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1. Introduction

With the development of 3D acquisition techniques, 3D models are now widely available and used in various appli-
cations. The demand for model analysis and understanding is thus ever increasing. However, techniques for intelligent
automated processing of large models have not matched the growth in availability of models. The task of model segmen-
tation is to decompose a model into a set of disjoint pieces whose union corresponds to the original model. To be useful,
segmentation must decompose a model into intuitively satisfying pieces (e.g. limbs and torso of an animal) or ones which
satisfy other desirable criteria (e.g. each piece is bounded by sharp edges or small radius blends).

Model segmentation is an important step towards model analysis and understanding. A variety of different applications
would benefit from initially dividing the model into regions using an efficient and reliable segmentation method. In the
field of reverse engineering of CAD models, segmentation plays an important role in splitting a model into pieces, each of
which may then be fitted with a single analytical surface (Varady et al., 1997). In computer graphics, segmentation can be
applied in various applications, including mesh simplification (Zuckerberger et al., 2002), collision detection (Li et al., 2001),
morphing (Shlafman et al., 2002; Zuckerberger et al., 2002) and skeleton-driven animation (Katz and Tal, 2003).

In general, to be useful, model segmentation should produce results in accordance with cognitive science. As pointed out
by Hoffmann (1984, 1997), the human visual system perceives region boundaries at negative minima of principal curvature,
or concave creases—this observation is known as the minima rule. The depth of the concavity directly affects the salience
of region boundaries. Such concave feature regions together with other information are important clues for segmentation.
Moreover, it can be observed that only significant features are important to segmentation; small-scale fluctuations should
be ignored, even if they represent sharp creases. On the other hand, for reverse engineering applications, different surfaces
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may be separated along sharp edges, which may be convex or concave, or even along smooth edges—different criteria lead
to useful segmentations for differing applications.

Recently, Grady (2006) proposed an interactive algorithm for image segmentation based on the use of random walks.
The main ideas are as follows: a set of seed pixels is first specified by the user. For each other pixel, using an efficient
process, we determine the probability that a random walk starting at that pixel first reaches each particular seed, given
some definition of the probability of stepping from a given pixel to each neighbor. The segmentation is formed by assigning
the label of the seed first reached to each non-seed pixel.

Our work is an extension of the random walks method to the particular problem of 3D model segmentation; previous
work has already considered the use of random walks for solving the different problem of 3D mesh denoising (Sun et al.,
2008). By using different methods of assigning probability distributions, we are able to segment both engineering object
models and graphical models. Our results are reliable even when the models are noisy or have small-scale textures that
should be ignored. The method can also be used for direct segmentation of point cloud data.

As well as a method based on user selection of seeds, we give a generalization of this method to automatic mesh
segmentation. Two approaches are discussed. For coarse-scale segmentation, a few seeds are distributed as far apart as
possible, resulting in a segmentation of the model into a few pieces. For fine-scale segmentation, seeds are first placed au-
tomatically (usually with more seeds than the required number of regions) using feature sensitive isotropic point sampling.
Our two-pass method segments the mesh using these initial seeds, and then merges the regions found based on similarities
of neighboring regions. Our method can also be used for hierarchical segmentation of models, mimicking the way people
think.

Compared to other methods, our proposed method has the following advantages. Our method:

e provides results of comparable quality to state-of-the-art methods, but is significantly more efficient, making it espe-
cially suitable for interactive applications or applications that require segmentation of large models, or large numbers
of models,

e can be used both interactively or automatically; in the latter case, the appropriate number of regions can be deduced
automatically,

e is robust to noise and small-scale texture that may be present in real scanned models,

e is applicable to both CAD models and graphical models, and the differing kinds of segmentation expected in such cases.

This paper is an extended version of Lai et al. (2008). In particular, we additionally consider (i) how to segment point
cloud data, (ii) hierarchical segmentation, and (iii) the robustness of the method in the presence of noise and deformation.

Section 2 briefly reviews related work. Interactive segmentation of both triangle meshes and point cloud data based
on random walks is presented in Section 3 and extension to automatic mesh segmentation is presented in Section 4.
Experimental results are given in Section 5, with conclusions and discussions in Section 6.

2. Related work

Compared to the problem of image segmentation, research into mesh segmentation is much more recent; however, it is
now an active research topic, due to the wide range of potential applications. A complete survey of mesh segmentation is
beyond the scope of the paper, but up-to-date reviews and comparisons of different methods can be found in Attene et al.
(2006a), Shamir (2008).

Based on the different aims, existing mesh segmentation algorithms can be generally categorized into two classes. The
first class is aimed at applications such as reverse engineering of CAD models (e.g. Attene et al., 2006b). Such methods
segment a mesh model into patches each of which is a best fit to one of a given class of mathematical surfaces, e.g. planes,
cylinders, etc. The second class tries to segment typically ‘natural objects’ into meaningful pieces, as expected by a human
observer. Our algorithm is mainly aimed at solving problems of the latter class, but with certain modifications, it is also
able to handle engineering objects reasonably well.

Most state-of-the-art work on mesh segmentation is based on iterative clustering. Shlafman et al. (2002) use k-means
clustering to segment the models into meaningful pieces. Katz and Tal (2003) improved on this by using fuzzy clustering and
minimal boundary cuts to achieve smoother boundaries between clusters. Top-down hierarchical segmentation has also been
used to segment objects with a natural hierarchy of features. Lai et al. (2006) suggested combining integral and statistical
quantities derived from local surface characteristics, producing more meaningful results on meshes with noise or repeated
patterns. One of the most prominent drawbacks of such algorithms is the necessity to compute pairwise distances, making
it expensive or even prohibitive to handle large models directly. To handle models with e.g. more than 10,000 faces, mesh
simplification (Katz and Tal, 2003; Katz et al., 2005; Liu and Zhang, 2004) or remeshing (Lai et al., 2006) is typically used.
Spectral clustering has also been used (Liu and Zhang, 2004) with good results, although e.g. the Nystrom approximation
method may be needed to overcome the performance issues associated with this approach (Liu et al., 2006).

Unsupervised clustering techniques like the mean shift method can also be applied to mesh segmentation. Shamir et al.
(2004) extended mean shift analysis to mesh models based on use of a local parameterization method. Later, Yamauchi (Ya-
machi et al., 2005) applied mean shift clustering to surface normals. Such methods tend to oversegment a model into more
pieces than expected or desired.
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Other methods for mesh segmentation also exist. Mangan and Whitaker (1999) applied the watershed algorithm to
triangle meshes. Li et al. (2001) proposed using skeletonization based on edge contraction and space sweeping to perform
mesh decomposition. Visually appealing results are obtained; however, their results depend mainly on large-scale features,
and do not always capture salient geometric features. Recently, Reniers and Telea (2007) used curve skeletons for hierarchical
mesh segmentation. Katz et al. (2005) proposed a segmentation algorithm based on multidimensional scaling and extraction
of feature points and cores. The method is able to produce consistent results when regions of a mesh are placed in differing
relative poses. However, an expensive method is used to find feature points, which limits the complexity of models that can
be efficiently handled, even after simplification. Mitani and Suzuki (2004) proposed a technique for making paper models
from meshes. This can be considered to be a specialized mesh segmentation method that produces naturally developable
triangle strips.

Segmentation of engineering objects, especially for the purpose of reverse engineering, has also been widely considered.
Much of this work deals with point clouds directly instead of triangle meshes due to their wide availability. Sapidis and Besl
(1995) proposed a method to construct polynomial surfaces from point cloud data, using region growing for segmentation.
Benko and Varady (2002) proposed a method to directly segment point cloud data for engineering objects based on a series
of top-down recursive tests using normal information. Gelfand and Guibas (2004) proposed the use of slippage analysis and
multi-pass region growing to segment different regions based on slippage signatures. Edelsbrunner et al. (2003) discussed
how to segment meshes using piecewise linear Morse-Smale theory. This idea has been extended to suit the needs for
producing CAD-like segmentation results (Varady, 2007).

Some work explicitly considers the problem of interactive mesh segmentation. Lee proposed a method to segment models
using user-guided or automatically extracted cut lines based on 3D snakes (Lee et al., 2004, 2005). Funkhouser et al. (2004)
provided an intuitive interactive segmentation tool to find optimal cuts guided by user-drawn strokes, and applied it to a
modeling system based on stitching parts extracted from a model database. An interactive segmentation method based on
graph-cut was proposed by Sharf, again for use in a cut-and-paste system (Sharf et al., 2006).

Our method is different to any of the above in that it is based on a random walk paradigm. This formulation leads to
the need to solve a sparse linear system, which is very efficient. Unlike most interactive methods, interaction is via user
choice of a set of seed faces, which is much easier than specifying an approximate cutting boundary. For applications where
automatic methods are preferable, we use a two-stage method that first oversegments the mesh using a set of automatically
chosen seeds, and then merges these initial regions to give the final regions.

3. Interactive segmentation

In this section, we discuss our algorithm for interactive mesh segmentation using random walks; extension to an auto-
matic mesh segmentation algorithm will be discussed in the next section. The basic idea of the algorithm is in spirit similar
to the corresponding method for image segmentation (Grady, 2006), but due to the differences of source data and aims,
certain issues must be resolved.

We assume for now that the given models are triangular meshes; we return to the issue of segmenting point clouds
directly later. Random walk mesh segmentation proceeds as follows: assume that the user picks n faces as seeds, where n
is the number of final regions desired; seeds should be placed so that one seed lies within each of the final regions desired.
Let these seed faces be si,...,s;. Other faces are non-seed faces, denoted by fi,..., f;;. We associate a probability with
each of the three edges e ; of each non-seed face fi, denoted by py 1, pr2 and pi 3 respectively. These correspond to the
probabilities that a random walk will move across a particular edge to the corresponding neighbor; we discuss shortly how
these probabilities are chosen. These probabilities satisfy the following equation:

3
> pri=1. (1)
i=1

For i =1, 2, 3, denote the face sharing e ; with fi by fi ;. For a particular seed face s;, denote the probability of a random
walk starting from a particular face fi arriving at s; first, before reaching other seeds, as P!(fy), for I=1,...,n. Pi(sp) =1
and P!(sy) =0 for any k 1. As the number of steps considered increases, in the limit, the following equation holds for each
non-seed face fi (for eachl=1,2,...,n):

3
P'(fi) = piP' (fica)- (2)

i=1

For a particular seed face s;, the P!(fi) form a column vector of length m (denoted by P!) that needs to be computed, and
we have m equations of the form given in Eq. (2). We may rewrite Eq. (2) in matrix form as Ayxm P! = B!, where A and B!
can be deduced from Eq. (2). Most values in B! are zeros. However, from Eq. (2), for a non-seed face fi adjacent to a seed
face, the corresponding P’(fk,l-) is not a variable, but a constant, either O (if not the Ith seed) or 1 (if the Ith seed). Since
the Ith seed has at most (and normally, exactly) three neighbors, B! also has at most (and normally) three non-zero values.

Note that A is independent of the choice of I. Thus we may put the P! together and form a matrix Ppy, with rows
Py = PY(fy), to give AP = B, where B = (B1, ..., By). This sparse linear system has the same general nature as the one
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in Grady (2006); this system is sparse as each row of the matrix contains at most 4 non-zero entries, by Eq. (2). Following
the argument in Grady (2006), the matrix A is positive semi-definite, and the solution to this linear system is uniquely
determined. Note that the random walk model described above is in essence equivalent to an electric network model as
the distribution of electric potentials at each face, where the probability of moving to a neighboring face corresponds to the
conductance. See Doyle and Snell (1984) for a thorough study.

We now define that a given face belongs to the region attached to seed s; if a random walk starting at that face has a
higher probability of reaching this seed than any other seed. Thus, after computing P!(f) fori=1,...,nandk=1,2,...,m,
we assign the label for seed s; to those non-seed faces f; which satisfy

P'(fi) = _max P'(fy). 3)

It is guaranteed that each region produced by this segmentation process is contiguous (Grady, 2006).

With the basic framework given by the algorithm above, two significant issues remain: to determine appropriate proba-
bilities for stepping from face to face, and choice of optional preprocessing and postprocessing steps to further improve the
results.

3.1. Probability computation

The choice of suitable probability assignments, i.e. p; 1, pi2, pi 3, for each face i is essential for the random walk ap-
proach to give good mesh segmentation results. Appropriate probabilities depend on the purposes and expectations of the
resulting mesh segmentation. In the following, we address ‘natural’ graphical models and engineering object models sepa-
rately.

3.1.1. Graphical models

Mesh segmentation of graphical models should split a model into meaningful pieces. The most important information for
segmentation comes from the minimarule, as used by many segmentation algorithms, where significant concave features are
considered as important hints. For a given face f;, we define a difference function d(f;, fi x) which measures the difference
in some specific geometric property between f; and one of its neighboring faces f;, k=1, 2, 3. For graphical models, we
define this function to mainly depend on a function d; measuring the dihedral angle:

d1(fi, fia0) = n[1 = cos(dinedral(fi, £1,0)] = 3 IN; = Nyl )

where dihedral( f;, f;;) represents the dihedral angle between adjacent faces f; and fp;, and N; is the normal to face f}. n is
used to give higher priority to concave edges: we set n = 1.0 for concave edges and rather smaller (e.g. n =0.2) for convex
edges, according to the minima rule. _

To handle variations in the dihedral distribution, we normalize d; by its average over all mesh edges, di, giving as the
overall difference function d:

di (fi. fi
d(fivfi,k):%.
1

Given a definition for the difference function at hand, the probability distribution is now computed as

d(fi, fix) }
I

(5)

Pik = leikl eXp{— (6)
where |e; | is the edge length of the corresponding common edge, and o is used to control how variations in differences
map to variations in probability. In our experiments, we have found o = 1.0 works well for most cases. p; x is then normal-
ized to sum to one over each face. An exponential function is used above as a convenient way of mapping differences in
(0, 00) to probabilities in (0, 1), where a high difference corresponds to a low probability.

3.1.2. Engineering models

Segmentation of engineering object meshes differs in aims from segmentation of graphical models. We usually want to
segment a mesh into pieces such that each can be fitted with a single analytical surface (Varady et al., 1997). In many
typical cases (but not all), Gaussian and mean curvatures should be almost uniform over a segment, which is a different
requirement from the case of graphical models.

Again, we use di to measure the change of normals between adjacent faces; however, for engineering object mesh seg-
mentation, we set 7 = 1.0 for both convex and concave edges, since they are equally important for the segmentation of such
models. Moreover, we introduce two further difference measures which assess the variation of Gaussian and mean curva-
tures. To begin with, we need to estimate the Gaussian and mean curvatures on both sides of a given edge. Such curvature
estimates are known to be sensitive to noise, so we use robust estimators for this purpose—we use PCA-based integral
invariants in ball neighborhoods (Yang et al., 2006). The method basically relies on a covariance analysis of the intersection
volume between a ball of radius r and the interior part of the model, locally. Since the method actually computes principal
tensors at a regular mesh point, we may adapt this method to directly interpolate the principal curvatures at the center of
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Fig. 1. Segmentation of CAD models without sharp edges.

each face rather than at each vertex. We denote Gaussian and mean curvatures at face f; as K(f;j) and H(f;) respectively.
If the model is relatively clean, we may set r to be 1 to 2 times the average edge length of the model. For noisy models,
to make the result robust, we must use a larger radius r at the cost of sacrificing the ability to accurately locate some
boundaries.

The difference functions for Gaussian and mean curvatures are now defined as

)

da(fi, fi) = |K(fi) = K(fip)
d3(fi. fix) =|H(fi) — H(fix)]. (7)
The overall difference function is defined by combining dy, d> and d3 using:

di(fi, fix) d2(fi, fix) d3(fi,fi,/<)}
d  d | ds ’

d*(fi, fix) = max{ (8)

where di, do and d3 are average values of the corresponding difference function over the whole model. Note that the
maximum of these three is used instead of their weighted average: the peak responses of any component are significant,
and this approach also avoids the difficulty of choosing appropriate weights. Probabilities are again defined as in Eq. (6),
but with d* in place of d. The method works well for separating certain smoothly touching regions, as illustrated by the
example results in Fig. 1.

3.2. Preprocessing and postprocessing

Although the method as described is much faster than any method based on iterative clustering, for very large models,
it may be preferable to simplify or remesh the models to a more practical size (e.g. 10,000-20,000 faces) for efficiency.
This is also reasonable, since extra detail in models actually provides little extra help in segmentation. Segmentation can be
computed using the faces of the reduced model. This step is optional for the overall pipeline.

After random walk segmentation, each segment is represented by a contiguous set of faces. The boundaries may be
somewhat jagged, partly due to noise and other variations in local properties near the separating edges, and partially due
to the limited resolution of the mesh. We use feature sensitive smoothing as proposed in Lai et al. (2007) to smooth the
segment boundaries while keeping them snapped to features. This amounts to optimizing a discretized spline-in-tension
energy in the feature sensitive metric. The boundaries generally form a complicated graph, so branching points are first
detected and each boundary segment between branching points is smoothed independently.

The smoothed boundaries are represented as a set of connected points; however each point generally will not be located
at any vertex of the initial mesh. We suggest updating the input mesh model slightly so that the smoothed boundaries map
to a sequence of edges in the updated mesh. To do so, we first project each point on the smoothed boundary onto the
input mesh model. The resulting point may be located at a vertex, on an edge, or within a face. In the latter two cases,
we split the related faces to make this point a vertex of the revised mesh (as illustrated in Fig. 2(left, center)). Projection
is done quickly using the Approximate Nearest Neighbors Library (Mount and Arya, 2005). After projection, we find the
geodesic path across the mesh between adjacent projected vertices (Surazhsky et al., 2005), and split each face crossed by
the geodesic into two. To ensure that the resulting mesh remains a triangular mesh, quad faces induced by this splitting are
further split into two triangles.

Such local updates can be performed efficiently. Since the geodesic computation requires a data structure that cannot be
easily adapted for dynamic updating of the mesh structure, we use the assumption that adjacent points on the smoothed
boundaries are usually close to each other, build a small patch of the input mesh that covers both projected points, and
compute the geodesics on such small patches. An example of such splitting is shown in Fig. 2(right). The blue edges cor-
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projected on face projected on edge

Fig. 2. Projection and local update of the input model. Left, center: mapping smoothed boundary points onto the surface. Right: mapping smoothed
boundary paths onto the surface.

respond to those which must be added so that geodesic edges become edges of the mesh.! Thick blue edges correspond
to edges that are part of the smoothed boundary. After this process, the smoothed boundaries can be directly mapped to
edges of the modified input model, and the segmentation results after smoothing may be represented by assigning a label
to each face of the modified input mesh.

3.3. Direct segmentation of point cloud data

Point cloud data is another representation of 3D geometry. If the data is provided in this form, it may be preferable to
avoid explicit triangulation which can be computationally expensive and error-prone. The random walks paradigm can also
be applied to direct segmentation of an unstructured point cloud P = (p; € R®). Segmentation of point cloud data partitions
P into a disjoint set of components. For interactive segmentation, users may select a few seed points, and the point cloud
is segmented accordingly. Unlike a triangulated mesh, a point cloud does not have well-defined local connectivity. Thus, as
in Pauly et al. (2002), we use k-nearest neighbors N(p;) of each point p; to approximate the topological neighborhood. The
normal vector N; at each point P; can be estimated by a local covariance analysis. For each point p;, the centroid p; of the
local neighborhood can be computed as

_ DpeNp)Pi 9)
O INe)l
where | - | denotes the number of elements in the set. The covariance matrix is a 3 x 3 matrix:
Ci= Z P;—p)-Pj—p)". (10)
PjeN(pi)

The normal n; is estimated as the eigenvector of C; corresponding to the smallest eigenvalue. Since the eigenvectors have a
directional ambiguity, we still need to decide the outward normal at each point. For orientable surfaces, this can be achieved
by first assigning the outward direction at a point with one largest coordinate, then propagating directions to neighboring
points based on local consistency. This process terminates when all the points have been visited.

To segment point cloud data with random walks, a graph is first constructed. Each point p; is connected to every
point p; € N(p;) (i.e. within the neighborhood). Note that the neighborhood contains the k closest points where k is fixed,
guaranteeing that this graph has size proportional to the number of points. Unlike the mesh case, where typically, long
thin triangles are avoided by the mesh construction algorithm, for point cloud neighbors, the distance to different points
in N(p;) may vary significantly, and better results are obtained by incorporating both position and normal variation in the
probability computation. Let us denote d’ (p;, p;) = [pi — p]-||2 and d, (p;, pj) = %llni - nj||2; n is chosen as before. A simple
heuristic is used to verify if the connection between neighboring point (p;,n;) and the center vertex (p;,n;) is convex.
Consider the plane passing through pj, parallel to the direction n;, and farthest away from p;. The connection is considered
to be convex if nj lies on the opposite side of the plane to p;, i.e.

((@j—p) — (@j —p) -m)m) -n; >0. (11)

We have found that this simple heuristic works well in practice.
To adapt to the variation of point sampling density (i.e. d; may have a significant global variation), we compute the
average distance d;(p;)’ in the local neighborhood N(p;) while still computing the average distance c_l’2 over the whole

model. The probability of moving from p; to p; is computed as
_di(pi. p)) } e {_d/z(l)h pj) }

= . (12)
o1d; (pi) oad,,

pij= exp{

! For colors see the web version of the article.
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Fig. 3. Left: example of point cloud data. Right: corresponding direct segmentation result.

Fig. 4. Left: example of coarse seeding. Right: corresponding segmentation result.

This formula bears comparison to the idea used in bilateral filtering where two contributing factors are combined (Tomasi
and Manduchi, 1998). p; j is then normalized to sum to one over N(p;). o1 and o3 control how variations of differences
of positions and normals map to variations in probability. We have found o1 = 03 = 1.0 to be suitable for most examples.
An example of direct segmentation of point cloud data is given in Fig. 3, in which a dinosaur model with 56,194 points is
segmented into 7 components.

4. Automatic segmentation

The random walk segmentation method may be adapted to work automatically. In this case, a set of seeds is auto-
matically selected, generally with more seeds than the number of finally expected clusters. For segmentation of graphical
models, we usually require a coarse segmentation, which does not need a dense set of seeds; for engineering object meshes,
or when a detailed segmentation is preferred, more seeds may be necessary. Our interface allows users to specify both an
approximate number of seeds, and to place specific seeds before or after automatic selection.

The random walk algorithm described above is used to segment the model. There will in general be more resulting pieces
than desired, and so a further merging process is used to combine these oversegmented pieces into the final segments. This
approach works well in practice, as it takes advantage of our experimental observation that random walk segmentation
results are not sensitive to the exact location of the seeds (as we demonstrate later).

4.1. Coarse-scale seeding

If it is desired to segment the model into large pieces representing large-scale structures, we should generally evenly
distribute a sparse set of seeds, so that only the most significant features or protrusions are captured. Based on the obser-
vation that the segmentation results are generally insensitive to the exact location of seeds, we use a clustering method
similar to that used in k-means clustering segmentation.

The first seed face is selected as the face furthest away, in terms of geodesic distance, from the face closest to the
centroid of all faces (any such face may be chosen if there are multiple faces equidistant from the centroid). We then
iteratively add new seed faces one by one. For any two faces f; and f;, a path from f; to f; is a contiguous sequence of
faces starting from f; and ending at f;. For any path, we may compute the sum of the difference measures d (or d* if
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appropriate), and select the minimal sum among all possible paths, denoting it by D(f;, fj). Assume sy, ...,s, are n faces
already selected as seeds. The next seed face s, is determined by

sn1=argmax{ min D(fi.s)}. (13)
fkeF "i=1,...,n

where F is the set of all the faces. This process terminates when a significant decrease of D occurs between the newly
selected s;+1 to the nearest neighboring seed, whereupon s, is discarded. Note that this computation is efficient, since
we only need to solve a few single-source shortest distance problems starting from each seed face. Using Dijkstra’s algorithm
gives a complexity of O (nmlogm), where n and m are the number of seed faces and the total number of faces, respectively.

Fig. 4 shows an example of coarse seeding. The left figure gives the positions of seeds (the colored balls indicating the
seed locations) and the right figure is the corresponding segmentation result.

4.2. Fine-scale seeding

In certain cases, we would like to segment the model into smaller pieces, where as many parts are separated as possible.
For example, given the skeleton example shown in Fig. 4, we may want to segment it into further detail than simply 5
fingers. Fine-scale seeding based on automatic seed distribution and merging is then more appropriate.

4.2.1. Automatic seed selection

We should pick a set of random faces that are in general evenly distributed over the surface, while giving higher priority
to protrusions and regions containing features. Feature sensitive sampling (the first phase of the feature sensitive remeshing
method proposed in Lai et al. (2007)) suits this need well. Compared with coarse seeding with a large number of seeds,
this scheme tends to produce more uniform distribution of initial seeds. The method basically distributes particles over the
model optimizing some spring-like energy (Witkin and Heckbert, 1994). After distribution, we pick those faces with particles
in them as seeds. For our purpose, we may use a sufficiently large number of sampling faces (e.g. 20-200 for most models).
Again assuming that n is the number of seeds, and m is the total number of faces, the time complexity is O (nlogm), since
nearest neighbor queries are performed using kd-tree acceleration. Placement of initial seeds is typically very fast (much
less than a second). Note that if the original number of seeds is not large enough to cover all the significant features, our
semi-automatic interface allows users to add further seeds where desired.

4.2.2. Merging

Using such an approach, we expect many segments to have multiple seeds, which naturally leads to over-segmentation.
However, as segmentation results are in general not sensitive to the exact placement of seeds, we may simply merge the
resulting segments to give suitable final regions. We perform merging as an iterative process. To define the relative merging
cost between two adjacent segments S; and S;, we first denote by dS; N dS; the common boundary of the two segments,
and by 95;U9S; the combination of the two boundaries. We integrate the difference measure d (or dx if appropriate) along
the common boundary, and denote it by Djysinas; = Zeeasimasj le|de, where |e| and d. are the length of edge e and the
difference measure d (or dx) between the two faces adjacent to e. We also define the overall length of common boundary
as Lys;nas; = Zees,-ms,- lel. Dasuas; and Lys,ups; can be defined similarly. We then define the relative merging cost ¢; ; as:

Dasinas;/Lasinas, (14)

Ci,j= .
Djsuas;/Lasuss;
For each adjacent pair of segments S; and S;, we compute the merging cost ¢; j and put the pairs into a priority

queue. The merging process proceeds by picking the pair with minimal merging cost, merging them into one segment and

updating the priority queue accordingly. This process can be terminated either when a significant increase in ¢; j occurs for
the current pair, or when we have reached the final number of regions desired by the user. In our experiments, the merging

process usually stops with minimal relative cost of about 0.5.

Experimental results of automatic segmentation before and after merging are shown in Fig. 5. The initial number of

seeds was 60 and the number of segments after merging was 30.

5. Experimental results
5.1. Insensitivity to exact seed locations

Our method is in general insensitive to the exact location of seeds. Fig. 6 shows an example of segmenting a horse
model. Note that there are no clearly defined boundaries between the legs and the body, so changing the positions of the
seeds has a slight effect on the final result. However, even if the seed positions are changed significantly, the results are
similar, and snap to some local features.

A more accurate test of stability with respect to choice of seed faces was also performed. Given some maximal seed
shift radius r, we allow all seeds to move randomly to any face within a geodesic distance of r from their original seed
position (but we restrict new seed positions to be within the same segment found by segmentation using the original
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Fig. 5. Example of fine-scale seeding. From top left to bottom right: input model with automatic seed selection; initial (over-) segmented results; result
after merging; final result after boundary smoothing and mapping.

Fig. 6. Segmentation of horse with varying seed locations. Balls represent seed locations.

seeds). We performed tests using maximal shifts of 3%, 6%, 9%, ..., 30% of the size of the model. In each test we computed
the percentage of faces with the same labels found when using the original seed positions (we call this the normalized
coverage). To obtain a robust result, we performed 100 trials for each shift distance and averaged the normalized coverage.
As illustrated in Fig. 7, for models like the horse example in Fig. 6 where no clearly defined boundaries exist between
segments, the normalized coverage decreases gradually with increasing shift. Even for shifts of up to 30%, the averaged
normalized coverage is above 84%. For models like the hand skeleton example in Fig. 4, where significant features exist
between segments, the averaged normalized coverage is above 99.6% for shifts up to 30%, which means almost identical
results are produced even with significant change of seed locations. For a moderate example like the hand model in Fig. 9,
the averaged normalized coverage is above 96.5% for seed shifts of up to 30%.

5.2. Segmentation of graphical and engineering models
Our method can also be applied to meshes representing engineering objects. Fig. 8 gives the results of segmenting the

well-known rocker arm and fan disk models. On the left are the segmentation results with fine-scale seeding, while on
the right are the corresponding results after merging and smoothing. The number of seeds before merging was 40 for both
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Fig. 7. Stability test results of averaged normalized coverage.

Fig. 8. Segmentation of engineering objects: rocker arm and fan disk. Left: initial segmentation with fine-scale seeding. Right: results after merging and
smoothing.

models. The numbers of segments after merging were 20 for the rocker arm and 25 for the fan disk, respectively. Note that
significant normal noise exists near the sharp features of the input model, making the initial segmentation results rather
jagged. These initial results also suffer from oversegmentation. After the merging and smoothing phases, however, results
are significantly improved. The averaged normalized coverage for the fan disk (an engineering model) is also given in Fig. 7;
in this case the normalized coverage lies between the values for the hand and the horse examples, being above 91% for
shifts up to 30%.



Y.-K. Lai et al. / Computer Aided Geometric Design 26 (2009) 665-679 675

¥4
f

>

Fig. 9. Examples of mesh segmentation for various graphical models.
We have also tested our method on various other graphical models, a selection of which are shown in Fig. 9. The

hand, Santa, chessman, and cheetah models were segmented into 6, 17, 7 and 10 pieces, respectively. Generally, intuitively
reasonable and pleasing segmentation results are produced for such examples.

5.3. Robust segmentation of models with noise

Since our method is based on a probability model, it is in general robust to small-scale noise. For relatively larger-scale
additive noise, we may opt to use a simple normal filter that assigns the averaged normal direction of adjacent faces to the
center face, and use the filtered normals in probability estimation. By using such normal filtering, segmentation results tend
to be more robust to noise, and meanwhile the segmentation results for models without noise are almost unaffected. Fig. 10
shows that consistent segmentation results were obtained for the original models and models with significant amount of
additive noise.

5.4. Consistent segmentation of deformed models

Deformed models usually preserve significant features (but the strengths of features may vary). Thus it can be expected
that consistent segmentation results would be obtained for a series of deformed models. Fig. 11 shows two models in a
variety of poses, for which consistent segmentation results were obtained even after significant deformation.

5.5. Performance

Compared with state-of-the-art methods, our method is very efficient both in time and memory usage. A detailed
comparison of timings for the hand skeleton model remeshed to 10 K, 15 K, 20 K, 30 K and 40 K triangles using an
implementation of (Lai et al., 2006) is presented in Table 1; 6 seeds were used in each of these experiments, which were
carried out on an Intel Core2Duo 2 GHz laptop with 2 GB RAM. Note that the computational time for k-means clustering
based methods (Katz and Tal, 2003; Lai et al., 2006, 2004) is dominated by pair-wise distance computations, leading to a
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Fig. 10. Examples of segmentation of noisy models. Consistent segmentations are obtained for models without (top) and with (bottom) additive noise.

Fig. 11. Examples of consistent segmentation of deformed models.

complexity of 0(m?logm) time and O (m?) memory, where m is the number of faces. The method in Katz et al. (2005) uti-
lizes non-linear multidimensional scaling, which is even slower. The computations in our current method are dominated by
solving the sparse linear system. We used MATLAB’s direct solver (the\operator) throughout the paper, though sparse linear
solver libraries like TAUCS (Toledo et al., 2003) could also be used. Experimental results in Table 1 show that the times
used per triangle are almost constant as the number of triangles varies. Although the implementation details of MatLab are
not publicly available, techniques such as multigrid methods are often able to achieve almost linear time complexity in the
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Table 1
Timing comparison of a k-means clustering based method and our current method.
No. of triangles Clustering method (Lai et al., 2006) Current method per 1 K triangles
10 K 129 s 034s 0.034 s
15K 303 s 047 s 0.031 s
20 K 532s 0.64 s 0.032's
30 K 1359 s 1.00 s 0.033 s
40 K n/a 134s 0.034 s
Table 2
Timings for the same 40 K-triangle model with differing numbers of seeds.
No. of seeds 6 12 24 48
Time 13s 2.1s 34s 6.5s

number of unknowns for this kind of sparse linear system. Time also increases more or less linearly with the number of
seeds, as shown by the example in Table 2. Clearly, such a linear bound is expected, as the linear system for each seed can
be solved independently. In summary, the overall complexity with respect to the number of faces m and the number of
seeds n is approximately O (mn). Segmentation of point clouds has a similar time complexity to the mesh case, where m
now represents the number of points.

Note that models with 40 K triangles or more cannot be processed by the method in Lai et al. (2006) without simpli-
fication or remeshing, due to memory limitations. Our method only requires O (m + n) memory to store the sparse linear
equations and thus does not have such memory limitations. For relatively small models with 10 K triangles, the current
method is more than 300 times faster, while for models as large as 30 K triangles, it is more than 1000 times faster. For
models of moderate size, the segmentation can be carried out in interactive time, suitable for interactive applications that
require immediate feedback.

5.6. Hierarchical segmentation

Hierarchical segmentation was first introduced by Katz and Tal (2003). It decomposes a given model into several levels of
segmentation, in a similar way to how people consider the composition of an object as a natural hierarchy (a human body
has arms, arms have hands, hands have fingers, and so on). Hierarchical segmentation may also be helpful to improve the
segmentation results in certain cases, since coarser levels of segmentation which capture more significant components may
then be used as constraints on the finer levels of segmentation. Once the hierarchy has been computed, a user-controlled
slider may be provided to allow the user to browse and find the granularity of segmentation appropriate to his task, as
suggested by Attene et al. (2006b).

Hierarchical segmentation may be obtained by recursively segmenting the regions obtained by coarser levels of segmen-
tation to obtain finer levels of segmentation. Fig. 12 gives hierarchical segmentations of the dinopet (26,640 triangles) and
eagle (29,232 triangles) models into three levels. Coarse seeding is used in each subregion of each level of segmentation to
decide the locations of seeds, while the number of seeds in each subregion may be specified by the user. No simplification
or remeshing is required for this segmentation. Note that unlike (Katz and Tal, 2003), our method can directly deal with
larger models (e.g. with 20 K or more triangles) efficiently. By using a higher resolution, original model, we not only skip
the unnecessary step of simplification but also keep sufficient resolution when the segmentation goes down to finer levels.

6. Conclusions

In this paper, we have presented both an interactive and an automatic method of model segmentation based on random
walks. We have demonstrated the effectiveness of this method, with both ‘natural’ graphical models and engineering object
models. The results are pleasing, and the method is sufficiently efficient to be useful in interactive applications, and in
applications that require segmentation of large models, or a large collection of models. The method is generally robust to
the movement of seeds and the presence of noise. In the future, we may explore the segmentation of models with different
geometric textures.
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Fig. 12. Examples of hierarchical segmentation.
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