Qualitative Organization of Collections of Shapes via Quartet Analysis
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Figure 1: A heterogeneous collection of shapes is organized in a hierarchical categorization tree (middle) via quartet-based qualitative
analysis. Every quartet (left) defines a topological relation between two pairs of shapes that must be maintained by the categorization tree:
note the embedding of the relations of the red and green quartet examples in the tree. Based on this organization, the collection can be
dynamically reordered around a given shape by their Degree of Separation (right). Far shapes (beyond the red circle) are the ones whose
paths to the given shape pass through the top level of the categorization tree.

Abstract

We present a method for organizing a heterogeneous collection of
3D shapes for overview and exploration. Instead of relying on
quantitative distances, which may become unreliable between dis-
similar shapes, we introduce a qualitative analysis which utilizes
multiple distance measures but only in cases where the measures
can be reliably compared. Our analysis is based on the notion of
quartets, each defined by two pairs of shapes, where the shapes in
each pair are close to each other, but far apart from the shapes in the
other pair. Combining the information from many quartets com-
puted across a shape collection using several distance measures,
we create a hierarchical structure we call categorization tree of the
shape collection. This tree satisfies the topological (qualitative)
constraints imposed by the quartets creating an effective organi-
zation of the shapes. We present categorization trees computed on
various collections of shapes and compare them to ground truth data
from human categorization. We further introduce the concept of de-
gree of separation chart for every shape in the collection and show
the effectiveness of using it for interactive shapes exploration.

*This work was performed while the first author was a visiting scholar
at Tel-Aviv University

1 Introduction

An ever growing number of digital 3D models are produced and
stored in on-line shape collections. The rapid growth demands
novel ways to organize large collections of shapes so as to facilitate
search, summarization, and exploration of these collections so as to
understand the overall categorization and hierarchical grouping of
large and diverse collections. Any such organization must be built
on a comparison mechanism between the individual shapes. The
success of a comparative analysis is highly dependent on choosing
the right “distance” between shapes.

A variety of distance measures have been developed to quantify the
similarity or dissimilarity between 3D shapes [Shilane et al. 2004;
Tangelder and Veltkamp 2008]. When the shapes in a given collec-
tion are sufficiently similar, it is often possible to find a proper quan-
titative distance that reflects well the shape semantics and allows
analyzing them in a common framework by clustering or embed-
ding into a metric space. However, shape distances are not always
metrics (e.g., failing the triangle inequality), making them ineffec-
tive when the compared shapes are highly dissimilar. For instance,
a numerical distance between a chair and a bicycle is most likely
less informative than a distance between two chairs or between two
bicycles. In a large shape collection possessing rich variations, it
can be extremely difficult, if not impossible, to properly quantify
all pairwise shape similarities using a single distance measure that
will allow a meaningful global analysis.

In this paper, we introduce a qualitative analysis method for orga-
nizing a heterogeneous collection of shapes. Rather than attempt-
ing to embed the whole collection into some common metric space
based on what is likely an unreliable quantitative distance mea-
sure, our method combines more reliable fopological information
derived from multiple distance measures. We denote any set of
four shapes in our collection as a “quadruplet”. We perform a se-



ries of tests on quadruplets to find a subset of quartets. The quartets
produce a set of topological partial orders which together allow a
global organization of the whole collection of shapes (Figure 1).
This technique has proven to be effective in bioinformatics [Strim-
mer et al. 1997; Willson 1998; Ranwez and Gascuel 2001].

Specifically, each quartet only needs to identify, with reasonable
confidence, four objects where the objects are divided into two
pairs. Each pair contains two similar objects that are clearly sep-
arated from the other pair (see Figure 1, left). We aggregate
this topological information from several distance measures into a
global organization of the shape collection. We use an un-rooted
tree, which we call a categorization tree, or C-tree, to organize the
collection. All the shapes in the collection reside at the leaves of
the tree, with the number of edge “hops” between them reflecting
their degree of separation within the given collection. The algo-
rithm converting the set of quartets to the C-tree ensures that for
most quartets, the topological pair-to-pair relation among the four
associated objects is maintained in the tree.

Other possibilities for organizing the shapes using state-of-the-art
clustering methods perform poorly when the distances are unreli-
able. In particular, organizing large collections requires some hier-
archical structure, but using hierarchical clustering or other cluster-
ing means must also compare dissimilar shapes, where the reliabil-
ity and effectiveness of shape distances diminish.

In contrast, our organization of a collection is performed by a global
analysis, optimizing many soft constraints that combine several dis-
tance measures using the QMC algorithm [Snir and Rao 2010].
Each constraint provides a topological relation among four shapes
(aquartet) that is expected to be reflected in the C-tree. By consider-
ing only reliable topological relations that are qualitative, the global
analysis bypasses the direct deployment of inaccurate quantitative
distances. In other words, while common hierarchical methods aim
to satisfy pairs of quantitative distances, our optimization aims to
satisfy a large set of topological and qualitative constraints.

For any given shape S in the collection, we can use the C-tree to
partition all other shapes into layers, organized by their degree of
separation around S. This can be done effectively and efficiently
without committing to an accurate distance measure. We call this
type of organization — the Degree of Separation (DoS) chart.

Our contributions are: (i) A qualitative shape analysis technique,
inspired by studies of evolutionary trees, that does not directly de-
pend on numerical metrics, and (ii) A hierarchical organization of
heterogeneous shape collections. We demonstrate the performance
of our analysis approach in organizing large and heterogeneous col-
lections like the one displayed in Figure 1. We also present an in-
teractive interface based on DoS charts, allowing the exploration of
the whole collection of shapes by imposing a local structure on the
space of shapes, as illustrated in Figure 11.

2 Related Work

Shape retrieval. Perhaps the most prominent need for organizing
large shape collections comes from shape retrieval [Shilane et al.
2004; Tangelder and Veltkamp 2008; Bronstein et al. 2011]. Shapes
are clustered based on some distance measure to facilitate fast
querying. The queries are typically answered by a nearest neigh-
bor classifier, hence a higher-level organization of the shapes is not
needed. The distances measures are often defined based on global
shape descriptors [Kazhdan et al. 2003a; Osada et al. 2002; Chen
et al. 2003; Gal et al. 2007; Bronstein et al. 2011]. In our work,
we adopt some of these distances only for local analysis within the
quartets. The global organization of the shapes is entirely based on
topological information extracted from the reliable quartets.

Co-analysis. Several recent works concentrate on unsupervised
co-analysis of sets of shapes [Golovinskiy and Funkhouser 2009;
Xu et al. 2010; Sidi et al. 2011; Wang et al. 2012]. These meth-
ods aim at shape analysis at the part level, e.g., computing a co-
segmentation, whereas we perform unsupervised analysis at the
shape level. Moreover, existing works on co-analysis all assume
that the set of shapes belong to the same family, while our work
focuses on analyzing a heterogeneous shape collection.

Shape exploration. A few works propose effective means to ex-
plore large shape collections. Ovsjanikov et al. [2011] present a
correspondence-free method that uses a template-based deforma-
tion model. The user can directly manipulate the model to bring
up shapes from the collection. Kim et al [2012] present an interac-
tive exploration technique based on fuzzy correspondence among
partial shape regions. An important distinction is that these ex-
ploration techniques follow a shape retrieval paradigm, where the
user manipulates a model to find similar shapes, and cannot gain an
overview of the collection. These methods again assume that the
shapes in the set being explored belong to the same family. Our
method organizes a heterogeneous collection of shapes hierarchi-
cally, allowing both categorical and coarse-to-fine exploration.

Clustering. One of the best practiced means of organizing a set
of elements is clustering analysis [Everitt et al. 2011]. Clustering
is typically carried out via quantitative analysis relying critically
on the distance measure chosen. In this classic setting, via affin-
ity propagation, improved clustering results have been obtained by
replacing metric affinities by non-metric ones, e.g., for image cat-
egorization [Dueck and Frey 2007]. In contrast, our work is not
affinity-based clustering, but relies on a qualitative analysis based
on topological constraints to derive a categorization tree. Further-
more, we are not aware of works that hierarchically cluster a set of
3D shapes belonging to a heterogenous collection.

In the field of document analysis and information retrieval, there
have been works on hierarchically organizing and exploring text
documents [Koller and Sahami 1997; Weigend et al. 1999] or web
content [Dumais and Chen 2000]. Another field with relevant work
is evolutionary biology [Semple and Steel 2003].

Ordination. In exploratory data analysis, ordination orders ob-
jects that are characterized by values on multiple variables so that
similar objects are near each other and dissimilar objects are far-
ther apart. Examples of such techniques include multi-dimensional
scaling (MDS) [Mardia et al. 1980] and self-organizing maps [Ko-
honen 1982]. However, similar to clustering, these methods rely
heavily on quantitative distance measures and usually do not pro-
duce hierarchical organizations.

Quartet processing. The construction of phylogenetic (evolu-
tionary) trees is a classical subject in biology. Broadly speaking,
phylogenetic reconstruction methods are either sequence-based or
topology-based. Quartet-based analysis belongs to the latter. A
quartet tree is the smallest possible informative un-rooted tree.
This, along with the fact that small trees representing partial or-
ders are easier and more reliable to obtain than larger ones, makes
quartet-based methods attractive for large-scale phylogenetic re-
construction. Most quartet-based methods [Strimmer et al. 1997;
Willson 1998; Ranwez and Gascuel 2001] first infer quartet trees
from aligned sequences and then use a combinatorial algorithm
to solve the maximum quartet consistency problem. Snir and
Rao [2010] describe an algorithm for constructing a tree from a set
of input quartet trees even amid a significant fraction of errors. The
algorithm is based on a divide and conquer algorithm where the di-



vision step uses a semidefinite programming (SDP) formulation of
MaxCut. This algorithm, which has been referred to as the Quartet
MaxCut (QMC) algorithm, is the one we adopt in this paper.

3 Categorization Tree

Given a collection of shapes, we would like to organize them into
one hierarchical structure, a categorization tree or C-tree. This tree
is defined by satisfying a large number of topological constraints
specified by quartets, using an optimization method. A quartet is
a sub-tree that consists of four leaves. Such a sub-tree expresses a
minimal meaningful topological relation among a set of nodes that
can be used as a constraint for construction the C-tree. A quartet
relation is said to be satisfied by a given C-tree, if an equivalent
quartet structure is expressed in the tree, ignoring internal nodes.
The key idea in using quartets is that the topological structure ex-
pressing the relations among the four nodes in the quartet should
be manifested among the same four nodes in the tree (see red and
green quartets embedding in Figure 1).

Note that we use the topological structure defined by four nodes
since the topological structure of a sub-tree of two or three nodes
is always manifested in any tree: two nodes have a single path be-
tween them and not structure, and the paths between three nodes
will always link together in a single internal node.

Although previous works have shown that a few representative
quartets suffice to uniquely define a tree [Erdos et al. 1997], the
shape of the tree can be influenced to satisfy as many quartets as
possible. In our premise, the construction of the C-tree uses a large
number of quartets created by considering multiple distance mea-
sures. This enables us to combine reliable qualitative information
from several distance measures. Thus, given a set of shapes, our
approach is to construct a large number of reliable quartets, and de-
fine a C-tree by an optimization technique whose objective function
aims to satisfy as many of the given quartets as possible.

An alternative approach would be to directly cluster the collection
of shapes using some distance measure, which is less effective for
at least two reasons. First, any single distance measure among the
shapes will not be sufficiently accurate to induce a reliable metric,
especially for a heterogenous shape collection, and second, clus-
tering methods are typically greedy in nature. Our approach is
more global, where the optimization accounts for reliable topologi-
cal constraints rather than directly satisfying the less reliable quan-
titative distances. The following example illustrates the difference
between the two alternatives.

3.1 A Motivating Example

Figure 2(a) shows sixteen objects which are colored according to
four clusters, with butterflies, birds and two types of airplanes.
These objects are selected from the PSB dataset [Shilane et al.
2004]. We use two popular 3D shape distance measures to build
distance matrices among the sixteen objects. The first measure uses
the Light Field Descriptor (LFD) [Chen et al. 2003] with inner-
distance [Ling and Jacobs 2007], and the second uses the Shape
Diameter Function (SDF) [Shapira et al. 2008]. While LFD and
SDF distances are effective in comparing similar objects, they are
inaccurate in reflecting distances between highly dissimilar shapes.

Next, we use two popular clustering methods with the affinity ma-
trices of LFD and SDF (see the supplementary material for these
matrices), to yield a total of four trees seen in Figures 2(c-d). We
use simple neighbor joining and APclustering [Frey and Dueck
2007], representing a straightforward method and a more sophis-
ticated one, respectively. As can be observed, the small LFD-

(a) A set of shapes. (b) Our categorization tree.

(c) LFD-based categorization trees obtained using NeighborJoining (left)
and ApClustering (right), respectively.

*

(d) SDF-based categorization trees obtained using NeighborJoining (left)
and ApClustering (right), respectively.

Figure 2: A motivating example: using quantitative shape dis-
tance measures and clustering can lead to mixed categorization
of shapes (c-d), while using our qualitative approach the catego-
rization captures the correct clusters (b). Objects that lead to mis-
categorizations are marked with red stars.
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Figure 3: The DoS-distance table and the C-tree overlaid on the
projection of the points by MDS using this table. This clearly shows
how the DoS-distances capture the grouping of these shapes.



distances between the pairs of shapes {7,12} and {8, 12}, and the
small SDF-distances between pairs of shape {7,12} and {2,13}
lead to mis-categorizations via clustering.

In contrast, our quartet-based method combining the LFD measure
with the SDF measure, successfully recovers the correct C-tree rep-
resenting the four clusters; see Figure 2(b). The key advantage of
our algorithm is its ability to combine information from several dis-
tance measures together and only when the measures can be reli-
ably compared, as described in Section 5. In Figure 3, we use the
generated C-tree to represent the degree of separation (DoS) among
the shapes, and build a DoS-distance table. An MDS layout of the
shapes, based on the DoS-distance table, reveals the inherent clus-
ters in the input set.

This minimalistic example merely provides an intuition for the
power of quartet-based analysis. In the following, we describe the
method in detail, demonstrate its performance on larger shape col-
lections, and evaluate the quality of the generated C-trees.

4 From Quartets to C-Tree

The problem of reconstructing a tree from a set of quartets has re-
ceived a lot of attention in various domains. In particular, in bio-
informatics, it is used as a means to reconstruct Phylogenetic trees.
We adopt the Quartets MaxCut algorithm (QMC) [Snir and Rao
2010] from this domain to construct a C-tree of 3D shapes from a
given set of quartets. For now, we assume that the set of quartets
is given, and would like the C-tree to satisfy as many of them as
possible. Later, in Section 5, we elaborate on how we collect and
define the quartets based on multiple shape distances.

The QMC algorithm works in two stages to create a C-tree. In the
first stage, it embeds points representing the shapes into a metric
space based on the topological information of the quartets. In the
second stage, it uses the distance metric between points in this space
to recursively partition the set of points in a top-down manner, cre-
ating a hierarchical tree structure.

4.1 Embedding

Techniques for embedding objects into a metric space such as MDS
optimize the difference between a given quantitative measure to the
final metric. In our case, the actual value of the distance measure
between shapes is of less importance than the relations between
the shapes represented by the quartets. Hence, the embedding op-
timization does not measure actual distances between the points
representing shapes, but invests more effort to keep “close” shapes
nearby and “far” shapes apart.

Given m shapes in the collection, we represent them as points in the
Euclidean space R", restricted to the unit sphere S". Each shape
a is represented by a point v, that lies on the sphere. We optimize
the positions of these points by imposing the topological relations
defined by the quartets instead of using the actual distance mea-
sure between the shapes that the points represent. Given a quartet
(ab|cd), we want to keep shapes a and b close, ¢ and d close, and
all other pair combinations far apart. Since vq, Us, Ve, vq all lie on
the sphere, we use the angle between them o, v; as an indicator for
their distance. We define two terms representing the average of the
“close” pairs and “far” pairs:

C(a,b,c,d) = (Va,vs + e, v3) /2,

F(a,b, ¢, d) = (5, Det-Tay B + T, T + 0, 02) /4.

1)

Given a list of k quartets (a;b;|c;d;), the embedding of the rep-
resentative points is defined as the solution of a Semi-definite pro-
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Figure 4: A quartet (ab|cd) in (a) induces six edges: two bad (red)
and four good (cyan). Four cuts Pi, ..., Py are illustrated in (b)
and (c) by dashed lines. The cut P is better than all other cuts with
respect to the quartet in (a), as no bad edges are included in it.

gram (SDP), that minimizes the following expression:
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The result of minimizing this expression is that point v,; will be
close to point vy, s point v, y will be close to point vq s and the two
pairs (va;,vs;), and (ve;,vq,) are separated from each other as
much as possible, respecting the given quartet (a;bj|c;d;). Satis-
fying these constraints accurately is usually done by setting n = m.
However, as shown in [Snir and Rao 2010] embedding the shapes
into a three-dimensional sphere in R yields satisfactory results,
and we set n = 3 in all our experiments.

4.2 Partitioning

Once all representative points are embedded onto S™, we can sim-
ply use the Euclidean distances between them as a metric d(-, -).
The partitioning stage builds a hierarchical tree by top-down recur-
sive partitioning of the set of embedded points. Yet again, infor-
mation from the quartets is used to guide the partitioning. For any
quartet (a;bj|c;d;), the pairs (a;,b;) and (c;,d;) are expected to
be in a separate group after the partitioning. To achieve this, we
define a small graph on each quartet containing six edge; see Fig-
ures 4(b-c). We denote the edges between a, b; and between c;, d;
as “bad” edges, and all other four edges as “good” edges. As can
be seen in Figures 4(b-c), a good partition is one that cuts through
as many good edges as possible and as few bad edges as possible.
Thus, the optimized partition is obtained by maximizing the follow-

ing expression:
D d(i ) —ax Y di,j), 3)

e;; €EG e;jEB

where the set G (B) is the set of good (bad) edges from all quartets,
d(i, j) is the Euclidean distance between the embedded points v;
and v; representing shapes ¢ and j, and o > 0 is a scalar weight.
This optimization can be efficiently solved using the MaxCut algo-
rithm. The partition operates recursively until no more partitions
are obtained. The resulting hierarchy of sub-partitions is defined as
the C-Tree. To guarantee that no empty partitions are obtained, we
adopt the dynamic ratio parameter as suggested by [Snir and Rao
2010]. If « > |G|, then we always obtain empty partitions when
optimizing expression 3. Thus, we use a binary search to find the
largest o in the interval [2, |G|], which yields a non-empty partition.

5 Defining the Quartets

Although the QMC optimization is robust against a reasonable
number of outlier quartets, defining reliable quartets is critical to



the success of building a reliable C-tree. The key questions are:
how to define a reliable quartet? and later, how to extract them
from a large collection of shapes?

Quartets are used to separate two pairs of shapes. The more clear
the topological structure of this separation is, based on a given dis-
tance measure, the more reliable the quartet is. This structure in-
duces two pairs of shapes that are close to each other among them-
selves, but far apart between them. In total, there are six pairwise
distances between four shapes. Therefore, we need to examine
whether we can find only two small distances among the six, that
are between two relatively distant pairs of shapes.

Using different thresholds to define how large (or small) these dis-
tances can be, will result in defining more (or less) quartets as re-
liable. The challenge is on one hand to be conservative enough
to include only reliable quartets, but on the other hand, not to be
too conservative so as to have enough observations to generate a
reliable C-tree. By combining several distance measures, we can
achieve both. We are conservative while accepting quartets based
on each single distance, but still have enough observations as we
combine quartets obtained using several distances. This way, we
combine only the strengths of these distances and not their flaws, as
we use distance information only when it is reliable.

The full graph among any four shapes (a, b, ¢, d) (a quadruplet) in-
cludes six edges, as shown in Figure 5(a), where each edge is asso-
ciated with a distance based on any desired measure. Following the
above observations, a necessary condition to form a reliable quartet
is that its four vertices remain connected after removing three edges
corresponding to the largest distances. Any quadruplet that does not
pass this test is discarded; see Figures 5(e). Next, the three remain-
ing edges are sorted according to their distances: let diy < do < d3
be the three smallest distances. If the edge of the largest (remain-
ing) distance ds is not a bridge, that is, if its removal does not sep-
arate the four nodes into two pairs, then the quadruplet is, again,
discarded; see Figure 5(d). The remaining set of quadruplets have a
potential of being a reliable quartet. We examine the ratio between
the values of the edges and use a threshold R: if ds/d1 > R and
ds/d2 > R, then we define the quartet as reliable.

In general, for m shapes, the total number of quadruplets is Ci,,
which is in the order of O(m*). To accelerate the search for reliable
quartets, we first construct pairs of shapes that are close enough,
and build quartets from them. This increases the chance of finding
reliable quartets using sampling. For each distance measure we use,
we build m groups (bins) of the k£ nearest neighbors of each shape
— one bin per shape. Using these bins we create candidate quadru-
plets for filtering by picking all combinations of two pairs from two
separate bins. Using this approach we found that typically around
30% of the examined quartets are reliable. Thus, the total number
of samples reduces to C7 - C2, = O(m?), which is also the order
of the number of quartets needed to achieve a high accuracy (see
discussion in Section 6). Larger k values allow more accuracy at
the cost of speed. We set k to be between 20 and 50 for a collection
of around 1, 000 shapes, arriving at around 10 ~ 107 quartets.

In our experiments, we employ four shape distance measures based
on different shape descriptors: LFD with Inner-Distance, SDF,
Spherical Harmonic Descriptor (SHD) [Kazhdan et al. 2003b], and
the HKS-BoF Descriptor [Bronstein et al. 2010]. The threshold
R is defined with respect to the scale of the different measures:
Ry = 1.2 for LFD, and R = 1.5 for SHD, SDF and HKS-BoF
(see Section 6 for an analysis of the effect of varying these parame-
ters). We create a set of reliable quartets using each of the distance
measures separately, and combine them to form a C-tree. Figure
6 illustrates some examples of quartets deemed reliable and some
that are filtered out during generation of the C-tree in Figure 2.

a d dz dz dz
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b C [ ]
(a) (b) (© (d) (e)
Figure 5: Four shapes a,b, c,d and six associated edges (a). Af-
ter removing three edges, there are several possible configurations.
For instance, (d) and (e) are discarded as the edge ds is not a bridge

that separates the four into two pairs, while (b) and (c) can be fur-
ther examined to define a reliable quartet.
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Figure 6: Six quartet samples of the small set in Figure 2. Upper
row shows reliable quartets and the bottom shows discarded ones.

6 Evaluation

Sample Shape Collections. To demonstrate the effectiveness of
the method, we used a given categorization of objects from the
Princeton Shape Benchmark [Shilane et al. 2004] to build a ground
truth categorization tree. We also used four more collections of
shapes and categorized them in a similar manner as PSB using man-
ual organization by multiple users. We used an iterative process
with 10 users where each one receives the previous user’s catego-
rization tree and can move objects from one category to another
until the tree converges. It should be noted that although catego-
rization is subjective, the objects in the collections we used have
a rather simple and well-accepted human categorization as can be
seen in Figure 13 and in the supplementary material.

Tree Distance. To evaluate the performance of the different
methods which produce categorization trees, we need to measure
the distance between a given tree 7" and the ground truth tree G7T'.
Conventional tree distances mostly measure the similarity between
tree structures. In our case, the main reason for creating the tree is
to order shapes, and the tree structure is of less importance.

Given a pair of shapes p;, ¢;, we measure the difference between
their degree of separation in the two trees:

A(pi, ¢i) = |DoSt(pi, ;) — DoSar(pi, )1 C))

The distance between the two trees 7" and GT' is defined as the av-
erage difference between all pairs of shapes in the two trees. Since
calculating this distance is quadratic in time, we use random sam-
pling of a large number k of pairs to estimate this distance:

D(T,GT) =

El i

k
> Al q0)- ®)
=1

Using this measure we can evaluate the performance of different
tree generation methods for arrangements of shapes: we compare



Figure 7: 9 models are selected from set#l (Figure 13(a)), and the 10 nearest models are listed in each row using LFD similarity, SHD
similarity, and our C-tree DoS-distance. Every model is colored by its DoS on the ground truth tree: green for near shapes, yellow for

moderately close shapes, red for far shapes.

the distances from the different trees generated to the ground truth
tree over four collections (including two from the PSB) using the
D(T,GT) measure. We compare the performance of our method
to two well known algorithms for clustering: (i) Neighbor Joining,
and (ii) ApClustering. In each algorithm, we used four quantitative
distance measures: LFD, SDF, SHD and HKS-BoS. The average
tree distance of these four is denoted as NeighJoin and ApCluster
in Figure 8(a).

We also combined the four measures by first normalizing their affin-
ity matrices and then creating a combined matrix in which the dis-
tance between two shapes is the minimum of the four (normal-
ized) measures and used the combined measure for clustering (both
NeighJoinx and ApClusterx). Lastly, we used Gaussian Kernel
PCA on each of the affinity matrices of the four distance measures
to reduce the dimensions by a factor of 5 (to 20%) and built a tree
using Neighbor Joining in the lower-dimensional space. The aver-
age tree distance over the four methods in the reduced space is also
given in Figure 8. A comparison of the tree distance using all dif-
ferent methods is given in Figure 12. As can be seen, the distance
is much smaller for the trees built by our method compared to all
alternatives.

K-Nearest Neighbor (KNN) Test. We randomly selected 9 ob-
jects from shape set #1 (Figure 13 shows an overview of all the
shape collections) to test the performance of an KNN algorithm
based on various distances. In Figure 7, for each of the 9 objects,
we show in three rows the 10 most similar shapes retrieved from
the set by (i) LDF, (ii) SHD, and (iii) our qualitative method using
DoS distance. Next, we measure the distance between the extracted
shapes and the query shape on the ground truth tree and color the
retrieved shape in three colors: red for far shapes, yellow for mod-
erately close shapes, and green for near shapes. As can be seen,
the (bottom) rows using our method contain mostly green (near)
shapes, while the other rows contain a mixture of red and yellow.

Accuracy Test. The quality of a categorization tree obviously de-
pends on the number of quartets used. To measure this, we built
a ground truth tree G'I" out of m shapes. Based on this tree, we
create a set of quartets by choosing pairs of shapes from sepa-
rate sub-trees; see [Snir and Rao 2010]. Using a random subset
of these quartets, we build a categorization tree 7' and measure
its accuracy compared to GT'. We define an accuracy measure as
accuracy = 1.0 — D(T,GT)/DoSar, where DoSqr is the av-
erage DoS distance between pairs of objects in the GT" tree. Since
D(T,GT) < DoSgar, the accuracy will always be smaller than 1,
and will reach 1 when D (T, GT) = 0. In Figure 8(b)-left, we plot

the accuracy of the categorization tree against the number of quar-
tets used. As can be seen, the accuracy increases with an increase
in the number of quartets, but we find that O(m?) quartets can lead
to a C-tree with 90% accuracy.

Varying Parameters for Quartet Definition. In Section 5, we
defined two main parameters for choosing quartets: k is the num-
ber of nearest neighbors taken for each shape while searching for
quartet candidates, and R is the ratio between the value of inner to
inter pair distances in a quartet used to define a reliable quartet. The
larger the k the more candidates are created at the expense of higher
running times. When R is too small the quartets are no longer reli-
able, resulting in low accuracy. However, when R is too large, the
reliable quartets are too conservative resulting in a small number of
quartets, which can again reduce accuracy. Figure 9 shows a plot of
the accuracy of our algorithm (as defined above) while varying & for
different settings of R; used for LFD and R used for SHD, SDF
and HKS-BoF. Note that our setting of R = 1.2 and R> = 1.5
seems to strike the best balance for values of k above 20.

Behavior of Merging Distances. One of the strengths of our
method is the combination of several distance measures. We chose
four well-known shape distance measures but others could be used
as well. To illustrate the strength of combining multiple distances,
we compare the quality of the resulting C-trees when only a subset
of the measures are used.

Denote by Q;, j = 1,...,4, the set of quartets created using
only the j-th distance measure; the four distances used were listed
in Section 5. Let I be the set of all combined quartet sets by
merging k of the Q;’s, k = 1,...,4, sets ;. For example,
I = {Q1,Q2,Q3,Q4} and Ir = {Q1 U Q2,Q1 U Q3,Q1 U
Q4,Q2U Q3,Q2 U Qu4,Q3 U Qu}, etc. For each I, we build the
set of C-trees corresponding to the quartet sets in I, (e.g., there are
six C-trees built for I2) and calculate the average tree distance from
the created trees to the GT tree. The results of these average dis-
tances on all four collections shown in Figure 13 can be found in
Figure 10. As can be seen, the average tree distance using two kinds
of distances to build the quartet set is significantly smaller than us-
ing a single distance. Similarly, using a combination of three or four
distances also increase the accuracy but less significantly. Hence,
we chose to merge all four distances in all our experiments.

Complexity and Scalability. Experimentally, the QMC algo-
rithm exhibits a performance that is close to O(m log(m)), where
m is the number of shapes in an input collection. There is no guar-
antee on the runtime complexity since the core of the algorithm
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Figure 8: Quality and performance evaluation. (a) comparing the
tree distance D(T, GT) for our method against a few other cluster-
ing methods; our results are closer to the ground truth on all four
shape collections. (b)-left: the quality (red) and accuracy (green)
plots, measured against the ground truths, as the number of quar-
tets increases. (b)-right: plot of running time for quarter selection
and QMC as the number of shapes increases.

contains the heuristic MaxCut which can have a large time com-
plexity. The dominant part of our method, timing wise, is the quar-
tet selection step which is quadratic in the number of shapes, as ex-
plained in Section 5. Figure 8(b)-right shows a plot of the running
times of these two components of our method. Both show a roughly
quadratic growth with m, since they depend linearly on the number
of quartets, and we choose O(1m?) quartets to build the C-tree. The
largest collection we handled contains around 5, 000 shapes.

Limitations. Quartet-based analysis has two main limitations
stemming from the heuristic nature of quartet selection. First, the
sampling approach of selection implies that the quality of the results
depends on the number of reliable quartets. This means that it may
not be suitable for small collections. Second, when quartets are de-
fined based on multiple distances, conflicting reliable quartets may
be introduced. For example, a quadruplet (a, b, ¢, d) may define the
quartet (ab|cd) by distance A, and (ad|bc) by distance B. Once the
relative number of such conflicts is large, the optimization method
can lead to unreliable results. This implies that the success of the
method still depends on the quality of the geometric descriptors and
the similarity distanecs employed.

7 Interactive Exploration of Shape Collection

The organization of a collection of shapes into a C-tree allows fast
and intuitive exploration. Rather than browsing and exploring the
collection by a sequence of retrieval-type queries that display /lin-
ear series of retrieved nearest neighbors, the C-tree allows display-
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Figure 9: Varying quartet definition parameters: the accuracy as a
function of k, the number of nearest neighbors for different values
of the ratio R.
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Figure 10: The average distance of the categorization trees from
the ground truth merging one to four distances to create the quar-
tets. The more distances are combined the lower the distance, but
the gain drops as more distances are added.

ing two-dimensional neighbor maps. These 2D maps facilitate the
exploration of the collection due to the 2D nature of human vision
and conventional displays. Specifically, the 2D display space is
better utilized. As well, the wider field of view provided by the 2D
maps provides more instant access to a larger number of models,
leading to more effective summarized view of the shape collection.
We have developed a user interface that demonstrates such an ex-
ploration; see Figure 11 for an illustration and the accompanying
video for interactive demonstration.

To explore a collection of shapes, the constructed C-tree is first pre-
sented to the user in a display area. The user can then freely select
any leaf node of the tree, which represents one shape from the col-
lection and serves as the starting point of the exploration.

Once a shape is selected, the rest of the shapes are automatically
repositioned to form a DoS chart around the selected one. The DoS
chart is formed in such a way that shapes closer to the selected
shape on the C-tree will be located at the inner circles of the DoS
chart. This organization provides the user with intuitive understand-
ing of how other shapes in the collection compare with the currently
selected one. The user can also rotate the different circles to better
examine the shapes.

Exploration can continue to other shapes by selecting any shape in
the current DoS chart. A new DoS chart around the newly selected
shape will then be displayed with a smooth transition between the
previous one and the new one. The system maintains the explo-
ration history of the collection in a separate window, allowing sim-
ple understanding of the exploration path and quick backtracking.
Lastly, at any time the user can switch back to the C-tree display to
choose a different shape as a starting point for a new exploration.



Figure 11: Two examples (for two collections of shapes shown on the left) of using the shape exploration tool based on local “maps” created
by DoS-charts. The main window of the tool shows an interactive depiction of the DoS chart around the current selected shape (green), the
lower right panel shows the categorization tree and the lower left panel shows the history of selected shapes (see also accompanying video).

8 Conclusion and Future Work

As the size of 3D shape repositories grows, so does the need to
organize them to enable intuitive and efficient browsing and ex-
ploration. While previous approaches to the problem focused on
finding good distance measures between objects and used those in
standard organizational frameworks, we demonstrate the effective-
ness of a topological, qualitative approach to organizing 3D shape
collections. As demonstrated by results throughout the paper, our
approach utilizes a number of common distance measures, but fuses
them in a most effectively manner to alleviate the drawbacks of con-
ventional use of these distances. The key idea is to gather reliable
qualitative information from multiple distances to enable a coherent
organization of heterogeneous collections of objects.

We believe that such qualitative approach for sorting and organiza-
tion is new to computer graphics, and we believe that it can be used
in a larger scope. For example, in organizing photo collections,
where finding general and effective distance measures for photos is
particularly challenging. Another possible extension to our work
would be to handle very large collections of objects. This can be
done in conjunction with conventional clustering method. Since
common distances measures perform well on similar instances of
objects (e.g., shapes or photos), we can use a two-stage approach.
Extremely large collections can first be clustered into groups of sim-
ilar instances, and then we can apply a qualitative approach only
to organize the clusters using representative shapes. Such shapes
would be heterogonous, hence benefiting from our approach.

It would also be interesting to use the categorization-tree to create
better abstractions of a family of shapes. Finally, the degree of
separation of each shape in the collection can be a valuable feature
to analyze the diversity or density of the collection, which can lead
to applications such as collection-level analysis and control.
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Figure 13: Results on large sets of shapes. Left: a view of the heterogenous shape colletions. Middle: ground truth tree. Right: C-trees
computed by our method. Shape colletion 1 — 3 are from a mixture dateset and shape colletion 4 is totally from the PSB. Please zoom in the
electronic version to see details.



