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Abstract Color plays a significant role in the recognition
of 3D objects and scenes from the perspective of cognitive
psychology. In this paper, we propose a new 3D model re-
trieval method, focusing on not only the geometric features
but also the color features of 3D mesh models. Firstly, we
propose a new sampling method that samples the models in
the regions of either geometry-high-variation or color-high-
variation. After collecting geometry + color sensitive sam-
pling points, we cluster them into several classes by using
a modified ISODATA algorithm. Then we calculate the fea-
ture histogram of each model in the database using these
clustered sampling points. For model retrieval, we compare
the histogram of an input model to the stored histograms in
the database to find out the most similar models. To evaluate
the retrieval method based on the new color + geometry sig-
natures, we use the precision/recall performance metric to
compare our method with several classical methods. Exper-
iment results show that color information does help improve
the accuracy of 3D model retrieval, which is consistent with
the postulate in psychophysics that color should strongly in-
fluence the recognition of objects.
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1 Introduction

In computer vision and computer graphics, complex 3D ob-
jects are usually modeled by dense triangle meshes. With
the rapid development of the internet and the multimedia
technology, these 3D digital models have been widely used
in our daily life. As the 3D movies and 3D games becom-
ing flourishing in recent years, the featured 3D film, Avatar,
for an example, more attention has been paid to 3D mod-
els in several computer science areas such as computer vi-
sion, computer graphics, and geographic information sys-
tems. With the large amounts of 3D model data on the in-
ternet, the need for obtaining 3D models which satisfy dif-
ferent requirements quickly and accurately has prompted a
new trend of research on 3D model retrieval.

In most traditional 3D model retrieval methods, only ge-
ometric information is considered. Figure 1 shows two 3D
models whose shapes are almost the same while their colors
present different information. In this case, obviously, we are
not able to distinguish them by just considering the geomet-
ric features. Neurophysiological research has revealed that
the visual stimulus to the human vision system is multidi-
mensional and the separated perceptual dimensions include
brightness, color, movement. and depth [1]. So, it is signif-
icant to carry out a new method that considers not only the
geometric features, but also color features in retrieving 3D
models.

Since the information in 3D models is very rich, many 3D
model retrieval methods have been proposed from different
perspectives. We classify these retrieval methods in the fol-
lowing three categories from the perspective of users’ input
manner: (1) Keywords: the advantage of this class is that the
input is concise and the results could be good if the text an-
notations of 3D models are sufficiently large. However, the
database of 3D models is hard to establish since it demands
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Fig. 1 Two 3D color models of King and Queen: these two physical
models have similar shape but their colors offer different information

each model to be annotated with a lot of keywords, depend-
ing on many aspects across different knowledge domains.
(2) 2D Images: the inputs of these methods are also simple
and contain rich information about the original 3D models.
However, as they lose the depth information, the retrieval
accuracy is usually not high. (3) 3D models: the information
of the original 3D models has been completely reserved in
the input. So, the accuracy of this class is the highest in all
the three classes.

In this paper, we focus on the third class of 3D model re-
trieval methods, i.e., the input of our method is a 3D model.
In addition to utilizing the geometric information of the in-
put 3D models, we will also consider the color information.
Object retrieval using both geometry and color information
has been studied in image process [2], neural computing [3],
and 3D object recognition from color images [4]. In this pa-
per, we study how to combine color and geometry-invariant
features for 3D model retrieval. The color 3D models stud-
ied in this work include not only the synthesized computer
models but also the real physical object models as shown in
Fig. 1.

The rest of the paper is organized as follows. Section 2
is about related work. The method for feature extraction us-
ing both color and geometric information is introduced in
Sect. 3. Section 4 presents the main algorithm for 3D model
retrieval based on feature clustering and the associated fea-
ture histogram. The experimental results of our method and
the comparison to several classic methods are presented in
Sect. 5. Finally, we offer our conclusions in Sect. 6.

2 Related work

To solve the 3D model retrieval problem, most methods use
geometry-based signatures of 3D models. Ankerst et al. [5]
proposed a method, known as D2 algorithm, based on a
3D shape histogram for similarity search and classification
in spatial database. The D2 algorithm was later refined in
[6, 7]. Using the points randomly sampled on models, the
D2 method calculates the Euclidean distance between ev-
ery pair of two different points and establishes a shape his-
togram of a 3D model using these Euclidean distances. Then
the similarity between two models is obtained by calculat-
ing the L2 distance of their histograms. This method is sim-
ple to implement and its retrieval accuracy is also compara-
ble high. Vranic and Saupe [8] proposed a 3D shape signa-
ture based on 3D Fourier transform. This method utilizes
the frequency domain instead of the spatial domain. An-
other classical method is based on extended Gaussian im-
ages (EGI) [9, 10]. The principle of this method is to cast
the area distribution of a model to the surface of a sphere
whose central point is the center of the original model. The
EGI method retrieves models well in convex polyhedrons,
but it is not good for concave polyhedrons.

In addition to the global matching, Johnson and Hebert
[11, 12] proposed the spin image algorithm that requires
only partial surfaces as input. Since its computational com-
plexity is relatively high, the spin image algorithm requires
preprocessing the models in the database in order that all
the models are in the same size. All the above methods use
geometry-based signatures of the models. Another class of
methods is based on topology of the models. One typical
work in this class is proposed by Hilaga and his colleagues,
which is called the Multiresolution Reeb Graphs ( MRG) al-
gorithm [13]. In this method, the approximate geodesic dis-
tance between different points on the 3D models is used to
establish the multi-resolution Reeb graphs. The experimen-
tal results of this method are good but the process of estab-
lishing the topological structures is still complicated.

Retrieving 3D models from 2D images is also a hot topic
in 3D model retrieval research. The main idea of this class of
methods is to get the information of the original 3D model
by taking photos of the model in different views. Although
the depth information is lost, the retrieval process is simpli-
fied by just comparing and matching 2D images. The typical
work in this class includes the model-view matching [6] and
the light field signatures [14]. The work in [6] takes photos
of the models in their database from 13 different viewpoints
and uses them as the representative views of each model.
The main idea of the method in [14] is to represent 3D mod-
els with a group of 2D projected images. By calculating the
binary images (in black and white) of orthogonal projections
of different 3D models, the models are matched by finding
the 2D shape similarity among the projected images.
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Fig. 2 Some 3D color models used in entertainment industry. The
models in each row have similar geometric shape. In the second row,
the first two models and the last two models have similar color distribu-
tions, respectively. In the last row, the models can only be successfully
classified using color information

In spite of the good results accomplished by the meth-
ods mentioned above, none of them has considered the ef-
fect of the color information in 3D models. However, more
and more 3D color models have become ubiquitous in differ-
ent applications from virtual reality to entertainment indus-
try (see Fig. 2). Meanwhile, the converging behavioral, neu-
rophysiological, and neuropsychological evidence demon-
strates that color has played a significant role in both low-
level and high-level vision [15]. So, it is necessary for a 3D
model retrieval method taking the color information of the
models into account. A pioneering work was proposed in [4]
that combines color and geometric features for 3D object
recognition from 2D color images. In this paper, we present
a new 3D model retrieval method using a 3D color model as
input. Our experimental results demonstrate that the color
features in 3D models help improve both the efficiency and
the accuracy of retrieval when compared to the traditional
geometry-based 3D model retrieval methods.

3 Feature point extraction

In vision research, the process of human vision system is
separated into early vision and high-level vision [16, 17].
The early vision process concerns extraction and grouping
of certain physical properties from visual input. In this sec-
tion, we present a method that extracts low-level features on
3D color models. In the next section, we organize these low-
level features into a feature histogram that serves as a shape
signature to recognize and classify the objects.

Psychological model of the early vision process has pos-
tulated that the low-level features such as color and depth in-
formation are extracted from separated visual channels [18].

Given a 3D color model, two kinds of feature points are ex-
tracted: one concerns geometry and the other concerns color
information. We extract geometric features based on curva-
ture information since it is invariant in Euclidean and sim-
ilarity transformation. For color feature extraction, we use
the CIE-LAB color space [19] that is designed to approxi-
mate human vision and is more perceptually uniform than
RGB and HSV color spaces.

3.1 Geometric feature extraction

The 3D model is represented by a triangle mesh, consisting
of a vertex list and a triangle list. We randomly sample the
model’s surface by a set of points as follows. An array A is
generated with the number of triangles in the model: A[i]
corresponds to the triangle ti . The value stored in A[i] is
the sum of triangle areas accumulated so far, i.e., A[i] =
∑i

j=1 Δtj , where Δtj is the area of triangle tj . A random
number generator is used to sample between 0 and A[n],
where n is the number of triangles in the mesh model. For
a generated random number x, the array index k is found
which satisfies A[k − 1] < x ≤ A[k] and a sample point is
generated in the triangle tk . The larger the triangle area Δtk
is, the more chances a sample point falls into tk since Δtk =
A[k] − A[k − 1].

We use the Taubin’s method [20] to compute the discrete
curvatures at each vertex in the mesh. Taubin’s method com-
putes the numerical integral of the directional curvature at a
vertex first and then decomposes the matrix obtained by the
integral to get the mean and Gaussian curvature at that ver-
tex. Since the Gaussian curvature vanishes everywhere in a
developable surface [21] (i.e., plane, cylinder, cone, tangent
surface, or a combination of them), we use the integral of the
absolute Gaussian curvature over the surface as a measure
of surface smoothness and use it to determine the number of
sample points for each 3D model. We normalize a 3D model
such that its total area is 100. For each normalized model M ,
the number of points we sampled on M is determined by

max

{

2000

(
G − a

b

)c

,2000

}

where G is the integral of the absolute Gaussian curvature
on M , a, b, c are constants.1

Natural scenes usually contains millions of bits of infor-
mation and human vision system has a remarkable ability to
interpret complex scene in real time by selecting a subset of
information at an early stage [22]. To select sample points
representing visually salient regions [23] in the model, we
use the scale-space theory [24] to generate a three-level cur-
vature map for each model. Each level Ci = Ci−1 ∗ L(σ) is

1We found that a = 450, b = 2, c = 0.1 works well in our experiments.
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Fig. 3 Geometric feature selection using random samples. Left: the
geometry of a 3D color model. Middle: feature points selected by mean
curvature. Right: feature points selected by Gaussian curvature

smoothed by a Laplace operator [25] of the previous level.
The difference-of-Laplacian space Di = Ci − Ci−1 offers
us a metric of saliency.

We extract the geometric feature points with both mean
and Gaussian curvature by selecting the top 10% points with
the highest values D = D1 ⊕ D2 in each model. One of
sampling results using mean curvature is shown in Fig. 3
(middle) and the result of the same model using Gaussian
curvature is shown in Fig. 3 (right). Figure 3 (left) shows
the geometry of the original 3D model. In order to display
the feature points clearly, we hide the brightness and color
effect of the model in Fig. 3.

After experiments with the models in databases [35, 40],
we find that it is better to use mean curvature as the metric
to extract geometric feature points in 3D models. Our exper-
iments are consistent with the discovery in [26] that mean
curvature is a good metric to indicate model saliency in
low-level human visual attention. We also find that choosing
points using mean curvature makes the feature points con-
centrated in some high-variational area. So, in our method,
we extract the geometric feature points in the following way.
First, we calculate the mean curvature of each point and then
sort all the points by the value of difference-of-Laplacian
of mean curvature from high to low. Then we traverse the
sorted points in order and choose a point as the feature point
if none of its neighboring points has been chosen until the
number of the chosen points adds up to 10% of the num-
ber of total sample points in the model. One example of our
results is presented in Fig. 4.

3.2 Color feature extraction

Several widely used color spaces such as RGB and HSV
are device-dependent color models, and are unrelated to hu-
man perception. We use CIE-LAB color space [19] for color
feature extraction, where L∗ represents the lightness of the

Fig. 4 Geometric feature selection using mean curvature and neigh-
borhood constraints. The color rendering of the same model is shown
in Fig. 5

color, a∗ represents the position between red/magenta and
green, b∗ represents the position between yellow and blue.
Given an RGB color value, first it is converted into CIE
XYZ system:

⎡

⎣
X

Y

Z

⎤

⎦ = 1

0.17697

⎡

⎣
0.49 0.31 0.20

0.17697 0.81240 0.01063
0.00 0.01 0.99

⎤

⎦

⎡

⎣
R

G

B

⎤

⎦

Then the CIE-LAB coordinates are obtained by

L∗ = 116f

(
Y

Yn

)

− 16

a∗ = 500

[

f

(
X

Xn

)

− f

(
Y

Yn

)]

b∗ = 200

[

f

(
Y

Yn

)

− f

(
Z

Zn

)]

where

f (t) =
{

3
√

t if t > ( 6
29 )3

1
3 ( 29

6 )2 + 4
29 otherwise

and Xn, Yn, Zn are the CIE XYZ tristimulus values of the
reference white point [19]. The nonlinear relations for L∗,
a∗, b∗ mimic the nonlinear response of the retinal, and uni-
form changes of coordinates in CIE-LAB space correspond
to uniform changes in perceived color [27, 28].

It was widely accepted that human vision system uses
three different photo-sensitive substances in the cones, i.e.,
in the initial step in the system, the color is encoded in three
separated visible spectrums for red, green, and blue (RGB).
After light reaches the cones, nerve impulses are generated,
which carry the color information to the brain. The nerve
fibers along which the signals transform, are in the regions
where rods and cones are interconnected. It seems unlikely
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that the color information is transformed in RGB form and
the probability of transformation in opponent-color form is
enhanced [29]. Therefore, defining measures in CIE-LAB
color space has physiological support.

In our method, we measure the CIE-LAB color similarity
between different 3D models based on the distributions of
color difference in each model. Our implementation stores
the color model data in the wavefront obj file format, which
contains the lists of vertex coordinates, texture coordinates,
normals and faces. A face in obj format is defined as

f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3

where (v1, v2, v3) represents the IDs of three vertices,
(vt1, vt2, vt3) represents the IDs of three texture coordi-
nates, and (vn1, vn2, vn3) represents the IDs of three nor-
mals. For every vertex in a face, there is a texture coordinate
assigned to it. A texture coordinate represents a position in
the texture image, from which a color value could be re-
trieved.

We partition the CIE-LAB color space into cells and all
the points in each cell are regarded as having the same color.
For each point p in the color space, we assign a color code
to p that represents to which cell the point falls in. The color
code is generated using the following rule:

code(L∗) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if L∗ ∈ [0,15)

16 if L∗ ∈ [15,30)

32 if L∗ ∈ [30,45)

48 if L∗ ∈ [45,60)

64 if L∗ ∈ [60,75)

80 otherwise

code(a∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if a∗ ∈ [−100,−50)

4 if a∗ ∈ [−50,0)

8 if a∗ ∈ [0,50)

12 otherwise

code(b∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if b∗ ∈ [−100,−50)

1 if b∗ ∈ [−50,0)

2 if b∗ ∈ [0,50)

3 otherwise

The code number of point p is defined as code(p) =
code(L∗) + code(a∗) + code(b∗). Since this coding scheme
is a combination of 16 × (0 ∼ 5) + 4 × (0 ∼ 3) + (0 ∼ 3),
two different cells cannot have the same coding, and thus
the color code is unique for each cell.

We randomly sample the model’s surface using a set of
points. Note that different color values can be assigned to
the same vertex. If one sample point is a vertex and less than
80% colors assigned to it have the same color code, we set

Fig. 5 Color feature selection. The wireframe rendering of the same
model is shown in Fig. 4

this point as a color feature point. For a sample point that is
not a vertex, we compare the color code of this point with
the color codes of its neighboring points. If less than 80%
colors have the same color code, this point is triggered as a
color feature point.

To avoid too many points being sampled in a small area
with a strong texture pattern, for each sample point, we first
check whether there are any color feature points in its neigh-
boring points. If at least one of its neighboring points has
been chosen as a color feature point, the point cannot be cho-
sen as a feature point. Figure 5 shows an example of color
feature point selection.

4 Feature histogram as a shape signature

Given both geometric and color feature points, we establish
a feature histogram serving as shape signature to distinct the
model from others. We first use a modified ISODATA algo-
rithm [30] to cluster the feature points into different clusters.
Then we propose two signatures based on the clustered fea-
ture points. One signature is akin to the D2 algorithm [5, 7],
which is based on the Euclidean distance, and the other is
based on an angle invariance. Both signatures are invariant
to similarity transformations.

The reason of implementing a D2-style signature is that
in our previous work [31], we have compared five repre-
sentative geometric signatures for 3D model retrieval: D2
[6, 7], G2 [32] (geodesic-bending-invariance), EGI [9, 10]
(extended Gaussian images), GMT [33] (geometric moment
invariants), and SPIN [11, 12] (spin images). Our results
[31, 34] show that using McGill 3D shape benchmark [35],
D2 shape signature has better performances than other meth-
ods.

In addition to D2 shape signature, we also propose an
angle-based geometric invariance. This invariance is based
on the postulate in [36] that interobject spatial relations
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and allocentric reference directions play an important role
in learning process and spatial memory of human. Our
experimental results presented in Sect. 5 show that using
precision/recall plot [37] as an analytical tool, ClusterAn-
gle + Color signature has better performance than the Clus-
terD2 + Color signature.

We use the ISODATA algorithm [30] to partition the fea-
ture points into clusters with the following properties: (1) the
number of points in each cluster is almost the same, (2) the
position variance of points in each cluster is almost the same,
(3) the points inside a cluster are close to each other, while
the points lying in different clusters are far from each other.
Traditional ISODATA algorithm needs to assign the number
of the clusters at the beginning. We use a modified version
of ISODATA algorithm with the following changes: (1) in-
stead of inputting a fix number of clusters, the algorithm
automatically finds an optimal number by iteration, (2) we
give equal chance to split one cluster into two or merge two
clusters into one. The details of this modified ISODATA al-
gorithm is presented in the Appendix.

After partitioning all the feature points (including both
geometric and color feature points) into clusters, the next
step is to calculate a histogram of the 3D model using
those clustered feature points. We compute two types of
histograms: ClusterD2 + Color and ClusterAngle + Color.
Suppose that in the model there are c clusters and Fi is the
set of feature points in the ith cluster with the number of
points in Fi being ni .

The following steps compute the histogram of Clus-
terD2 + Color:

1. For each point fip ∈ Fi and fjq ∈ Fj , where i �= j , i, j =
1,2, . . . , c, p = 1,2, . . . , ni , q = 1,2, . . . , nj , compute
the Euclidean distance dipjq = ‖fip − fjq‖ and store all
the distances in an array D.

2. Find the maximum value dmax and the minimum value
dmin in D.

3. Normalize all the values in D by d ′
i = di−dmin

dmax−dmin
.

4. Convert the normalized array D into a histogram with 20
bins.

The following steps compute the histogram of ClusterAn-
gle + Color.

1. For each point fip ∈ Fi , fjq ∈ Fj , and fkr ∈ Fk , where
i �= j �= k, i, j, k = 1,2, . . . , c, p = 1,2, . . . , ni , q =
1,2, . . . , nj , r = 1,2, . . . , nk , compute the angle spanned
by vectors fipfjq and fkrfjq , i.e.,

∠fipfjqfkr = arccos
fipfjq · fkrfjq

‖fipfjq‖‖fkrfjq‖ ,

and store all the angles in an array A.
2. Find the maximum value amax and the minimum value

amin in A.

3. Normalize all the values in A by a′
i = ai−dmin

amax−amin
.

4. Convert the normalized array A into a histogram with
20 bins.

In the above histogram definitions for both ClusterD2 +
Color and ClusterAngle + Color, we use bin number be-
ing 20. Representing a histogram with a finite number of
bins will inevitably produce some quantization error. In
Sect. 5, we present the model retrieval results of experiments
using bin number 10, 15, 20, 25. The experimental results
show that bin number 10 has the lowest retrieval accuracy
and there is no significant difference among bin number 15,
20, 25. Thus, we choose the bin number 20 as a good trade-
off between the retrieval accuracy and the concise represen-
tation of a shape histogram.

Figure 6 shows three examples of ClusterD2 + Color
and ClusterAngle + Color histograms, from which it is ob-
served that (1) for the same object Monkey with two dif-
ferent poses, their ClusterD2 + Color and ClusterAngle +
Color histograms are similar; (2) for a different object Bear,
the ClusterD2 + Color and ClusterAngle + Color histogram
has a major discrepancy with the histograms of Monkey. In
Sect. 5, experimental results are presented, which show that
ClusterAngle + Color histogram has a better retrieval per-
formance than ClusterD2 + Color histogram.

Given a 3D model, we regard its shape histogram as an
independent and identically-distributed sample of a random
variable, and explore its structure by kernel density approx-
imation [38]:

f̂h(x) = 1

nh

n∑

i=1

K

(
x − xi

h

)

where n = 20 and kernel K is a standard Gaussian function
with mean zero and variance 1. We use a B-spline curve C

of degree 3 to interpolate the histogram and the bandwidth
h is estimated by [39]:

h =
(

R(K)

μ2
2(K)R(C′′)

) 1
5

n− 1
5

where R(K) = ∫
K(t)2 dt and μ2

2(K) = ∫
t2K(t) dt . Given

two models M1, M2 with distributions f̂h(M1), f̂h(M2),
Jensen–Shannon divergence DJS is used to define a proba-
bility dissimilarity of two models:

DJS

(
f̂h(M1), f̂h(M2)

) = 1

2
DKL

(
f̂h(M1)||f̂h(N )

)

+ 1

2
DKL

(
f̂h(M2)||f̂h(N )

)

where

N = 1

2
(M1 + M2), DKL(p̂||̂q ) = −

∫

p̂(x) log
p̂(x)

q̂(x)
dx
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Fig. 6 Histograms of three
color 3D models. Left column:
the color 3D model. Middle
column: the ClusterD2 + Color
histogram. Right column: the
ClusterAngle + Color
histogram

5 Experimental results

We use two publicly available benchmarks of 3D models,
the McGill 3D shape benchmark [35] and the engineering
shape benchmark [40], to test the proposed shape signatures,
as well as comparisons to several well known shape signa-
tures. We also develop a database of 210 color 3D mod-
els. In each benchmark, the 3D models are organized into
classes, according to their functions and forms. We use the
precision/recall plot [37] to measure the retrieval quality of
different shape signatures. The precision/recall plot in our
evaluation is computed as follows:

1. For a model in the database, we match it to all the mod-
els in the database (including itself) and the results are
ranked according to the similarity scores.

2. Suppose that a model M is in some class CM with c

members. For the ith retrieved relevant result from the
same class (i = 1,2, . . . , c), the recall value is i/c.

3. Given a recall value i/c (i = 1,2, . . . , c), we find the
ranking r of the ith model of this class CM in the re-
trieved results. Then the precision is i/r .

4. For each model in the database, we compute the preci-
sion/recall plot of that model and the final output of plot
is averaged over all the models’ plots.

At the same recall value, the higher the precision value
is, the better the retrieval method will be. For a whole preci-
sion/recall plot, the more area the whole plot enclosed with
two coordinate axes, the better performance the underlying
method has.

Accuracy on geometric signatures. 3D models can be
classified into graphics data or engineering part data. The
graphics 3D models usually have plenty of geometric de-
tails, while the 3D models of engineering parts have com-
plex topological type, i.e., a high genus number. For test-
ing on graphics 3D models, we compare the geometry-based
signatures, ClusterD2 and ClusterAngle signatures (not in-
cluding color), with three well-known signatures in graphics
models, i.e., EGI [9, 10], SPIN [11, 12], and D2 [6, 7], us-
ing the McGill 3D shape benchmark [35]. The results shown
in Fig. 7 reveal that (1) ClusterD2 performs slightly better
than D2 and (2) ClusterAngle signature has the best perfor-
mance among all the five signatures. We then compare the
ClusterAngle signature using the engineering shape bench-
mark [40], with three well-known signatures in engineering
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Fig. 7 Precision/recall plot of five geometric signatures: EGI [9, 10],
SPIN [11, 12], D2 [6, 7], ClusterD2 and ClusterAngle signatures.
Comparison is done using the McGill 3D shape benchmark [35]

Fig. 8 Precision/recall plot of four geometric signatures: skele-
ton [41], D2 [6, 7], light field [14], and our method using ClusterAn-
gle signatures. Comparison is done using the engineering shape bench-
mark [40]

part model retrieval, i.e., skeleton [41], D2 [6, 7], and light
field [14]. The results are shown in Fig. 8, demonstrating
the proposed ClusterAngle signature outperforms other sig-
natures.

Robustness on geometric signatures. To test the noise
sensitivity of the proposed signatures, we add noise to the
McGill 3D shape benchmark by disturbing each vertex
along its normal direction. The disturbance is randomly de-
termined between the range of (−maxvalue, maxvalue) with
zero mean, and maxvalue is chosen as 0.05 times the diag-
onal length of bounding box of each model. The compari-
son results of five geometry-based signatures against noise
is shown in Fig. 9. From the results, it is observed that (1)

Fig. 9 Precision/recall plot of five geometric signatures against noise
disturbance: EGI [9, 10], SPIN [11, 12], D2 [6, 7], ClusterD2, and
ClusterAngle signatures

Table 1 Classification of 3D color models in the database

Class name Model num Class name Model num

Queen 22 QQ Tang 19

Monkey 19 Panda 22

Dancer 19 Pikachu 18

Cat 17 Doll 19

Garfield 16 Bingo 18

Bear 21

D2 [6, 7], ClusterD2, and ClusterAngle signatures are robust
to noise disturbance and (2) EGI [9, 10] and SPIN [11, 12]
are more sensitive to disturbance by noises: this may be ex-
plained by that both EGI and SPIN need to utilize vertex
normal information, which is very sensitive to noises.

Color + geometry signature improvement. To compare
the ClusterD2 + Color and ClusterAngle + Color sig-
natures, we build up a database of 210 3D color mod-
els. According to their semantics and geometric similar-
ity, these models are classified into 11 classes (22 in
Queen class, 19 in Monkey class, 19 in Dancer class,
17 in Cat class, 16 in Garfield class, 21 in Bear class,
19 in QQ Tang class, 22 in Panda class, 18 in Pikachu
class, 19 in Doll class, and 18 in Bingo class) and Ta-
ble 1 presents the classification. We test all the models
in this database and compare the retrieval performance of
two pairs of signatures: (ClusterD2,ClusterD2 + Color),
(ClusterAngle,ClusterAngle + Color). The performance re-
sults are summarized in Figs. 10 and 11. These results
show that (1) geometry + color signatures have better per-
formance than using the geometric signatures only and
(2) ClusterAngle signature has better performance than
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Fig. 10 Precision/recall plot of two signatures of ClusterD2 and Clus-
terD2 + Color, testing in the database of 3D color models summarized
in Table 1

Fig. 11 Precision/recall plot of two signatures of ClusterAngle and
ClusteAngle + Color, testing in the database of 3D color models sum-
marized in Table 1

ClusterD2 signature. The tests were performed in a proto-
type retrieval system of 3D color models. Its interface is
shown in Fig. 12 in which users input a 3D color model
and the system feedbacks the ranked 3D color models in the
database indexed by descending order of similarity values.

Optimal number of bins. In our method, we discretize
the shape histogram using 20 bins (see Fig. 6). If we use
less bins to represent the histogram, the shape signature will
be shorter and the retrieval time can be reduced. However,
the accuracy of histogram representation is decreased. If
we use more bins, the histogram accuracy is improved but
the retrieval time is increased. We test the bin numbers of
10, 15, 20, 25, using the 3D color model database with the
ClusterAngle + Color signature. The results are shown in

Fig. 12 The interface of a prototype 3D color model retrieval system

Fig. 13 The comparison of different bin numbers 10, 15, 20, and 25

Fig. 13, from which we observed that bin number 10 has the
worst retrieval performance and there is no significant differ-
ence between bin numbers 15, 20, and 25. We thus choose
bin number 20 as a good trade off between retrieval time and
accuracy.

Limitation of the proposed methods. As revealed by the
results in Figs. 7 and 9, ClusterAngle and ClusterD2 have
better performance than the SPIN signature [11, 12]. How-
ever, SPIN signature has a well-recognized feature by which
partial surface match can be done very well. It is interest-
ing to ask whether or not ClusterAngle + Color and Clus-
terD2 + Color have also this nice property. We perform
experiments as follows. For each color model, eight direc-
tions are randomly determined and for each direction a par-
tial surface with color (in the form of range image) is gen-
erated in computer by simulating range scanning. Then we
use the generated partial surfaces to search the database and
the precision/recall plot is generated. The results are shown
in Fig. 14, from which it is observed that ClusterAngle +
Color and ClusterD2 + Color cannot do better for model re-
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Fig. 14 Precision/recall plot of ClusterD2 + Color, ClusterAngle +
Color and SPIN [11, 12] in the application of partial surface matching

trieval than SPIN in the case of partial surface matching. It is
possibly because that we use Jensen-Shannon divergence as
a global metric with fixed size that is not suitable for partial
surface matching. In this scenario, the variable-size descrip-
tion of distributions, such as the earth mover’s distance [42],
may be more appropriate, and we put this exploration in the
future work.

6 Conclusions

In this paper, we propose a 3D model retrieval method based
on geometry + color signatures. By randomly sampling a
model, we extract geometric feature points using difference-
of-Laplacian of mean curvatures and extract color feature
points in the CIE-LAB color space. These feature points
are clustered by a modified ISODATA algorithm and his-
tograms of ClusterD2 + Color and ClusterAngle + Color
are generated as shape signatures. Finally the similarity of
two models are computed by Jensen–Shannon divergence,
which is a measure of statistic information. For retrieval
performance evaluation, 210 3D color models are used in
a database with 11 classes. We use precision/recall plots
to evaluate different shape signatures. Experimental results
show that color information does help improve the accuracy
of 3D model retrieval, which is consistent with the postu-
late in psychophysics that color should strongly influence
the recognition of objects [15].
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Appendix

The modified ISODATA algorithm used in Sect. 4 works
as follows. Denote the set of N sample points as {p1,p2,

. . . , pN }. Some necessary parameters are defined below:

– Pn: the minimum number of sample points in a cluster.
We set this parameter being 10% of the total number of
sample points.

– Ps : the parameter of standard deviation. If the deviation in
a cluster is greater than this parameter, we split the clus-
ter. In our method, we set this parameter according to the
model resolution which is defined as the mean length of
all the edges in a model.

– Pc: the parameter for merging two clusters. If the distance
between two centers of two different clusters is less than
this parameter, we merge the two clusters into one. We set
this parameter also according to the model resolution.

– I : the number of maximum iterations. We set this param-
eter being 100.

– y: the input set of sample points as {p1,p2, . . . , pn}.
– Flag: represent whether the algorithm is convergent. We

initialize this parameter as false.

The algorithmic steps are as follows:

S1 Initialize the cluster number c as 5 and randomly pick
c points to be the centers mi , i = 1,2, . . . , n of the c

clusters.
S2 Partition all the samples into different clusters accord-

ing to the following rule

y ∈ Dj if ‖y − mj‖ < ‖y − mi‖,
i, j = 1,2, . . . , c, i �= j

where Dj is the j th cluster and mj is its center.
S3 For each cluster Dj , if the number of samples in it is

less than Pn, we delete this cluster and let c = c − 1.
The samples that were previously assigned to Dj are
re-assigned to other clusters, according to step S2.

S4 Recalculate the center of each cluster by the equation

mj = 1

Nj

∑

y∈Dj

y

where Nj is the number of samples in cluster Dj .
S5 Calculate the mean distance dj of all the distances be-

tween each sample to the center in cluster Dj , j =
1,2, . . . , c:

dj = 1

Nj

∑

y∈Dj

‖y − mj‖

S6 Calculate the mean of all the mean distance dj :

d = 1

N

c∑

j=1

Njdj
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S7 If Flag = true or the number of maximum iteration
is reached, the algorithm is terminated and clustering
result is returned. Otherwise, let the current iteration
number is x. If x is an even number, turn to step S8. If
x is an odd number, turn to step S11.

S8 For each cluster j , we calculate its standard deviation
Qj :

Qj = [qj1, qj2, . . . , qjr ]t

qji =
√
√
√
√

1

Nj

∑

yk∈Dj

(yki − mji)2

where r is the dimension of the samples, yki is the ith
component of the kth sample, mji is the ith compo-
nent of the center of the j th cluster, qji is the standard
deviation of the ith component of the j th cluster.

S9 For each cluster, find out qj max, j = 1,2, . . . , c, which
is the maximum in all the components in the standard
deviation.

S10 For each qj max which is greater than Ps , if dj > d and
Nj > 2(Pn + 1), we split Dj into two clusters, and the
centers of these two new clusters are mja and mjb , re-
spectively. Meanwhile, we delete the original cluster
mj and let c = c + 1, where mja and mjb are calcu-
lated as follows:
(a) A value k between 0 and 1 is given. In our experi-

ment, we use k = 0.5.
(b) Set vj = k[0, . . . , qj max, . . . ,0]t .
(c) Set mja = mj + vj and mjb = mj − vj .
Set I = I + 1 and Flag = false. Turn to step S2. If
no cluster needs to be split and Flag = ture, just turn to
step S2. If no cluster needs to be split and Flag = false,
set Flag = ture and move to next step S11.

S11 Calculate the distances among the centers of different
clusters:

sij = ‖mi − mj‖, i = 1,2, . . . , c; j = i + 1, . . . , c

S12 Compare each sij with Pc and sort the ones which are
less than Pc in an ascending order.

S13 Beginning with the minimum sij , if Di and Dj have
not been merged in the current iteration, we merge the
two clusters and the new center of the merged cluster
is

m0 = 1

Ni + Nj

(Ni × mi + Nj × mj)

Let I = I + 1, c = c − 1, Flag = false and turn to
step S2. If no clusters have been merged in this step S13
and Flag = true, just turn to step S2. If no clusters
have been merged in this step S13 and Flag = false,
set Flag = true and turn to step S8.
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