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Abstract In this paper, we present a new technique based on strain fields to carry out 3D shape morphing for applications
in computer graphics and related areas. Strain is an important geometric quantity used in mechanics to describe the
deformation of objects. We apply it in a novel way to analyze and control deformation in morphing. Using position vector
fields, the strain field relating source and target shapes can be obtained. By interpolating this strain field between zero and
a final desired value we can obtain the position field for intermediate shapes. This method ensures that the 3D morphing
process is smooth. Locally, volumes suffer minimal distortion, and no shape jittering or wobbling happens: other methods
do not necessarily have these desirable properties. We also show how to control the method so that changes of shape (in

particular, size changes) vary linearly with time.
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1 Introduction

Morphing, or metamorphosis, aims to generate a
smooth shape sequence which transforms a source shape
into a target shape. This technique has become increas-
ingly important in computer graphics for animation and
entertainment, and is commonly employed by the special
effects industry. Many morphing techniques have been
developed for the 2D cases[!l. With the introduction to
3D games and cartoons, 3D morphing has increased in
importance.

Methods for 3D morphing typically take one of two
approaches. The first blends simple volumes in which
the initial and final shapes are embedded?*; the ini-
tial and final shapes may be embedded in a higher-
dimensional volumel®l. The other approach is based on
manipulating meshes, which may be 3D surface meshes
or volumetric meshes. The first approach has the advan-
tage of being able to deal objects with different topolo-
gies. However, in most cases, the mesh method exhibits
better results — often, shape boundaries produced by
the volume based method are not smooth enough. The
method in this paper is based on meshes.

Usually, mesh morphing techniques involve two
steps. The first is to find a mapping between source
and target objects, which requires that both should be
meshed in an equivalent way — they should be meshed
isomorphically with consistent meshes, i.e., having a
one-to-one correspondence. Having done this, the sec-
ond step is to choose a suitable path for each vertex from
its position in the original mesh to its position in the fi-
nal mesh, while keeping the connectivity of the mesh the
same. The simplest (but generally unsuitable) method

for finding vertex paths is to use linear interpolation.

Two kinds of meshes may be used in 3D morphing,
surface (triangle) meshes!®” and volumetric (tetrahe-
dron) meshes!8!.  Surface meshes have fewer elements
and so methods based on them generally take less com-
putational time. Solid meshes fill the interior of the
shape instead of covering its boundary, and have the
advantage that methods based on them can more eas-
ily avoid volume shrinkage, and generally result in less
distortion.

In this paper, we propose a novel physically-based
morphing approach for 3D meshes, which is an extension
of a 2D physically based morphing method we reported
earlier®,. Note that the 3D case is much more complex
than the 2D case; it also has more potential applications.
We focus in this paper on the particular issue of find-
ing paths for the vertices of consistent meshes—finding
consistent meshes can be done using existing methods(8!.

The main contribution of our work is the use of
an appropriate mathematical tool to quantitatively de-
scribe shape deformation in 3D morphing. This tool is
strain, which has been used in mechanics for hundreds of
years. Our new morphing method is based on this math-
ematical tool, and as a result can theoretically guaran-
tee that the morphing process is smooth and uniform,
no matter how large the difference between the source
and target shapes. The deformation occurring at each
point of the shape uniformly changes with time. Our
results verify that our method does not have the dis-
pleasing visual effects that often arise when using linear
interpolation, and indeed many other existing methods,
such as squeezing, shrinking and local self-intersection.
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2 Related Work

Mesh morphing is an active research area in com-
puter graphics. Some work[19=13] considers how to cre-
ate consistent meshes for pairs of shapes of genus zero
using a topological merging method. Much work!6:14-17]
is based on dissecting the source and target shape into
several pieces, and constructing a local parameteriza-
tion for each piece, then using merging or remeshing
methods to create a consistent mesh. Praun!'® gives a
tracing method which can dissect the source and target
shapes automatically.

The above papers focus on the problem of creating
consistent meshes, and most of them then use simple
linear interpolation methods to find the vertex paths
during the morphing process. For objects having very
similar shapes, linear interpolation is good enough for
simple visual effects. However, for objects undergoing
large deformation, especially when bending occurs, lin-
ear interpolation always leads to shrinkage of intermedi-
ate shapes, which is visually unacceptable. In [19, 20],
Floater and Surazhsky proposed the use of barycentric
coordinate and mean value interpolation to find suitable
paths. Blanding et al.?'! represented the interiors of 3D
shapes using compatible skeletons and applied blending
to parametric descriptions of the skeletons.

Alexal?? suggested using interpolation of Laplacian
coordinates for the morphing path and discussed how to
control morphing locally. Such differential methods have
also been used to study deformation, a similar prob-
lem to morphing!?324. Laplacian coordinates are invari-
ant under translation but are not invariant to rotation
and scaling, so the interpolated Laplacian coordinates
need to be modified to obtain good morphing results(23!.
Sheffer and Kraevoy[2! introduced so called pyramid co-
ordinates into mesh editing and morphing. Pyramid co-
ordinates are rotation-invariant, although their use re-
quires the solution of a non-linear optimization prob-
lem. Lipman?7l proposed rotation invariant differential
coordinates by defining tangential and normal compo-
nents of the surface, and used them for morphing; this
approach needs to solve two linear equations for each
intermediate frame. Xu et al.l?®! calculate intermediate
surface gradients by quaternion interpolation, then re-
construct surfaces by solving a Poisson equation. This
method produces good results in many cases even when
differences between initial and final shapes are large.

Hul?! et al. presented a method based on minimiza-
tion of deformation energy, which is novel in that it
does not use interpolation. However, it is a global opti-
mization method. Bao et al.*9) used a physically based
method for morphing, like the present paper, but based
on point sampled geometry while we use meshes.

A method which can handle source and target shapes
with large differences is presented in [8]. This method
first converts both surface polygon meshes into a tetra-
hedral mesh. To perform morphing, it then finds a
transformation which is locally as similar as possible to
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the optimal transformation between each pair of corre-
sponding tetrahedra. Optimization is used to minimize
the difference between the desired transformation, and
the actual transformation which is applied, taking into
account the connectivity constraints on adjacent tetra-
hedra. This paper also considers how to create con-
sistent tetrahedral meshes using a topological merging
method. Sumner®!! used similar simplex transforma-
tion ideas to learn deformations from examples.

An alternative approach is proposed in [32, 33].
In these methods, consistent meshes are not required.
They dynamically and adaptively change the connectiv-
ity of intermediate meshes, gradually transforming the
connectivity from that of the source model to that of
the target. It would seem difficult for this method to
get good results for shapes that differ greatly.

By using concepts of positive and negative surfaces,
Leel34 gave a method to parameterize non-zero genus
surfaces and applied it to morphing models of different
genus. Liu and Che also studied morphing of different
genus objects!3%:36],

For further discussions of previous work, the reader is
referred to two excellent 3D morphing surveys by Alexa,

and Lazarus[37:38].

3 Framework of 3D Strain Field Morphing

The purpose of morphing is to create a smooth de-
formation process. The path of each vertex in linear
interpolation is smooth, so why does not it produce a
visually acceptable result in many cases? The reason is
that used by itself, it does not ensure that shape change
during this process is smooth. A smooth deformation re-
quires not only that each vertex path should be smooth,
but also that shape should change in a monotonic man-
ner.

It would seem that previous 3D morphing methods
have not used an effective means of analyzing and con-
trolling shape deformation. As we know, deformation is
a local infinitesimal quantity. In some cases, points may
have very large displacement but small deformation. For
example, strain should remain at zero under rigid body
motion. In other cases, there can be large deformation
at a point but small displacement. For example, if we
stretch a bar by pulling its left and right ends outwards
with equal force, the center is not displaced, but there
is still a large deformation at the center (as there is
at all other points of the bar). All previous methods,
such as barycentric coordinates, Laplacian coordinates,
or surface gradients, cannot satisfy simultaneously the
requirements for describing shape deformation and dis-
placement. Thus, previous methods do not provide the
correct theoretical basis to ensure the morphing process
is uniform as desired.

In fact, an ideal quantity has been used in mechan-
ics to describe shape deformation for hundreds of years:
strain. In this paper, we use the concept of strain to
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describe shape deformation for morphing, and use it as
the basis of a new approach to 3D morphing.

Here, to apply the concepts of strain, we use a solid
tetrahedral mesh to represent shape. The inputs to our
method are a source mesh and a target mesh, which are
consistent tetrahedral meshes. Consistent tetrahedral
meshes can be created using existing methods/®. The
output is a sequence of intermediate meshes forming a
morphing sequence. The main steps of our method are
as follows:

e compute the strain field between the source shape

and target shape;

e interpolate strain to determine the strain field for

each intermediate shape;

e calculate the intermediate shapes from the inter-

mediate strain fields.

In Section 4, we outline the basic concepts necessary.
Then we explain our 3D strain field interpolation mor-
phing method in detail in Section 5. Results and future
work are discussed in Sections 6 and 7.

4 Preliminaries

Our aim is to make shape deformation during 3D
morphing seem natural and visually appealing. We want
the deformation to occur in a uniform manner. But
what is deformation? Note carefully that local defor-
mation at a point is not the same as the displacement
of this point. Points in an object can have very small
deformation although they have moved a long distance,
or conversely, they can have large deformation but small
displacement. The key idea is that deformation concerns
how much a point is displaced relative to neighboring
points. Thus, deformation is an infinitesimal quantity.
To analyze deformation, we use a tool from mechanics,
strain. We start by giving definitions of the position field
and the strain field associated with a shape.

4.1 Definition of 3D Strain Fields

The positions of all points in a shape comprise a
field, which we call position field. In 3D space, the posi-
tion field has three components: [z,y,z]. When a shape
moves or deforms, each point on the shape ends up in a
new place [z/,y', 2'].

Using ideas from mechanics, the difference between
a source shape and a target, or any intermediate shape,
can be decomposed into two parts: a rigid body motion,
and a deformation. The rigid body motion can be fur-
ther decomposed into a translation and rotation. In 3D,
there are six degrees of freedom for rigid body motion:
three for translation and three for rotation. The defor-
mation is separately captured by a strain field, which is
independent of rigid body motion. If only rigid body
motion happens, without deformation, although each
point has displacement, the strain field is zero.

In morphing, we wish to handle large deformations,
whereas in mechanics and mechanical engineering the
deformations are often small. Thus, here we must use

large deformation formulae instead of the small defor-
mation (approximate, linearised) formulae most often
used in mechanical engineering. In 3D, the strain field is
a second-order tensor field, with 6 independent compo-
nents (for homogeneous materials): €., €,, €, are tension
components, and vy., Vzz, Vay are shear components. In
detail, €, ,€y, €, measure in relative terms how much lo-
cal expansion or shrinkage at each point along each co-
ordinate direction. Positive values represent expansion
and negative values represent shrinkage. v, represents
the relative change in angle between lines initially in the
2 and y directions at a given point, and similarly for v,
and v,,. Engineers are often only interested in small de-
formations, which can be approximately expressed by a
linear relationship between strain and position, for ex-
ample: €, = 0z'/0z, etc. However, in this work, we
need to deal with large deformations, so we must use
large deformation strain field, or Lagrange strain field,
formulae. The relationship between the Lagrange strain
field and the position field in 3D is given by:
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where x, y and z are the position field components be-
fore deformation, and z’, ¢’ and 2’ are components of the
position field after deformation. The displacement field
has components u, v, w, and is related to the position
fieldbyu=2"—-z,v=9 —y, w=2—z.

In the following, the strain field is represented in vec-
tor form, and we write € for [e4, ey, s, Vyz Vaus Vay| -
We assume the shape varies from source to target over
the time interval ¢ € [0,1] and we use a superscript to
denote time. For example, €' means the strain field of
the target shape at time ¢, so €' means the final strain

field.

4.2 Quantitative Analysis of Strain Fields

Figs.1 and 2 are two results produced using linear
interpolation, and strain field interpolation respectively.
It is clear that the result of strain field interpolation is
more natural and uniform: observe the elephant’s trunk.
The result in Fig.1 is poor because the trunk shrinks be-
fore expanding again. Linear mesh interpolation results
in significant size changes manifested as shrinkage fol-
lowed by re-expansion in this case. This is shown in
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Then the curves rise again, as the tip restores its size.
This effect is visually undesirable. In contrast, in Fig.2,
the elephant’s trunk deforms uniformly, and the corre-
sponding strain curves change in a monotonic way, lead-
ing to a much more visually desirable result.

Considering what happens in the case of linear inter-
polation shows that strain fields are a powerful quanti-
tative tool to analyze shape deformation. Going further,
if we want a shape to deform gradually, the strain field
should change monotonically. Otherwise squeezing or
wobbling (oscillations in deformation) may happen, as
Our approach uses strain fields not only to
analyze deformation, but to control it.

5 Strain Field Morphing

We now describe the steps of our new method of
carrying out deformation using strain fields.

5.1 Removing the Rigid Body Motion

150
Fig.1. Linear interpolation.
Fig.2. Strain field interpolation.
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Fig.3. Strain-time curve.

Fig.3, which presents strain curves calculated for a tetra-
hedron near the tip of the elephant’s trunk, when using
linear interpolation, and strain field interpolation, re-
spectively. Each figure shows six curves for the different
components of strain. In the case of linear interpola-
tion, the curves for €, v,, and v, almost overlap; in
strain field interpolation, €y, €, vy, and 7., are nearly
identical to zero. In Fig.1, the tip of the elephant’s
trunk becomes smaller in the x-y plane at first, then
becomes bigger again. The corresponding linear inter-
polation strain curves show €, and €, become negative at
first, meaning that the trunk’s tip is highly compressed.

Strain is independent of rigid body motion. The over-
all metamorphosis comprises a deformation plus a rigid
body motion, and we firstly separate out the latter so
that we can consider the strain by itself.

A rigid body has 6 degrees of freedom in 3D
space. To factor out the rigid body motion, we select
three corresponding points on source and target shapes,
A% BY,C°, and A',B',C'. The points chosen to de-
termine the rigid body motion can be selected by the
computer automatically, or interactively by the user. A°
and A! should be selected near the center of the source
and target shapes, while B®, B!, C° and C! should lie
along the shape’s “natural” axes.

We now place the source and target shapes in a
canonical position and orientation, using these reference
points. The source shape is moved until A° coincides
with the origin, the translation vector necessary being
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T°. Next, the source shape is rotated around the ori-
gin until B° lies on the z axis. Let the rotation axis
be R’, and rotation angle be a’. Finally, the source
shape is rotated around the z axis until C? is in the z-y
plane with positive y component; the angle of rotation
is #9. The target shape treated is then similarly, with
corresponding parameters T, R', a! and 3.

The z,y, z coordinates of A, the y, z coordinates of
B, and the z coordinate of C are then fixed during the
entire deformation process, and the rigid body compo-
nent of metamorphosis is added back as a final computa-
tion after the deformation has been determined, as will
be explained in Subsection 5.4.

5.2 Intermediate Strain Field Calculation

The strain field for intermediate shapes between the
source and target shapes can be calculated using the
definitions in (1). We use tetrahedral elements, as often
used in the finite element method (FEM), to calculate
the strain field. Because, unlike engineering analysis,
morphing does not require high precision results, it is
sufficient to use linear tetrahedral elements rather than
higher order elements. In FEM, the displacement of
each point inside an element can be expressed as a con-
vex combination of the displacements of the element’s
nodes. The vertex coordinates of a tetrahedron in the
source mesh are v; = (z4,v;,2;), ¢ = 1...4; in the target
mesh, its coordinates are v} = (z£,y}, 2!). Any point in-
side some source or target tetrahedron can be expressed
in terms of its vertices and shape functions; for example,
for a target tetrahedron:

4
z = ZNkm;w
k=1
4
yl = ZNky;c7 (2)
k=1

4
Z = E Nizj,.
k=1

The N are the shape functions of the element, and de-
pend on z, y and z. For linear tetrahedral elements, the
N}, are barycentric coordinates within the tetrahedron
which can be expressed in the (linear) form:

Ny = ap + bpx + cpy + diz, (3)

where ay, by, ¢k, di are functions of the source coordi-
nates z;, y; and z; — for details, see e.g., [39]. Substi-
tuting (3) into (2), and thence into (1), we can convert
the strain field calculation for a tetrahedron into dis-
crete form. Using the node coordinates for each source
and target tetrahedron in (1) and (2), the strain field
can then be calculated tetrahedron by tetrahedron.
The simplest way to choose a strain field for interme-
diate shapes is to linearly interpolate the strain (which is
not the same as linearly interpolating vertex positions!):

et = (1- t)eo +tel; (4)

note that €° is zero.

Linear strain interpolation is usually an adequate
method, producing good morphing results for most ex-
amples and avoiding oscillations in local size over time.
However, in some extreme cases, linear strain interpo-
lation gives unequal rates of change of shape over time,
even though at each intermediate time the shape itself
is good. In Subsection 5.5, we analyze this problem fur-
ther, and provide an alternative method of interpolation
for such extreme cases.

5.3 From Strain Field to Position

The above approach gives the required strain field
at any intermediate time. Note that the strain field
has six components, while the position field has three
components. Clearly, as a result, the six components of
the strain field cannot be independent, and in fact they
are connected by a set of compatibility conditions!*?!.
In general, arbitrarily interpolated strain fields will not
satisfy these compatibility conditions and hence do not
correspond to physically realisable position fields. To
resolve this issue, we attempt to find that position field
for each intermediate shape whose actual strain field is
as close as possible to the interpolated strain field. We
define an energy function in (5) which computes the
norm of the difference between the interpolated strain
field and a physically correct strain field generated by
some position field:

W= %/(5* )T (e — e)d. (5)
2 is taken over the whole source shape, ¢ is the inter-
polated strain field, and €* is calculated from the po-
sition field using (1). We find the position field which
minimizes this energy function to give the intermediate
shape. This problem can be solved by any multivariate
optimization method; note that the variables are the
coordinates of all nodes in the intermediate shape.

In practice, for efficiency, we convert this optimisa-
tion problem into a set of non-linear equations by setting
the derivative of (5) to zero. This non-linear equation
system can be written as:

$(V) =0 (6)

where V' is the coordinate vector of the intermediate
shape. ¢(V') has the form below, where the overall
function is evaluated by summing a function over each
tetrahedron in turn:

(V) = Z / (BTe* — BTe)d ;. (7)

Here m is the number of tetrahedra, and B and € are the
strain matrix and strain for each separate tetrahedron
as appropriate. B can be written as

B=[B; B: B3 By] (8)
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where B; = [B,, Bj,
z) is defined by:

Bj.], and B,x (X = z,y, or

r 00Xt ON; 7
Jr Oz
0X* ON;
dy 9y
80Xt ON;
B. 0z 0z
X T aXtaN,  9XtoN,
dy 0z dz Oy
0XtON; 0X!ON;
0z Ox or 0z
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L dx Oy Jdy Ox -

This non-linear equation can be solved using the
Newton-Raphson method. We generally wish to calcu-
late the position field for a series of intermediate shapes.
The coordinate vector for the source shape is used as the
initial value for iterative calculation of the coordinate
vector for the first intermediate shape, and the calcula-
tion for each subsequent intermediate shape is initialized
using the coordinate vector of the previous intermediate
shape. We use the conjugate gradient method to solve
the sparse linear equations in each iterative process. As
each step has good initial values, rapid convergence is
obtained. If the number of intermediate shapes required
is very small, (6) could also be solved by using a con-
tinuation method, but in practice, simply adding more
intermediate shapes is more efficient.

5.4 Incorporating Rigid Body Motion

Deformations for intermediate shapes were deter-
mined by the method in the previous section. Now, the
appropriate rigid body motion must also be incorpo-
rated to give each final intermediate shape in its correct
position and orientation. We simply reverse the process
given in Subsection 5.1, adding back a linearly inter-
polated translation and rotation. First we rotate the
intermediate shape at time t around the x axis by the
angle:

ph =11 -1)p° + 6. (9)

Then we find the axis of rotation
R'=(1-t)R° +tR!
and rotate around this axis by the angle
al = —[(1-t)a’ + ta'].
Finally, the intermediate shape is translated by
T! = —[(1 —t)T" +tT"],

giving the desired result.
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5.5 Modified Interpolation Method

Using linear interpolation of strain as described in
Subsection 5.2 is often adequate to produce good re-
sults. However, in a few extreme cases where the defor-
mation is very large, although each intermediate shape
has a good shape, and shape change is monotonic, shape
change may occur at an uneven rate over time. The rea-
son for this phenomenon is that (1) includes quadratic
terms.

In fact, many morphing methods suffer from non-
uniform (and often oscillatory) changes over time, but
unlike other methods, in the case of strain field mor-
phing we can find a theoretically-based way of com-
pensating for this. The basis of this modification is
to force the lengths of edges parallel to the coordinate
axes to change linearly with time, which also constrains
the length change ratio in other directions. Appropriate
background ideas from mechanics can be found in [39,
40].

In essence, the strain field arises due to length
changes of line segments. Consider an infinitesimal line
segment P(Q in the source shape. Let the coordinates of
P be (az,ay,a.), or a for short. Let the coordinates of
Q be (a,+day,ay,+day,a,+da.). Let the length of PQ
be dS°. The corresponding line segment in the target
shape is P'Q", of length dS'. The relation between dS°
and dS! is:

(dS*)? — (dS°)? = 2da - E' - da,
(dS°)? = da - da,

(13)
(14)

where da is the vector (da,, da,, da, ), and E' is the ma-
trix form of the strain field tensor for the target mesh.
The general strain field tensor F is of the form:

€ Yoy V=
E = Vzy €y Vyz
Yzz  Vyz €2

(15)

The length of segment PQ at time t obeys a similar
relation:
(ds")? — (dS°)? = 2da - E' - da. (16)

If we want the length of PQ to change linearly with
time, we should let:

s’ — ds’

— =t. 17

ds* — ds° (a7

Substituting (13) and (16) into (17), we obtain

(dS°)? + 2daE'da = [t\/(d50)2 + 2daE'da
+ (1 —t)ds°?. (18)
For a line segment parallel to the x axis, da is:

da = [da,,0,0]. (19)
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Substituting (19) into (18), and using (14), we find that:

ézém T2 +(1—02—1. (20

Similarly we may show that

€, = %[[t,/l +2eh + (1 —t))” —1]

(21)

and

é=§w Tr2d+(1-0P7—1]. (22
We now use (20) — (22) to interpolate the tension
strains, while using still linear interpolation for shear
strains gy, vyz and 7v,;. Our experiments show that
in all large deformation cases, this technique avoids the
problem of uneven deformation over time, even for very
large deformations, and provides good visual results.

6 Results

We have applied the technique of strain field in-
terpolation to various kinds of models, both morphing
between two different objects, and morphing processes
corresponding to several kinds of fundamental deforma-
tion of a single object. Typical experimental results are
shown in Figs. 4 — 6. All experiments were performed
on a 3.2GHz Pentium 4 computer. Calculation times
to produce 30 frames for the simple models in Figs .4
and 5 were 3.4 and 14.7 seconds; they have 80 and 164
vertices respectively. The more complex model in Fig.6
has about 17,000 vertices; it took about 55 minutes to
produce 80 frames.

Our experiments show that the 3D morphing results
generated by our method are smooth and natural. No
shape jittering or wobbling occurs. The key is the use
of strain in our method, which is a powerful tool to de-
scribe shape deformation in an infinitesimal way.

Fig.4. Twisting a rod.
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Fig.5. Helix.

Al
¥

Fig.6. Animal morphing.
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7 Discussion and Future Work

In this paper, we have presented a new method for
3D morphing. By making use of the concept of strain
from mechanics to control deformation in 3D, we have
developed an algorithm for 3D morphing based on strain
field interpolation. While linear interpolation of strain is
often adequate, in cases of very large deformations, this
produces non-uniform rates of deformation over time,
and we have further given a modified strain interpola-
tion method which can avoid this problem. Experiments
show that our method gives very good results which ap-
pear natural.

Although our strain field interpolation method gives
good results, it has a high computational cost, but so
do other physically based methods using solid meshes.
Our future goal is to reduce the calculation cost of our
method. We envision two approaches to do this. Firstly,
the current method requires all elements of the solid
mesh to be processed to compute the deformation. In
practice it would be much more efficient if we could use
a multiresolution method in which strain field interpo-
lation is used to ensure the gross deformations of the
shape are performed in a plausible manner, while using
a simpler method such as direct linear interpolation of
geometry to control the fine changes in shape. A sec-
ond possibility is to extend our strain field interpolation
method to work directly with 3D surface meshes rather
than solid volume meshes, which would also significantly
lower the calculational expense.
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