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Algorithms for rendering interreflection (or indirect illumination) effects
often make assumptions about the frequency range of the materials’ re-
flectance properties. For example, methods based on Virtual Point Lights
(VPLs) and global photon maps perform well for diffuse and semi-glossy
materials but not so for highly-glossy or specular materials; the situation
is reversed for methods based on ray tracing and caustics photon maps. In
this paper, we present a practical algorithm for rendering interreflection ef-
fects at all frequency scales. Our method builds upon a Spherical Gaussian
representation of the BRDF. Our main contribution is a novel mathemati-
cal development of the interreflection equation. This allows us to efficiently
compute the one-bounce interreflection from a triangle to a shading point
through an analytic formula combined with a piecewise linear approxima-
tion. We show through evaluation that this method is accurate for a wide
range of BRDF parameters. Our second contribution is a hierarchical inte-
gration method to handle a large number of triangles with bounded error.
Finally, we have implemented the algorithm on the GPU, achieving near-
interactive rendering speed for a variety of scenes.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture

General Terms: Rendering

Additional Key Words and Phrases: Interreflections, Global Illumination,
Spherical Gaussian, GPU

ACM Reference Format:

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/12-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Accurate rendering of interreflection (or indirect illumination) ef-
fects has been a long-standing challenge in computer graphics re-
search, particularly when the materials can vary across a variety
of different types, from diffuse to semi-glossy and to highly glossy.
This wide range of frequency scales poses a great challenge for ren-
dering algorithms. Many existing algorithms are efficient for only a
specific range of materials. For example, methods based on Virtual
Point Lights [Keller 1997] and global photon maps [Jensen 2001]
perform well for diffuse and semi-glossy materials, but become
increasingly inefficient for highly-glossy or nearly specular mate-
rials. This is mainly because these methods represent the source
of indirect illumination using a discrete point set. This works well
with diffuse materials, due to their low-frequency and smooth fil-
tering nature. However, for highly-glossy materials, these methods
require a significantly larger number of discrete points, reducing
the computation performance and increasing the storage size.

On the other hand, methods based on path tracing [Kajiya 1986]
and caustics photon maps [Jensen 2001] are efficient for highly-
glossy and specular materials, but the efficiency drops significantly
when the materials become diffuse or semi-glossy. This is mainly
because these methods stochastically trace light rays upon reflec-
tions or refractions from the materials. Therefore highly-glossy ma-
terials lead to lower variance in the computation, reducing the ren-
dering noise; conversely, nearly diffuse materials lead to high vari-
ance and consequently increased rendering noise.

These limitations are fundamentally due to the lack of an algo-
rithm that can efficiently handle a wide range of different materials,
including both the diffuse and the specular ends. This is a common
issue in rendering research. Consequently, a scene that consists of
mixed materials (i.e. at different frequency scales) often requires
special care and the combination of several algorithms, each of
which deals with a separate frequency range. This results in in-
creased algorithm complexity, and makes it difficult to ensure all
individual algorithms produce consistent results.

In this paper, we present a practical algorithm for rendering in-
terreflection effects at all frequency scales. Our method builds upon
a Spherical Gaussian (SG) representation of the BRDF [Wang et al.
2009]. By changing the support size of the Spherical Gaussian, this
representation can faithfully reproduce BRDFs at a wide range of
frequency (i.e. glossiness) levels. Our main contribution is a novel
mathematical development of the interreflection equation. Specifi-
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Fig. 1: Our algorithm achieves near-interactive rendering speed of one-bounce interreflections with all-frequency BRDFs. The top row shows
caustics on the plane where the BRDF of the ring varies from highly specular to diffuse. The bottom row shows various interreflection effects,
such as indirect highlight (b), diffuse reflection (c), glossy reflection (d), and under different types of lights, such as local lights (e) and
environment lights (f). Our algorithm runs at 0.4∼4 fps for all the above scenes.

cally, by representing the BRDF and lighting both using SGs, we
derive an analytic formula for the one-bounce interreflection from a
triangle to a shading point, and accurately estimate the result using
a piecewise linear approximation. We show through evaluation that
this method performs well for a wide range of BRDF parameters,
thanks to the analytic derivation.

In practical applications, however, we need to consider scenes
that consist of more than a few triangles. To improve the efficiency
of our algorithm, we present a hierarchical integration method to
handle a large number of triangles. The hierarchical integration is
computed with bounded error. Finally, we have implemented the
algorithm on the GPU, achieving near-interactive rendering speed
for a variety of scenes. Figure 1 shows several examples.

2. RELATED WORKS

Rendering interreflection (or indirect illumination) effects is a clas-
sic problem in computer graphics. A complete review is beyond the
scope of this paper. We refer readers to [Ritschel et al. 2012] for a
comprehensive survey. This section covers the most relevant work
to ours. For clarity, we refer to light bouncing surfaces as reflectors
and final shading surfaces as receivers.

Virtual Point Lights (VPLs). An efficient solution for comput-
ing interreflections is by representing the indirect lighting as a set
of virtual point lights (VPLs). Instant radiosity [Keller 1997] is
a classic VPL-based technique. It creates VPLs by tracing paths
from the primary lights, and uses shadow map algorithms to esti-
mate the total illumination contribution from all VPLs to a shading
point. The step of estimating the contributions from all VPLs is
commonly known as final gathering. To achieve high-quality re-
sult, a large number of VPLs are usually necessary. Therefore a
challenge is how to accelerate the final gathering. Lightcuts [Wal-
ter et al. 2005; Walter et al. 2006] constructs a hierarchical struc-

ture of VPLs to compute final gathering at sublinear cost. Row-
column sampling [Hašan et al. 2007] and LightSlice [Ou and Pel-
lacini 2011] reduce the computation cost by exploiting the low-
rank structure of the light transport matrix. Traditional VPL-based
methods are limited to diffuse or semi-glossy reflectors. To address
this limitation, Hašan et al. [2009] presented virtual spherical lights
to support glossy reflectors. Davidovic et al. [2010] separate light
transport into low-rank (global) and high-rank (local) components,
and employ a different method for each component to account for
detailed glossy interreflections. Recently, Walter et al. [2012] pro-
pose bidirectional lightcuts to reduce the bias in VPL-based ren-
dering by introducing virtual sensor points on eye paths. While ac-
curate, these VPL-based methods perform in offline speed, taking
minutes or hours to run. In addition, highly glossy receivers typi-
cally pose a big challenge as they require a large number of VPLs.

Photon Mapping. Photon mapping [Jensen 2001] first traces par-
ticles from the primary lights to construct photon maps; then in the
second pass, it performs ray tracing and estimates indirect illumina-
tion on non-specular receivers using photon density estimation. By
exploiting the GPU, photon mapping can achieve interactive per-
formance [Purcell et al. 2003; Wang et al. 2009; Fabianowski and
Dingliana 2009; McGuire and Luebke 2009; Hachisuka and Jensen
2010], including both caustics and indirect illumination. However,
these methods usually require the reflectors to be either diffuse
or specular. Semi-glossy reflectors lead to significantly increased
computation cost.

Precomputed Radiance Transfer (PRT). Precomputed Radiance
Transfer (PRT) [Sloan et al. 2002] achieves real-time indirect light-
ing of static scenes by precomputing light transport matrices and
compressing them using a suitable basis set to exploit the low-
dimensional structure of the matrices. PRT has been extended to
achieve interreflection effects with dynamic BRDFs [Sun et al.
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2007; Ben-Artzi et al. 2008; Cheslack-Postava et al. 2008] under
the static scene assumption. Interreflections in dynamic scenes have
also been studied [Iwasaki et al. 2007; Pan et al. 2007], but limited
to low-frequency effects.

Interactive GI. Work on interactive global illumination (GI) has
a rich history. Dachsbacher and Stamminger [2005] introduced
reflective shadow maps (RSM) where pixels in the shadow map
are considered indirect light sources. This method gathers low-
resolution indirect lighting from the RSM and obtains high res-
olution result using screen-space interpolation. While interactive,
it is limited to diffuse reflectors and ignores indirect shadows.
Later, Dachsbacher and Stamminger [2006] presented a method
to include non-diffuse reflectors by splatting the radiance contribu-
tion from each pixel. However, it only supports diffuse receivers.
Ritschel et al. [2008] presented imperfect shadow maps to approxi-
mate indirect visibility for VPLs and achieved interactive GI using
a small number of VPLs. It is limited to low-frequency reflection
effects. Later, Ritschel et al. [2009] introduced the micro-rendering
technique for high-quality interactive GI. Final gathering at each
shading point is efficiently computed using hierarchical point ras-
terization into a micro-buffer. The micro-buffer can be warped to
account for BRDF importance. As a result it supports receivers with
glossy BRDFs. However, the reflector is restricted to diffuse or low-
frequency BRDFs. Laurijssen et al. [2010] proposed a method for
interactively rendering indirect highlights, accounting for glossy to
glossy paths. However, it is not suitable for diffuse receivers. Re-
cently, Loos et al. [2011] presented Modular Radiance Transfer for
real-time indirect illumination, but this method is limited to low-
frequency effects. Finally, there are many image-based methods for
efficiently rendering caustics [Wyman and Davis 2006; Shah et al.
2007], but these techniques are aimed for perfectly specular reflec-
tors.

Reflections/Refractions. Using Fermat’s theorem, researchers
have employed differential geometry [Mitchell and Hanrahan
1992] and Taylor expansion [Chen and Arvo 2000] to find reflec-
tion points on implicit curved reflectors. In addition, many meth-
ods [Ofek and Rappoport 1998; Roger and Holzschuch 2006] have
been presented for generating the specular reflections from trian-
gle meshes. Walter et al. [2009] proposed an efficient method for
finding refracted connecting paths from triangle meshes. However,
these methods assume perfect reflection/refraction, and it is unclear
how to extend them to handle glossy materials.

Spherical Gaussians (SGs). Spherical Gaussians (SGs) provide
flexible support sizes and closed-formed solutions for comput-
ing function products and integrals. Thus they have been widely
adopted for representing spherical functions, such as environment
lighting [Tsai and Shih 2006] and BRDFs [Wang et al. 2009]. Wang
et al. [2009] approximate the normal distribution of a microfacet
BRDF using sums of SGs. They demonstrated that such approxi-
mation is accurate for representing a wide range of parametric and
measured BRDFs. They make use of this property to achieve real-
time all-frequency rendering of dynamic BRDFs under the static
scene assumption. However, this method only considers direct illu-
mination, while our method focuses on interreflections.

3. BACKGROUND

In this section, we review the necessary background of spherical
Gaussians (SGs) representations and BRDF approximations.

SG Definition. A Spherical Gaussian (SG) is a function of unit
vector v and is defined as:

G(v;p,λ ,c) = c · eλ (v·p−1) (1)

where unit vector p, λ , and c represent the center direction, band-
width, and the scalar coefficient of the SG. For simplicity, we de-
note G(v) = G(v;p,λ ,c) and G(v;p,λ ) = G(v;p,λ ,1). SGs have
many known properties. For example, the integral of SG has ana-
lytic solutions, and the product of two SGs is still an SG. These are
explained in details in the Appendix.

BRDF Approximation. A BRDF is commonly represented as the
sum of a diffuse component and a specular component:

ρ (i,o) = kd + ks ρs (i,o) (2)

where i, o are the incoming and outgoing directions; kd , ks are
the diffuse and specular coefficients. We approximate the specular
component (also called specular lobe) ρs using a single SG:

ρs (i,o)≈ G(i;2(o ·n)n−o,λs)

where n is the surface normal, and λs is the bandwidth which
controls the specular lobe size. Note that the diffuse component
kd can be treated as a special SG with a zero bandwidth: kd =
G(i;2(o ·n)n−o,0,kd). Therefore the BRDF defined in Eq. 2 can
be re-written as the sum of two SGs:

ρ (i,o)≈
1

∑
j=0

G
(

i;o j,λ j,c j
)

(3)

where λ 0 = 0, c0 = kd , λ 1 = λs, c1 = ks, o0 = o1 = 2(o ·n)n−o.
Note that the above SG approximation is a simplified version of the
model introduced by Wang et al. [2009]. As shown in their work,
the specular component of commonly used parametric BRDFs,
such as the Blinn-Phong and the Cook-Torrance models, can be
accurately approximated by one single SG. Even for more sophisti-
cated BRDFs, such as measured ones, a small number of SGs usu-
ally suffice to achieve highly accurate approximations.

4. ONE-BOUNCE INTERREFLECTION MODEL

Triangle T 
(reflector)

SG Light

receiver

 x

o

r

l

n-i

y

T

nx

Fig. 2: Light path of one-bounce interreflection.

We start by deriving the one-bounce interreflection model for
a single triangle reflector, as shown in Figure 2. Assuming a dis-
tant incident SG light l with emitted radiance G(i; il ,λl) (Gl (i) for
short), given a triangle T with normal nT (referred to as the re-
flector) and a shading point x with normal nx (referred to as the
receiver point), we aim to compute the outgoing radiance from x to
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the view direction o due to the reflection of the SG light l from tri-
angle T towards x. Note that all directions are defined in the global
frame.

To simplify the derivation, for now we assume there is no oc-
clusion between the light, the reflector and the receiver (The incor-
poration of visibility will be explained later in Section 6). We also
ignore texture data on the reflector, assuming that the reflector has
a uniform BRDF. The incorporation of texture will be explained in
Section 5. The one-bounce outgoing radiance from x towards o can
then be computed as an integration over a spherical triangle:

Lx(o) =
∫

ΩT

L(r)ρx (−r,o)max(−r ·nx,0)dr (4)

where r is the direction from a point y on the reflector triangle T to
x, and the integral is over the spherical triangle ΩT subtended by T;
ρx and nx are the BRDF and normal direction at the receiver point
x; L(r) is the reflected radiance from y to x, defined as:

L(r) =
∫

Ω

Gl (i)ρT (i,r)max(i ·nT ,0)di (5)

where ρT ,nT are the BRDF and normal of triangle T , respectively,
and Gl (i) = G(i; il ,λl) is the incident SG light as described before.

4.1 Evaluating the Reflected Radiance L(r)
In this subsection, we will explain how to evaluate the reflected
radiance L(r) defined in Eq. 5. First, we represent the BRDF
ρT of the triangle T as a sum of SGs (as shown in Eq. 3):
ρT (i,r) ≈ ∑

1
j=0 G

(
i;r j

T ,λ
j

T ,c j
T

)
. For denotation simplicity, in the

following derivation, we omit the summation ∑
1
j=0 (·) over index j

and rewrite the BRDF approximation as ρT (i,r)≈G(i;rT ,λT ,cT )
(GT (i) for short). This yields:

L(r)≈
∫

Ω

Gl (i)GT (i)max(i ·nT ,0)di

Secondly, since the product of Gl (i) and GT (i) is still a SG (see
Appendix B), and the cosine factor max(i ·nT ,0) is very smooth,
we assume it is constant across the support of the product SG and
thus can be pulled out of the integral [Wang et al. 2009; Xu et al.
2011] (also see Appendix D):

L(r)≈max(iT (r) ·nT ,0)
∫

Ω

Gl (i) ·GT (i)di (6)

where iT (r) = (λl il +λT rT )/‖λl il +λT rT ‖ is the center direction
of the product SG. As shown in Appendix C, the integral of the
product SG can be well approximated by a single SG:∫

Ω

Gl (i) ·GT (i)di≈ cR (r)exp(λR (rT · il −1))

where cR (r) = 2πcT /‖λl il +λT rT ‖, λR = λT λl/(λT +λl). Be-
sides, the dot product rT · il satisfies:

rT · il = (2(r ·nT )nT − r) · il = r · (2(il ·nT )nT − il) = r · iR
where iR = 2(il ·nT )nT − il . Hence the integral of the product SG
can be rewritten as:∫

Ω

Gl (i) ·GT (i)di≈ cR (r)exp(λR (r · iR−1))

= cR (r)G(r; iR,λR)

By substituting the above Equation to Eq. 6, the reflected radiance
L(r) can be finally evaluated as:

L(r)≈ F(r)G(r; iR,λR) (7)

where F(r) = cR(r)max(iT (r) ·nT ,0) is a function much smoother
than the SG. Thus the reflected radiance L(r) is evaluated as a linear
sum of the product of a smooth function and an SG.

4.2 Evaluating the Interreflection Radiance Lx(o)

Now we explain how to evaluate the one-bounce outgoing radiance
Lx(o) defined in Eq. 4. Similar to before, we represent the BRDF
ρx at the receiver point x as a sum of SGs (as shown in Eq. 3):
ρx (−r,o)≈∑

1
j=0 G

(
r;−o j

x,λ
j

x ,c j
x

)
. For denotation simplicity, we

again omit the summation ∑
1
j=0 (·) over index j below, and substi-

tute the reflected radiance L(r) (Eq. 7) into Eq. 4:

Lx(o)≈
∫

ΩT

H(r)G(r; iR,λR)G(r;−ox,λx,cx)dr

where H(r) = F(r) ·max(−r ·nx,0) is again a smooth function.
Since the product of two SGs is still an SG (see Appendix B), the
above Equation can be rewritten as:

Lx(o)≈
∫

ΩT

H(r)G(r;rh,λh,ch)dr

where G(r;rh,λh,ch) is the product of the two SGs in the above
Equation. (The formulas for rh,λh and ch can be found in Appendix
B.) Since function H is intrinsically smooth, we can pull it out of
the integral and rewrite the above equation as:

Lx(o)≈ H(r′h)
∫

ΩT

G(r;rh,λh,ch)dr (8)

The representative direction r′h used for querying the constant value
of function H is set to be a linear interpolation of the SG’s center
direction rh and the direction from the origin to the center of the
spherical triangle ΩT . The interpolation weight is determined by
the area size of ΩT and SG support. We adopt such an interpolation
method because the optimal choice of the representative direction
varies in different scenarios. For example, if the spherical triangle
is much larger than the support of SG (e.g. SG just spans a small
area inside the spherical triangle), the best choice of the represen-
tative direction is the SG center; Conversely, if the support of SG is
much larger than the spherical triangle, the best choice is the trian-
gle direction. The formula of r′h is described in Appendix G.

The remaining question in Eq. 8 is how to evaluate the integral of
an SG over a spherical triangle subtended by the planar triangle T .
However, this integral does not have a closed-form solution. Fortu-
nately, as shown in the following subsection, it can be reduced to a
1D integral, which can then be evaluated using a piecewise linear
approximation.

4.3 Integrating an SG over a Spherical Triangle

Given an SG G(v;p,λ ), we want to derive how to integrate it over
a spherical triangle ΩT , in other words, compute

∫
ΩT

G(v;p,λ )dv.
As shown in Figure 3(a), the local frame is defined by setting the
SG center direction p as the zenith direction. Denote the the origin
of the unit sphere as O and the zenith point as P, and the vertices of
the spherical triangle ΩT as A, B and C, respectively. It is obvious
that the spherical triangle ΩT satisfies:

ΩT = Ω4ABC = Ω4PBC−Ω4PAB−Ω4PCA

The plus/minus sign may vary depending on relative positions of
the zenith point P and spherical triangle Ω4ABC (e.g. when P is in-
side Ω4ABC, Ω4ABC = Ω4PBC + Ω4PAB + Ω4PCA). Without loss
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Fig. 3: Integrating an SG over a spherical triangle ΩT .

of generality, let us consider how to evaluate the integral over spher-
ical triangle4PBC:

∫
Ω4PBC

G(v;p,λ )dv. Using the coordinate sys-
tem defined in Figure 3, we can rewrite the integral using the spher-
ical coordinates to simplify the derivation.

As shown in Figure 3(b), denote the azimuthal angles of point B
and C as φb and φc, respectively, the intersection point of an arbi-
trary direction v with the unit sphere as V , the polar and azimuthal

angle of v as (θ ,φ). Since both arcs
_
PB and

_
PC are longitude arcs,

we can rewrite the integral in spherical coordinates by integrating
the azimuthal angle from φc to φb:∫

Ω4PBC

G(v)dv =
∫

φb

φc

(∫
θm(φ)

0
G(v;p,λ )sinθ dθ

)
dφ

=
∫

φb

φc

(∫
θm(φ)

0
eλ (cosθ−1) sinθ dθ

)
dφ

where θm(φ) is the maximal allowed polar angle when the az-
imuthal angle is φ . As shown in Figure 3(b), it is the polar angle

of the intersection point M of arc
_
BC and the longitude arc

_
PV . It

is easy to find out that the inner integral of polar angle θ has an
analytic solution, so that the above equation can be rewritten as:∫

Ω4PBC

G(v)dv =
∫

φb

φc

(
− 1

λ
eλ (cosθ−1)|θm(φ)

0

)
dφ

=
1
λ

∫
φb

φc

(
1− eλ (cosθm(φ)−1)

)
dφ

Through some further derivations using basic geometric proper-
ties, we found that the cosine of the maximal allowed polar angle
cosθm(φ) can be written as (proof can be found in Appendix H):

cosθm(φ) = sin(φ +φ0)/
√

m2 + sin2(φ +φ0) (9)

where the two parameters φ0 and m can be calculated through the
spherical coordinates of the two vertices B and C. Putting every-
thing together, the integral of G(v) can be rewritten as:

∫
Ω4PBC

G(v)dv =
φb−φc

λ
− 1

λ

∫
φb

φc

e
λ

(
sin(φ+φ0)√

m2+sin2(φ+φ0)
−1
)

dφ

=
φb−φc

λ
− 1

λ

∫
φ2

φ1

fm,λ (φ)dφ (10)

where φ1 = φc + φ0, φ2 = φb + φ0, and the 1D function fm,λ (φ) is
defined as:

fm,λ (φ) = exp

λ

 sinφ√
m2 + sin2

φ

−1

 (11)

  






m=0.1, =100

m=0.005, =100

m=0.01, =1000

m=0.02, =1000

f
m,

−→ φ

Fig. 4: Plot of the 1D function fm,λ (φ) and its non-uniform knots (i.e. sam-
ple points) at different parameter settings.

Thus we have simplified the original integral to a 1D integral
through analytic development. Now,

∫
fm,λ (φ)dφ does not have an

analytic solution, so we need to evaluate it numerically. A straight-
forward solution is to precompute a 3D table of pre-integrated val-
ues, with respect to the three parameters (m,λ ,φ). However, we
found that the value of this function in fact changes rapidly when
parameter m is very small, and thus using a precomputed table with
finite resolutions can lead to severe artifacts. To address this issue,
we introduce below a non-uniform piecewise linear approximation
which works very well for accurate evaluation of

∫
fm,λ (φ)dφ .

4.4 Non-uniform Piecewise Linear Approximation

Figure 4 shows the plots of the 1D function fm,λ (φ) under several
different parameter settings. As shown in this figure, the function is
defined in φ ∈ [0,π], is symmetric around φ = π/2, and increases
monotonically in the range φ ∈ [0,π/2]. For some parameters m
and λ , the function changes smoothly. However, for other param-
eters, particularly when m ≈ 0, the function changes very sharply.
We can approximate the function using piecewise linear approxi-
mation, but since the point where the sharp change happens varies,
it is unsuitable to use a uniform sampling method. Instead, we pro-
pose a non-uniform sampling method as detailed below.

First, observing the overall shape of the function (Figure 4), we
find it can be divided into 5 segments, including a smoothly as-
cending, a sharply ascending, a relatively flat, a sharply descend-
ing, and a smoothly descending segment. Hence, independent of
the integration range [φ1,φ2], we always find four knots (sample
points) in the range [0,π] to partition the function into 5 initial seg-
ments. Specifically, we pick two knots that have value η · fmax (note
that since the function is symmetric, there are two points with the
same value), and the other two that have value (1−η) · fmax. Here
fmax = f (φ = π/2) is the maximum value of the function, and η

is a threshold value that we typically set to η = 0.05. This is an
empirically determined value that has worked well in practice. As
shown in Figure 4, the knots are highlighted in red color. The knots
capture the shape (structure) of the function well for different pa-
rameters of m and λ . Next, we split the integral range [φ1,φ2] into a
few intervals using the selected knots as splitting points. For exam-
ple, if no knot lies in the range [φ1,φ2], no splitting is needed; if one
knot lies in the range [φ1,φ2], we split it into two intervals [φ1,φk]
and [φk,φ2], where φk is the knot position. Finally, we approximate
the function fm,λ (φ) in each interval using a uniformly sampled
piecewise linear function with K partitions. In our implementation
we set K = 3. Due to the way the knots are selected, the function
within each interval is very smooth, hence this method works quite
well. Evaluation is presented in Section 7.2.
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Summary. In this section, we derived the analytic formula for com-
puting one-bounce interreflection from a triangle (Eq. 4) to a shad-
ing point due to a distance SG light. Furthermore, we demonstrated
that this formula can be efficiently evaluated using a non-uniform
piecewise linear approximation of a 1D function (Eq. 11).

5. HIERARCHICAL STRUCTURE

In the previous section, we derived an analytical formula for com-
puting the interreflection from a single reflector triangle to a shad-
ing point. For simple scenes we can apply the formula to directly
sum up the contribution from each triangle. However, the cost is
linear to the number of triangles, thus this approach would perform
poorly for complex scenes with many triangles.

Inspired by previous hierarchical integration methods, such as
hierarchical radiosity [Hanrahan et al. 1991], the Lightcuts [Wal-
ter et al. 2005] and the micro-rendering technique [Ritschel et al.
2009], we also propose a hierarchical method to efficiently sum
up the contribution from all triangles in the scene. Specifically, as
shown in Figure 5(a), we organize the scene triangles into a binary
tree. The leaf nodes are individual triangles, and the interior nodes
are subsets of triangles, each owning the triangles that belong to its
two child nodes. The binary tree is built in a top-down fashion dur-
ing the scene initialization step. Starting from the root node, which
owns all the triangles, each node is recursively split into two child
nodes until reaching the leaf node.

To define the splitting criterion, we first define a 6D feature
(I,mn) for each triangle, where I is the triangle center (the scene’s
bounding box is normalized to [−1,1]) and n is the triangle nor-
mal. m is a scalar weights that controls the relative importance of
I and n, and we usually set it to m = 5. Next, the splitting is com-
puted using the principal direction rule. Specifically, at every node,
we compute the principal direction (using PCA) of the 6D features
of all triangles belonging to that node, and perform a median split
along the principal direction. This ensures that the splitting is done
along the direction of maximum variance. The result of the me-
dian split produces two child nodes with equal number of triangles.
For non-textured scene, each node stores the average center and
normal of its triangles, as well as a bounding box, a normal cone,
and the total triangle area. See Figure 5(a) for illustration. To deal
with textured scene, each node additionally stores the average and
the largest/smallest texture color values of all the textures mapped
on its triangles. The average texture color value is used to modulate
the radiance contribution of the node, while the largest/smallest tex-
ture color values are used to estimate the error bound. These stored
terms are used later to estimate the reflected radiance from the node
to a receiver point, and the associated error bound.

During the rendering stage, we employ a similar strategy as in the
Lightcuts [Walter et al. 2005] to efficiently evaluate the one-bounce
interreflections. For each receiver point, we start from an initial cut
that contains only the root node of the binary tree, then iteratively
refine it. At each iteration, we pick the node with the highest es-
timated error and replace it by its two child nodes. The iteration
stops either if the largest estimated error falls below a threshold (in
our case, 1% of the total estimated reflected radiance), or a prede-
fined maximum number of nodes in the generated cut is reached
(1000 in our case). When the iteration terminates, we refer to the
resulting cut as the reflector cut. The number of nodes in the cut is
referred to as cut size. Figure 5(b) shows an illustration. Note that
when reaching the leaf node during the iteration, we can directly
use the interreflection model for a single triangle reflector to accu-
rately evaluate its one-bounce contribution. However, this strategy
only works well for non-textured scenes since our derivations in
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Fig. 5: Hierarchical structure and error bound estimation. (a) a binary tree
of triangles showing the bounding box and normal cone stored at each
node; (b) an example of reflector cut; (c) direction cone; (d) computing
central cone from the normal cone.

Section 4 assumes that the reflector triangle has a uniform BRDF
across it without texture variations. Hence, when dealing with leaf
node with a textured triangle, we still compute its error bound using
its stored texture info. If the estimated error bound is larger than a
predefined threshold, we subdivide this triangle into 4 subtriangles
using

√
3−subdivision [Kobbelt 2000], and use the 4 subtriangles

to further evaluate one-bounce contributions. Such a dynamic sub-
division strategy can be applied iteratively until the estimated error
bounds of the subdivided triangles are sufficiently small.

Next, we will explain in detail how to evaluate the estimated one-
bounce radiance reflected by a node (in Section 5.1) and the asso-
ciated error bound (in Section 5.2).

5.1 Estimating the Interreflected Radiance

Given a node N and a receiver point x, we estimate the radiance
from x towards the view direction o, due to the reflection of an SG
light G(i;pl ,λl) from node N. To begin, we denote the center po-
sition of node N as IN , its average triangle normal as nN , and its
triangle area as ∆N . Then, inspired by the micro-rendering tech-
nique [Ritschel et al. 2009], the node N is treated as an “implicit”
plane with center position IN , normal direction nN , area ∆N , and
average texture color t̄N . Hence, we can reuse Eq. 8 derived for a
single triangle, only changing the integration area from a spherical
triangle ΩT to a spherical region ΩN spanned by all the triangles
belonging to node N:

Lx(o)≈ t̄N ·H(r′h)
∫

ΩN

G(r;rh,λh,ch)dr (12)

However, since the shape of the spherical region ΩN is unknown
(it is a spherical region subtended by a set of triangles), we can-
not directly apply the piecewise linear approximation described in
Section 4. To address this issue, we rewrite the integral of an SG
over spherical region ΩN as the SG multiplied by a binary mask
integrated over the whole sphere :∫

ΩN

G(r;rh,λh,ch)dr =
∫

Ω

G(r;rh,λh,ch)VΩN (r)dr

where Ω denotes the whole sphere, VΩN (r) is a binary function
that indicates if a direction r is inside ΩN . We further approximate
VΩN using an SG: VΩN (r) ≈ G(r;rN ,λN ,cN) (GN (r) for short).
The center direction rN is set to be the unit direction from node
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center IN to the receiver point x; the bandwidth and coefficient are
determined by preserving the function energy and variance (refer
to Appendix E): λN = 4π/‖ΩN‖, cN = 2. Here ‖ΩN‖ is the solid
angle computed as:

‖ΩN‖ ≈ (∆N ·max(rN ·nN ,0))/d2
N (13)

where dN is the distance from the receiver point x to node center
IN .

Hence, the integral of the SG over ΩN can be re-written as:∫
ΩN

G(r;rh,λh,ch)dr≈
∫

Ω

G(r;rh,λh,ch)GN (r)dr (14)

Substituting Eq. 14 into Eq. 12, the one-bounce interreflected ra-
diance Lx(o) can be easily computed since the product integral of
two SGs has an analytic solution.

Summary. By approximating the binary function VΩN using an SG,
we can efficiently compute Eq. 12 using an analytic solution. An al-
ternatively approach is to use a representative value of the binary
function at each tree node, as in the Lightcuts method. We employ
the SG approximation because it leads to an analytic solution and is
thus less prone to numerical sampling artifacts. However, we note
that this approximation will produce large errors in the case of in-
tegrating an SG with small support size over nodes with large solid
angles. Thus we need to estimate the error bound of this approxi-
mation to ensure the accuracy. If the estimated error of the current
node is larger than a predefined threshold, we replace it by its two
child nodes thus reducing the approximation error.

5.2 Estimating the Error Bound

Given the bounding box and the normal cone of a node, we aim
to evaluate the error bound of computing Lx(o) using Eq. 12 and
Eq. 14. Denote the largest and smallest values of the SG func-
tion G(r;rh,λh) in region ΩN as gmax and gmin, the largest and
smallest possible solid angle of ‖ΩN‖ as ‖Ω‖max and ‖Ω‖min, and
the largest and smallest texture color values of node N as tmax and
tmin. It is obvious that the error can be conservatively bounded by
(tmax ·gmax · ‖Ω‖max− tmin ·gmin · ‖Ω‖min). The bounds on texture
color values [tmin, tmax] are stored within each node. In following,
we explain how to estimate the bounds on the solid angles and the
SG function values.

Bounds on the solid angle. Based on Eq. 13, we can compute the
bounds on the solid angle ‖ΩN‖ by estimating the bound of the
distance dN and that of the dot product rN ·nN . Given the bounding
box of the node, as shown in Figure 5(c), it is trivial to compute the
lower and upper bounds of the distance dN from the receiver point
x to the node. We denote the bounds as dmin and dmax. The spher-
ical region ΩN spanned by the node as observed from the receiver
point can be bounded by a cone, which is referred to as direction
cone. Note that direction rN is also bounded within the direction
cone. Since the normal direction nN is already bounded by the nor-
mal cone of the node, we can easily compute the lower and up-
per bounds of the angle between rN and nN using the two cones.
We denote the lower and upper bounds of the angle as θ min

d and
θ max

d , respectively. Hence, the lower and upper bounds of the solid
angle ‖ΩN‖ can be computed as: ‖Ω‖min = ∆N · cosθ max

d /d2
max ,

‖Ω‖max = ∆N · cosθ min
d /d2

min.

Bounds on the SG function values. Estimating the bounds on
the SG function G(r;rh,λh) requires computing the bound of the
dot product (r · rh). The direction r is naturally bounded by the

direction cone, since it is restricted in the integral area ΩN . To
find a bounding cone for the SG central direction rh, recall the
formula for defining rh (in Eq. 8): rh is calculated from another
direction iR, while iR is computed using the normal nN . Hence,
as shown in Figure 5(d), we can first determine a bounding cone
for direction iR based on the normal cone, and then find a bound-
ing cone for direction rh, which is referred to as central cone. Fi-
nally, the lower and upper bounds of the angle between direction
r and the SG central direction rh can be computed from the di-
rection cone and the central cone, which are denoted as θ min

r and
θ max

r , respectively. Putting everything together, the lower and up-
per bounds of the SG values are: gmin = exp(λh(cosθ max

r − 1)) ,
and gmax = exp(λh(cosθ min

r −1)).

6. IMPLEMENTATION DETAILS

The implementation of our algorithm consists of an initialization
step which loads the scene and builds the binary tree structure, and
a run-time rendering step which implements the one-bounce inter-
reflection algorithm.

Algorithmic Pipeline. In the scene loading stage, we first build a
binary tree for each model (i.e. a triangle mesh) following the algo-
rithm described in Section 5. If the number of triangles in a model
is less than 200, we skip the tree building for that model since it is
more efficient to iterate through each triangle of the model during
rendering. Then, for each tree node, we evaluate its visibility, the
details of which are provided below. This initialization step only
takes a few seconds and does not need to be performed again un-
less if a model deforms.

During the run-time rendering step, we first evaluate the direct il-
lumination in a separate pass. To compute interreflections, we need
to determine a reflector cut (see Section 5) for each shading pixel.
We follow [Cheslack-Postava et al. 2008] to compute a per-vertex
reflector cut, which is then interpolated at each shading pixel using
their cut merging algorithm. This cut merging algorithm makes use
of the per-vertex cut stored at the nearby vertices around a pixel. Fi-
nally, the interreflection is computed for each shading pixel using
the merged reflector cut in a pixel shader.

Lights. Our method supports all-frequency incident lighting by na-
ture, because Spherical Gaussian has varying support size. Fol-
lowing [Wang et al. 2009], different types of lights, including
distant environment lights, distant area lights, and local spheri-
cal lights, can be easily integrated into our algorithm. An en-
vironment light can be fitted into a small number of SG lights
using the method presented in [Tsai and Shih 2006]. As shown
in [Wang et al. 2009], for a distant area light with direction pl ,
solid angle ‖Ωl‖, and intensity c, the approximated SG light is
given by: L(i) ≈ G(i;pl ,4π/‖Ωl‖,2c). For a local spherical light
located at position l with radius r and intensity c, the approxi-
mated SG light towards surface position y is given by: L(i) ≈
G
(
i;(l−y)/‖l−y‖,4‖l−y‖2/r2,2c

)
.

Visibility. For direct illumination, we adopt the variance shadow
maps (VSM) [Donnelly and Lauritzen 2006] to generate shadows
for each SG light. For indirect illumination, we use the term direct
visibility to denote the visibility from an SG light to the reflector,
and indirect visibility to denote the visibility from the reflector to
the receiver. To evaluate the direct visibility, we sample 16 points
uniformly on the reflector triangle and query into the VSM of the
SG light to retrieve the shadow values. The average shadow value of
the sample points is stored as the direct visibility for each reflector
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triangle. To compute indirect visibility, we adopt a variant of imper-
fect shadow maps (ISM) [Ritschel et al. 2008]. Specifically, during
scene loading step, we select 200 random sample points on each
model to represent the virtual light positions to capture the ISM at
run-time. For each node in the binary tree of the model, its closest
three sampled virtual lights are stored. Then, the center position of
the node is projected onto the triangle plane spanned by the node’s
three samples, and the weight of each sampled light is computed
as the barycentric coordinate of the projected position. During the
run-time rendering stage, the ISM with a resolution 128× 128 is
generated for each sampled virtual light. Next, during the evalua-
tion of indirect illumination, after the reflector cut is determined,
the visibility for each tree node is interpolated by the shadow val-
ues from the ISMs, using the three closest sampled virtual lights
and the associated weights. The visibility approximation will be
evaluated in Section 7.2.

Cut Selection. To improve performance, we implement the per-
vertex cut selection algorithm using CUDA. The cut selection algo-
rithm requires a priority queue structure to store tree nodes, since
it needs to pick the node with the largest error and to replace it
with its two children. However, an accurate priority queue imple-
mentation using CUDA is not yet efficient, thus we employ an ap-
proximate priority queue. Specifically, we manage several (in our
implementation, 5) ordinary queues with different priorities. The
queue with the i-th priority stores nodes whose errors are larger
than 25−i%. For example, the first queue stores nodes with errors
larger than 16%, the second queue stores nodes with error larger
than 8%, and so on. At each step, we pick the front node in the
queue with the highest priority (e.g., pick from the first queue if it
is non-empty, otherwise pick from the second queue, and so on) and
split it into two child nodes. The two child nodes are then pushed
into the queues with the corresponding priorities according to their
errors. Note that, for simple scenes without a tree structure, the per-
vertex cut selection is not necessary.

Final Shading. The final one-bounce interreflection is evaluated in
a pixel shader. At each pixel, the required data of its reflector cut,
including positions, normals, BRDFs, and direct visibility of each
cut node, as well as the SG lights, are stored in textures and passed
into the pixel shader. Hence, the total contributions from all nodes
in the cut to the pixel can be computed by iterating through every
cut node. The non-linear piecewise linear approximation (in Sec-
tion 4) for reflector triangles is used for leaf nodes, while the node
approximation (Eq. 14) is used for interior nodes. The contribu-
tion of each node is modulated by the direct and indirect visibility
described earlier. While direct visibility is obtained as a pass-in pa-
rameter of each node, indirect visibility is obtained by interpolating
from the query shadow values using the ISMs.

7. RESULTS AND COMPARISONS

This section presents our results. Performance data is reported on a
PC with Intel Xeon 2.27G CPU and 8 GB memory, and an NVIDIA
Geforce GTX 690 graphics card. The algorithm is implemented us-
ing OpenGL 4.0 and CUDA 4.1. The image resolution for all ren-
dered results is 640× 480. We set the partition number K = 3 and
the error bound threshold to 1% for all examples. The performance
data is reported in Table I. For validation, we examine the accuracy
of our mathematical model, as well as compare our results to the
VPL-based method [Keller 1997], photon mapping [Jensen 2001],
and the micro-rendering method [Ritschel et al. 2009].

scene #faces
avg.

cut size fps shade.
time

cut sel.
time

magic cube 140 N/A 4.0 0.25s N/A
table 104 N/A 1.0 1.0s N/A
ring 21k 151 0.7 1.0s 0.4s

dragon 26k 258 0.4 1.8s 0.5s
airplane 20k 142 1.2 0.58s 0.19s

bunny & tweety 36k 316 0.3 2.5s 0.7s
kitchen 92k 489 0.12 6.9s 1.3s
sponza 143k 566 0.09 9.0s 2.0s

Table I. : Performance of the results shown in this paper. From left to right,
we give the name of the scene, the number of faces, average cut size, overall
fps, final shading time and and cut selection time.

7.1 Results

Simple Scenes. We first verify our method using simple scenes
containing a couple hundred of triangles. Figure 6(a) shows results
of a magic cube scene with varying BRDFs on the cube and on
the plane. In Figure 6(b), we show the results of a star scene and
a kitchen scene under different environment lights represented by
10 SGs. Note that in these examples, we demonstrate the capability
of our algorithm in producing all-frequency interreflection effects,
including diffuse to diffuse, diffuse to specular, and specular to dif-
fuse (i.e. caustics) effects.
Complex Scenes. Figure 1(a) shows the results of a ring with a
Blinn-Phong BRDF changing from highly specular to purely dif-
fuse. From left to right, the glossy shininess of the Blinn-Phong
BRDF is set to n = 10000,1000,300,100 respectively, and the last
one is using a Lambertian BRDF. Note that our method produces
convincing caustics effects on the plane for all examples. Further,
our method achieves smooth and coherent transitions (e.g. with-
out flickering) while changing BRDF parameters (see the supple-
mental video). Thus it is a single algorithm that can reproduce all-
frequency reflection effects.

Figure 1(b,e) and Figure 6(b-d) demonstrate our method un-
der different types of lights, including a local light (Figure 1(e)),
SG lights with small support (Figure 1(c)) and large support (Fig-
ure 6(c,d), as well as environment lights (Figure 6 (b)).
Textured Scenes. Figure 7 shows results of complex textured
scenes. Note that our method performs well for such scenes with
complex visibility and textures. Please refer to the accompanying
video for additional results.
Performance. The performance data, including framerates, aver-
age cut size (i.e. the average number of nodes in the reflector cut),
time for final shading, and time for cut selection, is shown in Ta-
ble I. We do not list the time for direct lighting and ISMs gener-
ations since for all scenes it takes less than 0.1 seconds. Clearly,
the bottleneck lies in the per-pixel final shading stage, especially
for complex scenes. Considering the sponza scene in Figure 7(b),
the final shading stage takes 81% of the time on average, while
other steps, including the cut selection, ISMs generation and direct
lighting, take a total of 19% of the overall cost. This is because the
average cut size increases with the number the faces. In the final
shading step, which is implemented in fragment shader, for each
pixel we need to loop all the nodes in its cut to compute the final
shading. However, such a shading computation adapts with the fast
evolving GPU and can be greatly accelerated by next-gen many-
core hardware.
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(a) magic cube (b) environment lights

(c) dragon (d) bunny & tweety

Fig. 6: Additional rendering results. (a) A magic cube model with various BRDF settings (left: plane and cube are both diffuse; middle:
cube is diffuse, plane is specular; right: plane is diffuse, cube is specular). (b) A star model and a table scene under environment light. The
environment lights are approximated using 10 SGs. (c) A dragon scene. (d) A “Bunny and Tweety” scene.

(a) kitchen (b) sponza

Fig. 7: Rendering results of complex textured scenes.

7.2 Comparisons

Accuracy of our model. In Figure 8, we show results of our one-
bounce interreflection model using piecewise linear approximation
with different number of piecewise intervals (in Section 4.4). We
further compare our results with results generated by a VPL-based
method [Keller 1997] and the path traced reference. The test scene
consists of a single equilateral triangle placed perpendicular to the
receiver plane, and a directional light at a 45 degree angle to the
ground plane. The ground (receiver) plane has a Lambertain BRDF
and we only show the interreflection (i.e. no direct illumination)
from the triangle to the plane in this figure.

In Figure 8, from the top row to the bottom row, the BRDF of the
reflector triangle varies from purely diffuse to highly specular. Note
that our result with partition number K = 3 (column (b)) already

matches the reference image (column (e)) very well under all tested
BRDFs. In contrast, the VPL-based method (column (d)) with 256
VPLs works well for only low-frequency BRDFs, while producing
severe artifacts when the shininess parameter n≥ 10. This is mainly
due to the limited number of VPLs, which must be significantly
increased for highly-glossy BRDFs.
Accuracy of visibility approximation. Recall that we randomly
sample some (typically 200) virtual lights (VLs) on each model
and generates one 128×128 ISM for each VL. Visibility between
the receiver point and each node/triangle is computed by interpo-
lating the queried shadow values from three nearest VLs. Hence,
the number of VLs affects the accuracy of the indirect visibility.
In Figure 9, we evaluate the indirect visibility approximation used
in our method. Notice that our result with 200 VLs (Figure 9 (c) )
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Fig. 8: Comparisons of one-bounce interreflection with varying BRDFs.
In the top row, the reflector triangle is diffuse; from row 2 to row 5,
the reflector triangle has a Blinn-Phong BRDF with glossy shininess of
n = 10,100,1000,10000 respectively. Columns (a), (b) and (c) show results
generated by our model with different number of piecewise linear partitions
K = 1, K = 3 and K = 9; column (d) shows the results using VPL-based
method with 256 VPLs; column (e) gives the ground truth reference.

(a) no vis (b) 100 VLs (c) 200 VLs (d) reference

Fig. 9: Comparison of visibility using different number of virtual lights.
(a) gives a result without considering indirect visibility; (b),(c) gives our
results with virtual light number as 100 and 200, respectively; (d) is the
reference. Notice that, by setting virtual light number as 200, our result
matches reference very well.

matches reference image (Figure 9 (d) ) very well. As demonstrated
in [Ritschel et al. 2008], ISMs can handle low-frequency indi-
rect shadows well but have difficulties with high-frequency shad-
ows due to the low resolution of ISMs and low VL sampling rate.
Therefore, our method inherits the same limitations and only han-
dles low-frequency indirect visibility. However, we claim that han-
dling indirect visibility is not our major contribution and we aims
at supporting all-frequency BRDFs. The problem of handling high-
frequency indirect visibility itself is an open research problem in
rendering. When a better solution becomes available in the future,
we can easily incorporate it into our implementation.

ours photon mapping

(a) (b) 1M photons (c) 10M photons

Fig. 10: Comparison of caustics effects with photon mapping .

shininess n = 10 shininess n = 300

(a) ours (b) Ritschel et al. (c) ours (d) Ritschel et al.

Fig. 11: Comparison to micro-rendering [Ritschel et al. 2009].

(a) 1%, 132 (b) 5%, 82 (c) 10%, 67

Fig. 12: Comparison of our results using different error bound threshold.
The threshold and average cut size are given in the caption of each subfig-
ure.

Comparison to photon mapping. In Figure 10, we compare our
method with photon mapping [Jensen 2001] for generating caus-
tics. The scene consists of a directional light, a reflective ring,
which has a Blinn-Phong BRDF with shininess n = 100, and a
Lambertian plane. Figure 10 (b) gives the result of photon mapping
using 1M photons, which exhibits noticeable noises in the caustics
area. The reason is that while photon mapping is highly efficient for
rendering caustics from perfectly specular reflectors, it is not so ef-
ficient when the material becomes glossy, as shown in this example.
This is mainly due to the stochastic sampling effects when photons
are reflected from a glossy surface. As a result, glossy reflectors re-
quire a much large number of photons to achieve high quality. As
shown in Figure 10(c), increasing the number of photons to 10M
removes most of noise, but doing so also significantly reduces ren-
dering performance. In contrast, our method handles the glossy re-
flector very efficiently as shown in Figure 10(a). We achieve the
same quality as Figure 10(c) at near-interactive frame rates.
Comparison to micro-rendering. In Figure 11, we compare our
method to micro-rendering [Ritschel et al. 2009]. The size of
micro-buffer is set to be 24× 24. The scene consists of a curved
glossy plate placed on top of a Lambertian plane. In micro-
rendering, importance sampling is performed in the final gathering
step using BRDF importance, and hence it can handle glossy re-
ceivers well. However, the micro-rendering method selects reflec-
tor nodes from a point hierarchy of scene sample points, in which
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only the subtended solid angle from each node is considered. The
BRDF of the reflector node is ignored during cut selection, and
hence it can ignore the importance of nodes with glossy BRDF,
which are responsible for strong interreflections. In contrast, our
cut selection scheme takes into account not only the subtended
solid angle but also the BRDF of both receiver and reflector, and
we use the estimated error bound to ensure accuracy. Moreover,
our method estimates the contribution of each node using integra-
tion instead of a single point sample, leading to more robustness.
As shown in Figure 11, when the shininess of the reflector is low
at n = 10, both our method and micro-rendering generate smooth
interreflections. However, when the shininess of the reflector in-
creases to n = 300, micro-rendering produces “speckle” artifacts.
In contrast, our method still renders high-quality interreflections
without noticeable artifacts.

Error bound threshold. We further evaluate our choice of the
error bound threshold. Since smaller thresholds result in better
quality but slower frame rates, a trade-off should be considered.
Figure 12 shows the results using different thresholds, including
1%, 5% and 10%. Using a larger threshold such as 5% gives better
performance (refer to Figure 12 (b), which has an average cut size
of 82 and average fps of 2.3), but it also produces visible artifacts
around the contact area between the box and the plane. Reducing
the threshold to 1% eliminates these artifacts, but leads to larger
average cut size of 132 and average fps of 1.2. In our experiments,
we find that 1% is an optimal choice, and all results in the demos
are generated by setting the error bound threshold to 1%.

8. LIMITATIONS AND DISCUSSIONS

Multiple-bounce interreflections. One major limitation of our
method is that it currently only supports one-bounce interreflec-
tions. However, our analytic interreflection model can in fact be ex-
tended to handle multiple bounces. Taking two-bounce interreflec-
tions as an example, the incident light bounces from a first trian-
gle (referred to as reflector I), then bounces at a second triangle
(referred to as reflector II), and finally arrives at a receiver point.
Denote the direction from reflector I to reflector II as r1, and the
direction from reflector II to receiver point as r2. By making use
of the SG approximation formula (Eq. 14) of the tree node to com-
pute the one-bounce interreflection from reflector I to reflector II,
the reflected radiance L(r2) from reflector II to receiver can again
be represented as an SG of r2. Hence, the outgoing radiance from
the receiver point can once again be approximated using our one-
bounce model. The computational cost of computing the second-
bounce is O(N2) (where N is the number of reflector triangles),
because we need to consider all possible combinations of reflector
I and reflector II. However, the computational cost can be greatly
reduced to sub-linear cost by employing a multi-dimensional re-
flector cut, similar to [Walter et al. 2006]. A complete study of this
method to handle multiple-bounce interreflections remains our fu-
ture work.

9. CONCLUSION AND FUTURE WORKS

To summarize, we have presented a practical algorithm for ren-
dering one-bounce interreflections with all-frequency BRDFs. Our
method builds upon a Spherical Gaussian representation of the
BRDF and lighting. The core of our method is an efficient algo-
rithm for computing one-bounce interreflection from a triangle to
a shading point using an analytic formula combined with a non-
uniform piecewise linear approximation. To handle scenes contain-
ing a large number of triangles, we propose a hierarchical integra-

tion method with error bounds that take into account the BRDFs
at both the reflector and receiver. We have presented evaluations
using a wide frequency range of BRDFs, from purely diffuse to
highly specular. Important effects caused by different types of light-
ing paths, including diffuse to diffuse, diffuse to glossy, glossy to
diffuse (i.e. caustics), and glossy to glossy (i.e. indirect highlights),
are all unified and supported in a single algorithm.

In future work, we would like to extend our method to handle
multi-bounce interreflections. This may be accomplished by recur-
sively applying our one-bounce algorithm and employing a mul-
tidimensional reflector cut as described in Section 8. We are also
interested in extending our method to handle high dimensional tex-
tures, such as bidirectional texture functions. Another direction for
future work is to improve the speed of our algorithm, such as by
employing ManyLods [Hollander et al. 2011] to further exploit the
spatial and temporal coherence in rendering.
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APPENDIX

A. Integral of an SG. It is straightforward to prove that the integral
of an SG G(v;p,λ ) over the entire sphere is:∫

Ω

G(v;p,λ )dv =
2π

λ

(
1− e−2λ

)
B. Product of two SGs. Defining two SGs G(v;p1,λ1) and
G(v;p2,λ2), it is straightforward to prove that the product of
two SGs is still an SG, given by G(v;p1,λ1) · G(v;p2,λ2) =
G(v;p3,λ3,c3), where:

λ3 = ‖λ1p1 +λ2p2‖,p3 =
λ1p1 +λ2p2

λ3
,c3 = eλ3−(λ1+λ2)

C. Dot product of two SGs. Defining two SGs G(v;p1,λ1) and
G(v;p2,λ2), it is straightforward to prove that the dot product of
the two SGs is (using properties A & B):∫

Ω

G1 (v) ·G2 (v)dv =
∫

Ω

G3 (v)dv

=
2πeλ3−(λ1+λ2)

λ3

(
1− e−2λ3

)
where λ3 = ‖λ1p1 + λ2p2‖ =

√
λ 2

1 +λ 2
2 +2λ1λ2(p1 ·p2), which

can be approximated by a first order Taylor expansion of p1 ·p2:

λ3 ≈ (λ1 +λ2)−
λ1λ2

λ1 +λ2
(1−p1 ·p2)

hence, the above dot product can be approximated as:∫
Ω

G3 (v)dv≈ 2π

λ3

(
1− e−2λ3

)
exp
(

λ1λ2

λ1 +λ2
(p1 ·p2−1)

)
≈ 2π

λ3
exp
(

λ1λ2

λ1 +λ2
(p1 ·p2−1)

)
The term e−2λ3 is usually very small (since λ3 is relatively large),
and hence it can be safely omitted in above equation. The above
result can also be written as 2π

λ3
G
(

p1;p2,
λ1λ2

λ1+λ2

)
, showing that if

treating p1 (or p2) as an independent variable, the result of dot prod-
uct can be still approximated as an SG of p1 (or p2). The accuracy
of the dot product approximation depends on how large the band-
width λ3 is. It is valid in most cases (error < 1% when λ3 > 2.3 ).
This approximation will produce large error only when both SGs
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are very large (e.g. a diffuse BRDF with a wide blue sky). Such
cases can be avoided by restricting the bandwidth of the SG light.

D. Dot product of an SG and a smooth function. Given an
SG G(v;p,λ ) and another spherical function S(v), if S(v) is very
smooth, we can approximate the dot product by pulling S(v) out
of the integral, and approximating S(v) using the value at the SG
center S(p) [Wang et al. 2009; Xu et al. 2011]:∫

Ω

G(v)S(v)dv≈ S(p)
∫

Ω

G(v)dv =
2πS(p)

λ

(
1− e−2λ

)
This approximation works well in our experience. For better accu-
racy, piecewise linear approximation of the smooth function [Xu
et al. 2011] can be alternatively used.

E. Approximating a spherical region as an SG. Given a spherical
region ΩN , and a binary function VΩN (v) that valued 1 when v ∈ N
and valued 0 elsewise. Approximating the binary function as an
SG: VΩN (r)≈G(v;pN ,λN ,cN), the central direction pN is directly
set to be the center of the spherical region ΩN , and the bandwidth
λN and coefficient cN are obtained by preserving function energy
and variance. Obviously, when approximating the spherical region
N as a spherical disk, the energy (solid angle) and variance of the
binary function VΩN (v) are ΩN and ‖ΩN‖2/(2π), respectively. For
SGs, it is also known that:∫

GN (v)dv≈ 2πcN/λN ,
∫

GN (v) · (v−pN)2 dv≈ 4πcN/λ
2
N

Solving the above two equations, we get λN ≈ 4π/‖ΩN‖, cN ≈ 2.

F. Solid angle and central direction of a spherical triangle. As
proved in [Oosterom and Strackee 1983], the solid angle ‖ΩT ‖ of
a spherical triangle ΩT is given by ‖ΩT ‖= 2 ·arctan(N,M),where:

N = p1 · (p2×p3), M = 1+p1 ·p2 +p2 ·p3 +p3 ·p1

where pi (1≤ i≤ 3) are three unit directions from the sphere origin
to the three vertices of the spherical triangle; (p2 × p3) denotes
the cross product of the two vectors. The center of the spherical
triangle pT is approximated as the average of these three directions:
pT ≈ (p1 +p2 +p3)/‖p1 +p2 +p3‖.

G. Representative direction of an SG over a spherical triangle.
Given an SG G(v;p1,λ1), and a spherical triangle ΩT , we usu-
ally need to determine a representative direction p′1, which may be
used for querying constant values of other smooth functions. Ap-
proximating the spherical triangle as an SG G(v;pT ,λT ,cT ) (in
Appendix E), the representative direction p′1 is set to be the center
of the product SG of G(v;p1,λ1) and G(v;pT ,λT ,cT ), which is:

p′1 = (λ1p1 +λT pT )/‖λ1p1 +λT pT ‖

H. Proof of Eq. 9. As shown in Figure 13, we place a plane per-
pendicular to polar direction p, with unit distance to sphere origin
O. Denote the intersection point of polar direction p to the plane
as P′, and the projections of spherical points B, C and M to the
plane as B′, C′ and M′, respectively. Denote the azimuthal angle of
point M′ as φ . Draw a line P′N perpendicular to line B′C′. De-
note the angle between line B′C′ and the horizontal direction s
as φ0, and the length of line segment P′N as m. It is trivial that
|P′M′| = |P′N|/sin(∠P′M′B′) = m/sin(φ + φ0). So that tanθm =
|P′M′|/|P′O| = |P′M′| = m/sin(φ + φ0), and hence cosθm =

1/
√

tan2 θm +1 = sin(φ + φ0)/
√

m2 + sin2(φ +φ0). Note that

 O

B
θm

C
M

C’M’
B’

P’
p

s
φ φ0

N

s

m

Fig. 13: Illustration for calculating θm.

both of m and φ0 are geometric properties only depended on the
positions of B and C, making them easy for computation.
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