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Abstract  This paper gives a method of quantifying small visual differences between 3D mesh models with conforming
topology, based on the theory of strain fields. Strain field is a geometric quantity in elasticity which is used to describe the
deformation of elastomer. In this paper we consider the 3D models as objects with elasticity The further demonstrations are
provided: the first is intended to give the reader a visual impression of how our measure works in practice; and the second is
to give readers a visual impression of how our measure works in evaluating filter algorithms. Our experiments show that our
difference estimates are well correlated with human perception of differences. This work has applications in the evaluation

of 3D mesh watermarking, 3D mesh compression reconstruction, and 3D mesh filtering.

Keywords

1 Introduction

3D surface triangle meshes are widely used in com-
puter graphics and modelling; techniques such as wa-
termarking, filtering and compression are often applied
to meshes.

Watermarking is used to hide an “invisible” digi-
tal signature into the mesh for information security
and digital rights management!’=6l. The watermark
information is encoded into small perturbations to the
model’s description, e.g., its vertex coordinates, chang-
ing the model’s geometry by a small amount. Little
work has been done on methods of evaluating the qual-
ity of watermarking schemes, which involves the per-
ceptibility of the watermark (and other considerations
such as how difficult it is to remove the watermark,
etc.). Mesh models constructed from 3D scanner data
must be denoised before they are suitable for applica-
tion purposes!”. More generally, various filters may be
applied to meshes to modify them in some way!8l. It
is useful to be able to assess the visual impact of filter-
ing algorithms. Both to economize the use of band-
width, and to saving storage, mesh compression are
useful® 121, Evaluation of visual differences between
the reconstructed version and the original are again im-
portant.

3D conforming meshes, mesh comparison, perception, strain fields

Here, we give a new method of quantifying small
visual differences between conforming meshes (i.e.,
meshes with the same number of triangles, connected
in the same way). Conforming modification is often
made in watermarking and filtering schemes, but per-
haps less so in other applications. And such a quality
measure should agree with human perception, which is
subjective and hard to quantify[*3l. Nevertheless, our
methodology, based on strain fields, provides a mea-
sure which is well correlated with perceptual results
provided by human subjects.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 explains
strain fields, and shows how to compute strain in a
mesh. Section 4 discusses how to compute a percepti-
bility distance based on strain energy. Section 5 and
Section 6 describe an experiment recording human per-
ception of visual changes in meshes, and experimen-
tal tests of our proposed methodology, including com-
parisons with other filter approaches. Conclusions are
drawn in Section 7.

2 Related Work

If a watermark becomes too obvious, distorting
the model too much, the watermarking scheme is
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unacceptable. We may also wish to compare the percep-
tibility of the same watermarking information added by
different schemes when deciding which scheme to adopt.
A method adapted from image watermarking assess-
ment is given by [14], while [15] provides two methods
based on surface roughness. Few objective methodolo-
gies have been proposed, and even less attention has
been paid to subjective evaluation®. As static 2D
images of 3D models are inadequate for assessing the
quality of a 3D model, there is a need for 3D quality
metrics.

Other papers have discussed evaluation of the
visual effects of mesh compression and filter-
ing. Some are based on perceptual metrics taken
from image processing'¥, others consider geometric
differences!'®>1718] " and yet others combine both!9.
However, assessing perceptual degradation of images
and 3D models are different tasks. [17, 18] only consider
geometric errors based on Hausdorff distance, which
do not correlate well with human perception(!?!. The
two methodologies in [15] are better. One measures
mesh distortion using roughness based on dihedral an-
gles between faces. The other uses an equation based
on variance of displacements (between the original and
the smoothed meshes) along the normals of vertices in
a 2-ring area of each vertex with its performance de-
pended on smooth algorithms. One limitation is that
these metrics use the roughness of the original mesh for
normalization. If the roughness is large, distortion of
smooth parts of the mesh is not captured, yet may be
quite visible to an observer. These methods also take
time more than linear because of the number of mesh
faces.

The most direct way of evaluating perceptibility of a
change in a 3D mesh is to ask human observers. How-
ever, using enough “typical” (whatever that means)
human observers is time consuming and costly. Hu-
man beings do not give consistent and repeatable an-
swers. Such tests can easily introduce bias. Thus, ob-
jective methodologies are preferable for assessing visual
changes in meshes. This paper provides such a method-
ology, producing results well-correlated with those from
human observers, in our limited testing. Our approach
analyzes shape and size changes of mesh triangles, ig-
noring any rigid-body motion. We use strain energy to
quantify the deformation.

3 Strain Fields

3.1 Basic Principle

Strain and stress are used to describe pointwise
mechanical behaviour inside a solid body2%. At any
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point, strain represents the local deformation and the
local force respectively. Isotropic linear elasticity is the
simplest mathematical model for continuum mechanics.
And from [20] we know that the strain applied to mesh
models is reasonable.

The effects of the mesh processing algorithm under
evaluation can be seen as equivalent to applying a fic-
titious external force which distorts the 3D mesh. We
use the idea of strain field to analyze the deformation
of the mesh. Changes in position of the mesh vertices
represent distortion of the mesh, but also incorporate a
rigid-body motion which leaves the shape unchanged.
To remove this rigid body motion, we use the concept
of strain.

Fig.1. Local deformation within an object.

In Fig.1, let A be some arbitrary point of the object.
Consider three infinitesimal segments AB, AC, and AD,
parallel to the coordinate axes and with lengths dx, dy
and dz. When the object is acted upon by an exter-
nal force, both the lengths of these lines and the angles
between them change. The fractional changes in the
lengths are called the normal strain at A, denoted by
€z, €y and €., respectively. The fractional changes in
the angles are called the shear strain, denoted by vy,
Vy= and 7.z, respectively. If the local deformation and
rotation are small, the relation between strain and dis-
placement is linear!2%!

€z = 0u/0x, gy = Ov/Ox + Ou/dy;
€y = 0v/0y, vy, =0w/0y+ Ov/0z;
€, =0w/0z, up = 0u/0z+ 0w/z. (1)

Deformation of a solid body requires strain energy.
Associated with the local deformation, described by
strain, there is a local force, stress, distributed through-
out the object. The stress on some point is the limit of
the local force acting on a differential area around the
point, which can be decomposed into two parts: the
normal stress o perpendicular to the surface and the
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shear stress 7 within the surfacel?!l. The strain energy

is the work done by the stress on the corresponding
strain.

3.2 Strain in a Mesh

We now discuss how strain and stress can be used
to provide a measure of perceptibility of differences be-
tween two conforming meshes.

A 3D mesh is a shell composed of triangular faces
of negligible thickness. If the mesh is distorted slightly,
and we assume that its faces do not bend, to a first
approximation the mesh triangles are unchanged in
their normal direction: only their shapes and positions
changel??. Any elastic deformation only occurs within
the plane of each triangle, see Fig.2. The strain for
each triangle can thus be computed in its own plane
by ignoring any rigid body motion. So we can interpo-
late the vertices displacement functions of deformation
across each triangle, and compute the strain for each
triangle.

(@) (b)

Fig.2. Area and distortion deformation. (a) Area deformation.

(b) Distortion deformation.

As we assume that each triangle deforms entirely
within its own plane, there is no deformation or strain
normal to each triangle. Thus, following the approach
in [22], (1) may be simplified in this case:

__ Ou _ Ov _ v
€z = 5z Gy = gy 2T (e +¢y),

’wa:%"'%;v 7y2207 'sz:Ov

(2)

where v is Poisson’s ratio (see later). We can now com-
pute €, €, and v, from the displacement functions u, v
obtained above.

3.3 Strain Energy

As strain field has different physical meanings and
different directionalities, it is not easy to construct a
composite measure on them. The key is to use the con-
cept of strain energy. Using the relations between stress
and strain, the strain energy may be written as tensor
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form[20]:

W= %((A + %G) &+ (2G)e;je;j)sﬁ, (3)
where Sx is the area of each triangle, and F is Young’s
modulus, v is Poisson’s ratio, \ = Ev/((1+v)(1 —2v))
is Lamé’s first parameter, and G = E/(2(1 + v)) is the
shear modulus: these physical quantities determine the
material’s elastic properties. We simply fix them in our
methodology to £ = 1 and v = 0. And we can ad-
just them to improve the result according to subjective
experiments, but in our experiments these choices give
good results.

4 Perceptibility

Following an approach used for images®!, we define
a perceptual distance P(mg, my) between the original
model mg and the processed model m,,: the larger the
perceptual distance, the more visible the difference be-
tween them. Our experiments show that we can define
such a function using strain energy which agrees well
with human perception. We first consider two special
situations of strain energy in meshes, then give the final
perceptible function.

4.1 Improvements

Distortions in 3D meshes may be of varying kinds,
with varying perceptibilities. And there are some sit-
uations which are not described well by strain energy.
We therefore considered how we might improve upon
the basic ideas above. In particular, we considered two
ideas projection and edge triangles.

Projection. Many applications of 3D meshes render
them. The most important quantity determining the
appearance of a triangle is its normal vector. Strain
energy does not directly capture this idea. For exam-
ple, when vertices are displaced within the local tangent
plane of the mesh, the strain field can be large although
a rendered image remains almost the same. Consider
several adjacent triangles which lie in the same plane,
and hence have the same normals. We may consider two
types of distortions involving these triangles: the one
in which the center vertex still lies in the plane, and the
one in which the center vertex moves perpendicularly to
the tangent plane. The former distortion has no visual
effect, and thus should be ignored. More generally, we
can represent any local distortion as a combination of
within-tangent-plane distortion and normal distortion.
To remove the contribution of the in-tangent-plane dis-
tortion, we project the vertex, after distortion, back
into the original tangent plane, and calculate the strain



68

energy with respect to this adjusted position of this
common vertex.

Edge Triangles. Triangles in different locations gen-
erally have differing visual impact. For a model with
smooth faces bounded by sharp edges, distortions in
triangles at edges are likely to be more noticeable. We
thus accordingly apply a weight w; to each triangle’s
strain as follows. We set w; = m — «, if a; is less than
w/2, and w; = 1 otherwise, where «; is the smallest
dihedral angle between face i and its neighbours.

As we will see later, these two proposed improve-
ments actually have little useful effect on our results.

4.2 Perceptual Distance

We now consider how to convert strain energy into a
perceptual distance. The distortion must be measured
based on relative to the size of the model, and should
also be independent of the number of triangles. We
thus define the perceptual distance P(mg,m,) as the
weighted average strain energy (ASE) over all triangles
(processing tangent triangular faces), and normalized
by S, the total area of the triangular faces:

P(mg,m,) = % > wiW;. (4)

5 Evaluation

We now give three experiments, and show that our
measure of perceptibility produces results that correlate
well with those assessed by human subjects.

Experiment I gives human opinions concerning the
perceptibility of changes caused by making changes to
models used in Experiments II and III. Experiment
IT considers two simple measures of perceptibility of
changes, based on triangle areas, and triangle normals,
and shows that we do better than use such simple mea-
sures. Experiment III tests the candidate improve-
ments.

5.1 Experiment I: Human Perception of
Differences Versus Strain Field Measure

To obtain some ground truth, i.e., subjective human
results of the perceptibility of various changes in mesh
models is needed™®!, we followed the approach in [15].
We embedded data into mesh models of a chess king
and a horse, using the Triangle Similarity Quadruple
(TSQ) watermarking method in [5], and a noise em-
bedding method.

To measure the subjective degree of mesh defor-
mation perceived by human observers, we produced
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meshes with different amounts of deformation. We pre-
pared variants of the horse, and of the chess king, re-
sulting in 15 meshes for each: the undeformed model,
7 with watermarks embedded in different parts of the
mesh, incorporating different amounts of data, and 7
with different amounts of noise embedded at different
places. It is easy to find the differences of these models
from the original and also easy to tell apart each other.
Subjects were asked to rate the differences between the
original and processed models on a scale from 0 to 10,
where 0 meant identical and 10 meant very dissimilar,
to give an opinion score (OS).

In order to help the subjects evaluate differences in
the 3D mesh models, we paid careful attention to the
rendering conditions, as suggested in [15]:

e (Color. We used black for the background to help
models stand out. Models were coloured grey, which
makes edges more visible and deformations easier to
see.

o Light Source. All models used the same single
white point light source, because multiple lights can
confuse observers.

e Lighting. Although a local illumination model can
produce more realistic effects for textured models, it
can hide the parts with high distortion. Thus we used
a global illumination model. We also set diffused and
specular reflections to models for reality.

e Texture. Models were untextured, as textures can
hide any distortion.

o Test Subjects. 30 test subjects (20 male, 10 female)
were drawn from a pool of computer science students
aged 22~25. For impartiality, some of the chosen test
subjects had knowledge of computer graphics, and oth-
ers did not.

o Screen and Model Resolution. The models were
displayed on a 17-inch LCD monitor, with resolution
1280 x 1024. The watermarked and original models
were displayed together so as to fill the screen. The
chess king model had 12170 triangles and horse model
had 10024 triangles, allowing clear observation of de-
tail. The screen was viewed from a distance of approx-
imately 0.6m.

e Interaction. We allowed the subjects to rotate and
zoom the models. [16] suggests that evaluation of al-
terations to 3D objects should permit interaction.

The experiment comprised three steps:

1) Oral Instructions and Training. First, we told the
subjects about 3D mesh models, watermarking, com-
pression and filters. We then gave examples of an unal-
tered mesh, to be scored as 0, and a worst-case altered
mesh, to be scored as 10.

2) Practice with a Sample Model. Next, the subjects
were allowed to interact with various processed models
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to familiarize themselves with the experiment.

3) Experimental Trials. In this step, the subjects
were asked to score the differences between the original
models and altered models.

While human observers were rather variable in
their opinions as to perceptibility of differences, there
was general correlation between average strain energy
(ASE) and opinion scores, as will be discussed in more
detail in the next section. Figs. 3(a) and 3(b) show
plots of the individual opinion scores (OS) against
strain energy. FEach circle in Fig.3(a) and cross in
Fig.3(b) correspond to one model assessed by one sub-
ject.

In subsequent experiments, we used the means of
these human opinion scores (MOS) for each altered
model as being representative of the amount of visual
differences perceived by human subjects.
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Fig.3.
opinion score (OS). (a) Horse. (b) Chess king.

Unimproved ASE perceptual distance versus subjective

5.2 Experiment II: Strain Field Measure
Versus Other Simpler Measures

We next investigated the relationship between mean
opinion score values (MOS) and two other simple
perceptual distance measures which might plausibly
be used for assessing mesh distortion: the fractional
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change in the total area of the triangles (Prrar) and
the fractional change in angle between normal vectors
of adjacent faces (Ppnvang). The first of these mea-
sures is defined as follows:

Perar(mo,mp) = |ASi|/ > S,
i—1 i=1

where n is the number of faces of the mesh, AS; is the
change in area of face ¢ and S; is its area. The second
is defined as

m m
Prxvana(mo,my) =Y IAaiI/ > i,
i=1 =1

where m is the number of the edges of the mesh, Aq;
is the change in angle of normal vectors between edge
1, and «; is the angle of normal vectors between edge i.

Initially, we used three methodologies, unimproved
ASE, FTAR and FNVANG, to separately evaluate the
effects of watermarking and noise addition with differ-
ent amounts of added information or noise. Fig.4 shows
that all evaluation methodologies give results well cor-
related with the mean opinion scores from Experiment
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Fig.4. Various perceptual difference measures versus mean sub-
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jective opinion score (MOS) done with watermarking and noisy
separately (watermarking is noted by W and noisy is noted by
N). (a) Horse. (b) Chess king.
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I. Table 1 shows the corresponding correlation coeffi-
cients. It is perhaps unsurprising that each assessment
methodology gives a consistent result when the same
processing method is used to distort the mesh more
and more.

Table 1. Correlation Between Various Perceptual Distance
Measures and Human Opinion Done With Watermarking
and Noisy Separately

Perceptual Distance Correlation Coefficient

Based on Horse Chess King
FTAR (W) 0.9925 0.9854
FNVANG (W) 0.9893 0.9699
unimproved ASE (W) 0.9669 0.9827
FTAR (N) 0.9710 0.9552
FNVANG (N) 0.9622 0.9282
untmproved ASE (N) 0.9814 0.9776

Note: W — watermarking, N — noisy

However, a good evaluation method should be in-
dependent of the way in which the mesh has been
distorted. We thus put the distorted meshes produced
by watermarking and adding noise into a single set, and
did the experiment again. Fig.5 shows that the mean
opinion scores from Experiment I are now mnot well
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Fig.5. Various perceptual difference measures versus mean sub-

jective opinion score (MOS). (a) Horse. (b) Chess king.
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correlated with the proposed Pprar or Prnvang per-
ceptual distances, either for the horse or the chess king
— we can see these two simpler perceptual distance
measures produce much more scattered results than the
average strain energy measure. They do not adequately
predict human opinion of mesh differences — whereas
the strain field perceptual distance measure produces
results which lie much closer to a straight line.

To more precisely analyze this observation, we cal-
culated the correlation coefficient between each percep-
tual distance measure and the human mean observation
scores, see Table 2. The simpler FTAR and FNVANG
perceptual distances have much lower correlation than
our unimproved ASE strain energy perceptual distance,
and hence are of less value for measuring human opin-
ion of distortion. We further conclude that, given the
very high correlation coefficients observed, the (unim-
proved) perceptual distance based on strain energy is a
useful replacement for subjective mean human opinions
of mesh differences.

Table 2. Correlation Between Various Perceptual
Distance Measures and Human Opinion

Perceptual Distance Correlation Coefficient

Based on Horse Chess King
FTAR 0.56 0.71
FNVANG 0.67 0.54
Unimproved ASE 0.97 0.97

From a mathematical point of view, we believe the
better performance of the ASE perceptual distance
arises because strain energy provides a well-defined L?
measure in deformation space, unlike FTAR and FN-

VANG.

5.3 Experiment III: Variants of Strain
Energy Measure

We next investigated the relationship between strain
energy and mean opinion score values (MOS) when us-
ing the suggested improvements based on projection
and edge weights (see Subsection 4.1). We compared
4 variants of our method: unimproved perceptual dis-
tance (without projection and face weights), percep-
tual distance using projection, perceptual distance us-
ing edge weights, and perceptual distances using both
projection and edge weights.

Fig.6 shows a comparison of these four different mea-
sures with mean human opinion scores, as in Experi-
ment II. In each case a similar close-to-linear relation-
ship can be seen in both horse and chess king mod-
els. Using the projection idea has almost no effect
on perceptual distances. Using edge weighting has a
bigger effect (see Fig.6), although there is no obvious
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improvement in terms of linearity of relationship. The
probable reason is that the models used (like many
models) have relatively few flat regions or sharp tri-
angles. We also note that the subjective scores are not
very exact, making it difficult to distinguish whether
the results before and after these modifications are re-
ally an improvement. Again correlation coefficients
were computed and are given in Table 3. The edge
weights do make a small improvement in the horse
model, but have the opposite effect on projection, while
for the chess king model, the opposite is true, projection
making a small improvement but edge weighting being
worse. Ultimately, our experiments show no benefit of
using either suggested improvement: there is almost no
difference in correlation between the computed measure
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Fig.6. Kinds of ASE perceptual distance and mean subjective
opinion score (MOS). (a) Horse. (b) Chess King.

Table 3. Correlation Between the Four Perceptual Distance
Measures and Human Opinion

Perceptual Distance Correlation Coefficient

Based on Horse Chess King
unimproved ASE 0.9745 0.9660
projected ASE 0.9715 0.9661
weighted ASE 0.9751 0.9560
projected & weighted ASE ~ 0.9752 0.9557
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and human We thus recommend the use of the unim-
proved opinion. ASE-based perceptual distance, as it
is simpler to compute. The other methods increase the
computation time, without noticeable benefit.

5.4 Analysis

In this subsection, we analyze the experiments we
have done to discuss relation between visual perception
and our method.

From Experiment II, we can see that when we eval-
uate the effects of watermarking and noise addition our
method does not have any superior performance. But
the visual perception is very close to the degree of local
deformations and the area of deformation: when some
location is distorted more, people will find the difference
more easily; when the deformation area is larger, peo-
ple can also find the difference but not so easily as the
former. The strain energy considers both situations: it
will increase faster when the local deformations on elas-
tic body become bigger and also increase fast when the
area of deformation is enlarged. From Table 1 we can
see that our method gives better results of noise pro-
cessing than that of watermarking because strain field
pays more attention to the local deformation. And in
the experiment evaluating the two processed methods
together, we can see our method is accordant to subjec-
tive judgment. Experiment III gives us a result that our
improvement is less active, the probable reason is the
limitation of our experimental models: they both have
few sharp edges. But to observe readily the difference
in Experiment I, we have to select the flat models.

Ultimately, the number and type of subjects used
in these experiments were limited, as were the number
and types of test models, and the range of methods
used to add distortion to the models. We acknowledge
that considerable further testing is necessary for fully
validating these conclusions.

6 Further Demonstrations

We now provide two further demonstrations of our
approach. The first is intended to give the readers a
visual impression of how our measure works in prac-
tice, while the second demonstrates an application of
our methodology.

6.1 Demonstration I: Distortion in a Buddha
Model

Here we simply present a series of Buddha models,
with 62224 faces, which have been processed by wa-
termarking (Figs. 7(a)~7(f)) and noise addition (Figs.
7(g)~7(1)) algorithms, making changes controlled by
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Fig.7. (a)~(f) Watermarked Buddhas. (g)~(1) Buddhas with added noise.

Table 4. Perceptual Distance Based on Strain Energy
P x 10~% for Buddhas with Varying Deformations

Watermarked FTAR P Models FTAR P
Models with Noise
(a) 0 0 (8) 0 0
(b) 661 4 (h) 115 4
(c) 3335 114 (1) 568 114
(d) 6644 455 6)] 1074 523
(e) 10020 1042 (k) 1702 1778
() 12342 1533 1) 2313 3988

successively increasing the FTAR measure as stated
in Table 4, which also gives the perceptual distances
of these models from the unperturbed model. These
figures and numbers allow the readers to gain some

impression of their own concerning our (unimproved)
perceptual distance measure.

6.2 Demonstration II: Application to
Comparison of Mesh Filter Methods

We now provide further the other demonstration
which gives readers a visual impression of how our mea-
sure works in evaluating filter algorithms. Here we
only use unimproved evaluating method for demonstra-
tion. The two filter algorithms used for comparison are
Laplacian filter’® and Gaussian filter?3. First we only
filter the original model using two pendent filter algo-
rithm with different times to show their effects, and



Zhe Bian et al.: Evaluation for Small Visual Difference

then filter the noisy model to compare which filter al-
gorithms is better. The model we used is horse model
with 10024 faces, see Fig.8(a), which is smooth enough
to show the visual differences. The meshes were dis-
torted by Gaussian noise with the order of magnitude
0.1. In this demonstration we set the damping factor A
as 0.6 for Laplacian filtering!®l, while the o; as 0.7 in
spatial weight function and the o, as 0.3 in influence
weight function for the Gaussian filtering[?%.

From [8] we know that if the models are filtered more
over by Laplacian filter they will shrink obviously, while
the Gaussian filter in [23] is better at keeping original
features. This will be demonstrated as follows. In Fig.9,
we can see a series of results gotten by Laplacian and
Gaussian filters: when horse is filtered once by Lapla-
cian filter, the feature will be kept well; if more, it will
shrink more acutely. But the feature is always kept well
regardless of filter time by Gaussian filter. The same
result is shown in Table 5.

Then we added Gaussian noise to horse model and
filtered it with these two filter algorithms. The noisy

¥t oy
(4 (e
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model is shown in Fig.8(b), and the strain energy be-
tween original and noisy models is 1.974 25 which is big
enough to show the effects of the two introductive filter
algorithms. We show the filter results in Fig.10. When
filtering the noisy model once or 3 times, the results are
little different. Both Laplacian filter and Gaussian filter
have their advantages and disadvantages. The Lapla-
cian filter smoothed most of noise but also smoothed

(b)

Fig.8. Original and noisy models of horse. (a) Original model.

(b) Noisy model.
(©
®

(@)

Fig.9. Filtering original models. (a) Filtering once by Laplacian filter. (b) Filtering 3 times by Laplacian filter. (c) Filtering 10 times

by Laplacian filter. (d) Filtering once by Gaussian filter. (e) Filtering 3 times by Gaussian filter. (f) Filtering 10 times by Gaussian

filter.
Table 5. Perceptual Distance Based on Strain Energy P x 10~2 for Horse with Varying Filters
Laplacian Filter P Gaussian Filter P Laplacian Filter P Gaussian Filter P
Fig.9(a) 14 360 Fig.9(d) 12714 Fig.10(a) 14201 Fig.10(d) 14194
Fig.9(b) 16874 Fig.9(e) 12907 Fig.10(b) 16 445 Fig.10(e) 14 406
Fig.9(c) 22903 Fig.9(f) 13314 Fig.10(c) 23078 Fig.10(f) 14955
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Fig.10. Filtering noisy models. (a) Filtering once by Laplacian filter. (b) Filtering 3 times by Laplacian filter. (c) Filtering 10 times

by Laplacian filter. (d) Filtering once by Gaussian filter. (e) Filtering 3 times by Gaussian filter. (f) Filtering 10 times by Gaussian

filter.

small-scale features, while the Gaussian filter kept fea-
tures well but still kept some largish-scale noise at the
same time. When we increased the filtering time (e.g.,
10 times), the model filtered by Laplacian filter shrank
much obviously while the large-scale features still were
kept well enough by Gaussian filter. Table 5 gives the
conclusion.

7 Conclusions and Future Work

This paper has proposed a new methodology for
comparing small visual differences between conform-
ing models. Our methodology is based on the use of
strain field theory to quantify deformation produced
by some process. Our experiments show that this ob-
jective method can produce results which are strongly
correlated with the average of subjective human opin-
ions. The same is not true of simpler measures based
on changes in triangle areas, or surface normals.

This work has applications to assessing the percep-
tible effects of 3D mesh processing algorithms such as
watermarking, compression and other filtering. For ex-
ample, in watermarking we could use this approach to

decide which part of a model is the most suitable place
for embedding a watermark and how much data can be
hidden in a mesh model, or to choose between water-
marking schemes.

Our methodology has certain limitations. One is
that for certain objects, such as engineering compo-
nents, sharp edges are very important, yet involve few
triangles. The second is that the method is based on
deformation of the triangular faces, yet a model may in
principle deform without changes in the size and shape
of faces. We assume that the strain in a mesh model
occurs only in the surface of the model. Hence, the
associated strain energy only measures intrinsic defor-
mation in the surface, and deformation in the normal
direction is ignored. Our experiments also clearly have
some limitations. Ideally, the numbers and types of per-
sons, models, and processing algorithms used in evalu-
ation would be much higher.

One area we wish to explore in future is to try to sta-
tistically determine thresholds of perceptibility through
subjective experiments, which can then be used with
our method to decide whether a visual difference is per-
ceptible.
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