989; Diefenbach 1996] origi-
nally developed to avoid the need to pre-sort polygons in rendering
transparent models by rendering the same scene in multiple passes.
In particular, the kth pass renders the kth nearest fragment at each
pixel, and the depth of that fragment is kept in the depth buffer. In
our interface, values in the depth buffer after each pass are extracted
into a depth array at each pixel. For a closed model, each pair of
values in the array represents the near and far depth of a layer of
solid projected onto that pixel. Since depth peeling is performed
only once after a view is chosen, this approach allows real-time
sketching interaction regardless of the size of the input model.

4.3 Conversion to cell complexes

To use with our topology editing algorithm, the sketched line skele-
ton is then converted to the cell complex representation. Given the
source model represented as a cell complex on an octree grid, the
target cell complex consists of finest-level grid cells in the octree
that intersect with the skeleton lines, as well as all grid elements
contained by those cells. Note that the original octree cells that
are not at the finest level and intersect the lines are subdivided in
this process. Observe from Figure 7 (b) that some parts of the line
skeleton (colored gray) created by our interface may lie outside the
source model. This is useful, for example, when the user wishes to
bridge between islands or create additional handles. To handle tar-
get cell complexes that are not subsets of the source cell complex,
we simply treat the union of the target and source as the new source
cell complex, after which the algorithm presented in Section 3 can
be directly applied.

5 Results

In this section, we collect a suite of examples to illustrate the guided
topology editing algorithm and the usefulness of sketching. For
each example, a polygonal mesh is imported to our sketching inter-
face, where 3D lines are drawn as the target. Both the mesh and
the lines are converted to cell complexes, and the resulting mesh
is reconstructed from the modified cell complex. The conversion
procedures are discussed in Sections 3.1 and 4.3.

We first use a simple example to illustrate guided topology editing
in 3D. Given the Clip model in Figure 1, the two stages (thinning
and FS reduction) of our algorithm are shown respectively in (a,b)
and in (c,d) of Figure 8. In particular, the isolated edges in the initial
FS (see insert of (b)) are removed during FS reduction, resulting the
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(a) (b) (c) (d)

Figure 8: Guided topology editing of the Clip model in Figure 1:
the source cell complex (a), the initial FS (b), the reduced FS (i.e.,
the target cell complex) (c), and the modified cell complex (d).

separation of the two tubes of the clip (see insert of (d)).

We next use a number of CAD and scanned models (Figures 10
to 13) to demonstrate the use of sketching in topology repair and
design. In particular, we hope to elucidate the advantage of our
method over previous topology repair and topology-controlled sur-
face reconstruction approaches.

A major benefit of using sketching in topology repair is that it lets
the user select the topological features to be preserved. As shown in
Figure 10, sketching is more direct and precise in describing the ob-
jective topology than using either genus or measures of feature size.
The importance of user-selection is amplified in Figure 11, where
“thinner” handles (e.g., the arms of the mother), which would have
been removed in most topology repair methods, are selected by the
user to be preserved. Using sketching, our method guarantees that
the edited model not only has the correct number of topology fea-
tures but also has the set of features that the user desires.

While most topology repair methods are designed for removing
handles, our method can be used to perform additional topology op-
erations that include (but not limited to) creating new handles (Fig-
ure 12), reducing islands through bridging (Figure 9), and creating
islands by separating wrongly connected pieces (Figure 13). In par-
ticular, the separation of the 24 bones in the Foot model in Figure
13 suggests a possible application of our method in user-guided
segmentation of 3D models. The variety of topological changes of-
fered by our method can be particularly useful in shape design with
a specific topological goal, as illustrated in both Figures 12 and 9.

We note that the user-provided targets in our method can also
be used with previous topology-controlled surface reconstruction
methods, which would grow the target towards the model surface
in a topology preserving manner. However, since these methods
modify the model by subtraction, they may introduce a much larger
modification than necessary in the presence of large islands (e.g.,
the island in letter “e” in Figure 9) or small tunnels (e.g., the smaller
hole in Figure 10). On the other hand, our guided topology algo-
rithm selectively applies addition or subtraction for least modifi-
cation. In particular, large islands are bridged instead of removed
(Figure 9), and handles with small holes are filled instead of cut on
the side (Figure 10 (c,d), comparing with (a,b)).

Finally, we demonstrate the efficiency of our method on large
scanned models in Figure 14. Observe that, even at very high grid
resolution (212), the entire topology editing process completes in an
hour. In addition, the creation of the sketches in all examples in this
paper never took more than a few minutes using our interface. The
performance of our implementation on all examples in the paper are
summarized in Table 1. All tests were run on a consumer-level PC
with P4 3Ghz CPU and 2G memory.

(a)

(b)

(c)

Figure 9: An example of topology design: the source model (a)
(a plate with words “San Diego” carved out) is different from the
target (purple in (b)) in both the number of handles and islands.
After editing, both the plate and the words become a single con-
nected component (c). Editing involves both subtraction (for break-
ing handles) and addition (for bridging islands), highlighted in (c),
to guarantee a topologically consistent result with minimal change.

6 Conclusion and discussion

We have described a user-guided method for editing the topology of
a 3D model. The system consists of two components, a convenient
sketching interface for drawing 3D line shapes, and an efficient and
robust algorithm for modifying a 3D model to be topologically con-
sistent with a target shape. Our algorithm allows a variety of topo-
logical changes besides handle removal, and each change is made
with minimal modification to the original model.

Our current algorithm and interface have several limitations that we
wish to address in our future work:

Sketching complex topology While the guided topology editing
algorithm is capable of handling any user-specified targets, the cur-
rent line-sketching interface is too simple for specifying complex
targets. One of our primary future tasks is to expand the interface to
fully exploit the power of the underlying algorithm. First, our inter-
face currently does not support drawing of closed surfaces, hence
cannot be used to create new cavities (or preserve existing cavi-
ties). Besides adding surface-sketching functionality, we will con-
sider more convenient ways for specifying cavities, such as sketch-
ing the topology of the complement space. Second, sketching the
topology of a complex model (e.g., the spokes of a wheel) can be
time-consuming. To simplify the task, we will look into incorporat-
ing advanced editing tools (e.g., copying and pasting) and automatic
completion algorithms (e.g., extension of example-based geometry
completion). We can also visualize the skeleton of the source model
to guide sketching or to create a complex sketch by locally modi-
fying the skeleton. Third, while the depth peeling approach works
well for a small number of surface layers (which is the case for all
our test models), we will experiment with extremely noisy models
and device better approaches if necessary to minimize cluttering on

42-6        •        Ju et al.

ACM Transactions on Graphics, Vol. 26, No. 3, Article 42, Publication date: July 2007.



(a) (b) (c) (d)

Figure 10: Editing the topology of the Hip model with different targets (a,c) results in the removal of different handles. Each handle is
removed by breaking the handle ring (b) or filling the handle hole (d), whichever involves less modification to the model.

(a) (b) (c) (d)

Figure 11: Editing the topology of the Mother model (a) with the target (b) selectively removes handles that user desires. Without the target,
a typical topology repair method would identify thin handles to be removed (d), yielding an undesirable result.

the screen. Last but not least, we are planning to design user-tests
to see how well novice users understand and perform the task.

Shape control in topology editing In our current algorithm, the
resulting shape change is automatically determined with the goal
of minimizing the amount of volume added or removed. However,
it may be desirable to have the user control the shape change. For
example, the user may desire to use addition in certain places even
if subtraction would induce smaller volume change, to create a new
tunnel with a certain width (instead of a thin hole in Figure 12 (b)),
or to replace small handles by a smooth surface. Such shape control
can be made possible by associating sketches with shape properties.
For example, a colored sketch can be used to indicate desired solid
thickness or surface smoothness. The current guided topology edit-
ing algorithm will be modified to minimize a weighted sum of the
modified volume and deviation from the sketch shape.

Geometric fidelity To process triangular meshes, we currently re-
quire the meshes to be converted to and from a volumetric grid,
which may result in loss of geometric details. Using feature-
sensitive scan-conversion [Ju 2004] and iso-surfacing techniques
[Ju et al. 2002], we are able to retain features (e.g., sharp edges and
corners) on the original mesh in an accurate manner, as shown in the
example of Figure 12. Note that our method can be easily extended
to further preserve the tessellation on the original mesh. In partic-
ular, we note that our guided topology editing algorithm works on
cell complexes defined in any structured or unstructured 3D grids.
As a result, application onto a tetrahedral grid that contains both the
triangles of the original mesh and the lines in the target shape would
retain the original triangles as part of the resulting edited mesh.
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Figure 14: Topology repair of large scanned models (Buddha, Neptune, David, Lucy and the Thai Statue) by sketching. Close-up looks in (a)
show the removal of a handle (A), the bridging of islands (B) and cavities (C) in the Buddha model.

Model Input Octree Octree Topology Topology Scan Conv. Stage 1 Stage 2 Contour Memory Output

Polys Depth Leaf Cells Before (H/C/I) After (H/C/I) Time (sec) Time (sec) Time (sec)/ Steps Time (sec) (MB) Polys

Figure 10 (a) 67904 7 76911 2 / 0 / 0 1 / 0 / 0 1.781 3.16 2.0 / 1 0.797 2 68284

Figure 10 (c) 67904 7 76911 2 / 0 / 0 1 / 0 / 0 1.781 3.14 2.0 / 1 0.797 2 68536

Figure 1 12184 7 14149 1 / 0 / 0 0 / 0 / 0 0.313 1.18 4.125 / 1 0.110 < 1 12882

Figure 12 25948 7 31376 8 / 0 / 0 14 / 0 / 0 0.64 1.05 10.05 / 3 0.265 < 1 26416

Figure 11 57500 7 66831 4 / 0 / 0 1 / 0 / 0 1.484 2.28 5.172 / 3 0.687 2 62700

Figure 9 53152 8 59691 5 / 0 / 5 1 / 0 / 0 1.375 2.25 36.687 / 9 0.562 2 54036

Figure 13 125152 8 139001 60 / 0 / 5 0 / 0 / 24 3.344 5.02 260.344 / 85 1.469 4 133882

Figure 14 (a) 1087716 10 3991052 11 / 17 / 7 6 / 0 / 0 43.75 131.094 117.875 / 29 47.719 87 3432358

Figure 14 (b) 6330753 11 8847449 60 / 5 / 38 3 / 0 / 0 181.329 289.594 634.516 / 100 110.78 193 7607896

Figure 14 (c) 8254150 12 34290104 21 / 72 / 6 3 / 0 / 0 317.766 1100.5 1426.859 / 96 444.89 748 29436068

Figure 14 (d) 28055742 12 46566011 0 / 0 / 1 0 / 0 / 0 947.515 1521.547 869.578 / 1 602.875 1015 39951458

Figure 14 (e) 10000000 12 66840790 4 / 0 / 0 3 / 0 / 0 454.296 2155.093 456.719 / 1 870.672 1456 57421186

Table 1: Performance results for examples in this paper. Timing is broken down into initial scan-conversion from meshes to volumes (using
Polymender), the two stages of our guided topology editing algorithm (see Section 3.2, 3.3), and final contouring (excluding I/O, see Section
3.1). The steps are iterations in the second stage where an isolated element is removed. H, C, I stand for handles, cavities and islands.

A Proof of Proposition 2

Lemma 1 Let S be a FS of V , then V is a FS of S.

Proof: Consider a simple removal from V as V ′ = V \{δ ,σ}. Tak-

ing the complement of both sides of identity yields V =V ′ \{σ̂ , δ̂}.

Note this is also a simple removal, since D(σ̂) = D(δ̂ )+1, and δ̂ is

contained in only one element σ̂ in V ′ (otherwise δ would contain
some element other than σ that is not in V ′, contradicting that V is

a cell complex). Hence V is a FS of V ′. Likewise, V is a FS of S,
and can be reduced from S by the dual of the simple removals that
reduce V to S. �

Lemma 2 Let S,T be FSs of V,V , and e∈ S be an isolated element.

Then then T ′ = T ∪ŴT ,S(e) is a FS of V ′ = V \WV,S(e).

Proof: By Lemma 1, V is a FS of T . Hence S is a FS of T as well.

By Proposition 1, S′ = S \ {e} is a FS of T \WT ,S(e) = T ′. Since

WV,S(e) ⊂WT ,S(e), V ′ can be reduced from T ′ by the simple re-

movals in RT ,V that are not in WT ,S(e)\WV,S(e). Applying Lemma

1 again completes the proof. �

Proposition 2 (See Section 3.3.2)

Proof: Observe that V ′ = V \WV ,T ( f ). By Proposition 1, V ′ is a

cell complex. Applying Lemma 2, S∗ = S∪ŴS,T ( f ) is a FS of V ′.

Hence it suffices to show that S′ is a FS of S∗.

Let the unique paths associated with e and f be denoted as Re =
{e,δe, . . . ,σe} and R f = { f ,δ f , . . . ,σ f }. We consider the sequence

R′f = { f ,δ f , . . . ,σ f , σ̂e, . . . , δ̂e} ⊂ S. Since σ̂e contains σ f , R′f
is a path associated with f and R′f ⊂ WS,T ( f ). We re-write R′f
as { f ,δ1,σ1, . . . ,δk,σk} where {δi,σi} are simple removals. We
show two properties of R′f . First, elements in R′f have alter-

nating dimensionality. This is because D( f ) ≤ D(δ1)− 1 and
D(σi) = D(δi)− 1, yielding D( f ) ≤ D(σk). On the other hand,
since ê contains σ̂k and by the definition of compatibility, we have
σ̂k ≤ D(ê)− 1 and D(ê)− 1 = D( f ). All equalities are reached
only when elements of R′f have dimensionality {D( f ),D( f ) +

1,D( f ), . . . ,D( f )+1,D( f )}. Second, δi contains no other element
in the generating set WS,T ( f ) except σi (for i > 0) and σi−1 (for i >

1). Suppose δi contains another element τ ∈WS,T ( f ), there would

be a path associated with f of the form { f , . . . ,τ} or { f , . . . ,τ,τ ′}.
In either case, { f , . . . ,τ,δi, . . . ,σk} or { f , . . . ,τ,τ ′,δi, . . . ,σk} is a
different path than R′f , contradicting the uniqueness of Re and R f .

Based on the above discussion, it is not hard to show that the se-

quence of pairs R = {{e,δe}, . . . ,{σe, σ̂ f }, . . . ,{δ̂ f , f̂}} (i.e., join-
ing Re with the dual of the reversed R f and pairing consecutive
elements) are simple removals from S∗. The remainder of S∗ can
then be reduced to S′ by the dual of the simple removals in WS,T ( f )

that do not belong to R. This completes the proof. �
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