
Semiregular Solid Texturing from
2D Image Exemplars

Song-Pei Du, Shi-Min Hu, Member, IEEE, and Ralph R. Martin

Abstract—Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural

and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such

textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of

typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also

used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm

can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible

3D nature.

Index Terms—Solid texture, texture generation, semiregular texture

Ç

1 INTRODUCTION

IN computer graphics, texture mapping is widely used to
apply 2D texture to the surface of 3D objects to enhance

their appearance. However, many real-world objects have
interior structure, not just a surface texture. Traditional 2D
texturing techniques only provide information about
objects’ external appearances.

In various applications, solid texturing can provide more
realistic results than surface texturing, for example, when
rendering objects made from natural materials such as
marble or wood, and when we wish to effectively simulate
subsurface scattering, or breaking objects. Solid texturing
has the further advantage over 2D texturing of not suffering
from distortion introduced by surface parameterization.
The synthesized solid volume is also mesh independent: the
same solid volume can be used to texture varying objects
with different shapes and topologies.

Solid textures for computer graphics were first investi-
gated in the 1980s [1], [2]. Recently, interest in solid texture
synthesis has revived, and newer methods can generate
various kinds of solid textures with high visual quality.
While it is straightforward to synthesize solid textures from
3D exemplars, in practice, 3D exemplars are very hard to
acquire, and in practice, most modern techniques extend
image texture synthesis approaches. The most successful
approaches start from 2D images representing three
orthogonal views of cross-sections of the texture [3], [4].
While generating impressive results for a wide range of

textures, the problem of generating a 3D volume from 2D
images is underconstrained, with no unique solution. A
good solution is one in which objects exhibit a plausible
appearance, with an interior structure in accordance with
what our experience of the real world tells us we should see
if we cut through the object. These approaches use the given
2D views to generate a texture such that every 2D cross-
section orthogonal to the coordinate axes is consistent with
the input images. Unfortunately, by itself, this is insufficient
to produce results with truly plausible 3D structures of the
kind we experience in everyday life. The examples in Fig. 1
highlight unnatural results produced by earlier approaches;
in particular, they fail to adequately reconstruct the interior
structures (see Fig. 1a) or lead to unintended and undesir-
able diagonal banding (Fig. 1c).

Jagnow et al. [5] propose an alternative solid texturing
technique aimed at synthesizing the solid texture of
aggregate materials. This seems to be the only work which
directly considers synthesis of the interior structure of the
volume from plausible 3D particles, and accordingly
generates high-quality results. However, the main emphasis
in that work is on the statistical distribution of particles,
while their local arrangement into structures is ignored.
Thus, it is unsuited to textures with regular or semiregular
patterns of the kind considered in [6]. In addition, the
shapes of all particles need to be manually modeled by
users, which makes it inconvenient in practice.

Textures comprising 3D particles embedded in a matrix
in a regular or semiregular pattern are common in natural
and man-made materials, such as brickwork, stone walls,
plant cells in leaves, etc. In this paper, we propose a novel
technique which generates such a solid texture from input
images of cross-sections of the texture. The following are the
key technical contributions: first, instead of requiring
particles to be modeled by the user, we provide a novel
technique to select proper cross-sections in 2D exemplars
and automatically construct a set of 3D particles with
interior colors. Second, the arrangement of particles in 3D
space is established according to the input 2D exemplars: the
output solid texture is generated by choosing and packing

460 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

. S.-P. Du and S.-M. Hu are with the TNList, Department of Computer
Science and Technology, Tsinghua University, Information Technology
Building (FIT), Beijing 100084, China.
E-mail: dusongpei@gmail.com, shimin@tsinghua.edu.cn.

. R.R. Martin is with the School of Computer Science and Informatics,
Cardiff University, 5 The Parade, Roath Cardiff, Wales CF24 3AA, United
Kingdom. E-mail: ralph@cs.cf.ac.uk.

Manuscript received 4 Sept. 2011; revised 28 Feb. 2012; accepted 4 May 2012;
published online 14 May 2012.
Recommended for acceptance by G. Drettakis.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-09-0216.
Digital Object Identifier no. 10.1109/TVCG.2012.129.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

particles from the set of precomputed particles. Third, a
simple procedure may be optionally used to locally refine
particles’ positions and shapes. The key point of our method
is the emphasis on producing a plausible internal structure
in terms of both particle shapes and their structural
arrangement. The overall pipeline is shown in Fig. 2.

2 RELATED WORK

We now review directly relevant work on solid texture
synthesis. For a complete survey, see [7].

2.1 Procedural Solid Texturing

Early work on solid texture synthesis mostly used proce-
dural methods. A noise function was introduced in [2] for
this purpose, and the approach was extended by Worley [8]
to support cellular texturing. Recently, Lagae and Drettakis
[9] presented a noise function that supports anisotropic
filtering of sliced solid noise. Procedural texture synthesis
also has a close relationship with model synthesis [10]. The
user has to provide a parametric description of the desired
texture, which is controlled by varying the parameters. It is
difficult in practice to achieve a desired texture.

2.2 Image-Based Solid Texture Synthesis

Recent works use texture examples as a way of making
texture synthesis easier for the user. Wei et al. [11] give a
detailed survey of example-based texture synthesis.

Capturing 3D texture data directly is hard, requiring, e.g.,
MRI scanners, so the focus has been on synthesizing solid
texture from 2D images of textures. Thus, Djamchid and
Jean-Michel [12], [13] use a parametric approach based on
analyzing the spectral characteristics of the input 2D images,
while Heeger and Bergen [14] use a pyramid histogram
matching technique to synthesize a volume with similar
statistical properties to the input images. Several algorithms
take multiple 2D example images representing texture cross-
sections in orthogonal views, and generate a volume for
which each 2D cross-section parallel to one of the given
views is similar to the corresponding input image. Wei [15]
did this first, extending exemplar-based techniques for 2D
image texture synthesis to 3D. Three interleaved 2D
neighborhoods orthogonal to the main axes are determined
at each voxel of the output, and the color of each voxel is set
by a local optimization process which minimizes the error
between the output 2D neighborhoods and their best
matches in the input images. Qin and Yang [16] synthesize
solid texture based on basic gray level aura matrices (BGLAMs),
characterizing the co-occurrence probability distributions of
gray levels at all possible displacements. BGLAMs are
computed for the input 2D exemplars, providing constraints
from multiple view directions when sampling the volume to
produce the output. Kopf et al. [3] extend global texture
optimization methods from 2D [17] to generate solid
textures, using neighborhoods in a similar way to [15]. Dong
et al. [4] give an efficient GPU-based technique based on a
synthesis pipeline first introduced by [18] for 2D. It is
spatially deterministic and only synthesizes voxels when
necessary. Ma et al. [19] use similar techniques for motion
synthesis based on 3D vector fields. This idea is extended in
[20] to texture 3D objects guided by user sketching.

These exemplar-based techniques can produce good
results, but share a common problem: implausible results
are typically produced for textures comprising particles
arranged in a background material matrix in regular or
semiregular structures, such as stone walls. Zhang et al. [21]
introduced a texton mask to control the synthesis process to
better preserve features for image texture synthesis, and
this idea has been employed in 3D texture synthesis [3], [4].

DU ET AL.: SEMIREGULAR SOLID TEXTURING FROM 2D IMAGE EXEMPLARS 461

Fig. 2. Pipeline. The shapes and colors of particles are determined from three orthogonal input images. Three-dimensional neighborhood information
is analyzed to guide the texture generation process to generate a solid texture with plausible structures. An optional step of particle adjustment may
be used after initial texture generation to further improve quality.

Fig. 1. Artifacts and diagonal structures in previous approaches.
(a) Result using [4], and slices through it. (b) Our result. (c) Result
using [3] and closeup view showing diagonal structure artifacts. (d) Our
result.

While this does better preserve the structuring, and
improves the visual quality of the result, implausible
regions are still produced.

Jagnow et al. [5] introduced stereological techniques to
synthesize solid textures for aggregate materials. The
algorithm places particles using a precomputed distribution,
and cannot handle 2D image inputs with particles in
semiregular patterns. Vector representation allows resolu-
tion independence. Wang et al. [22], [23] introduced the
vector representation for solid textures composed of inter-
mixed regions, while they did not deal with the problem of
synthesizing solid textures. Ma et al. [24] introduced discrete
element textures to synthesize repetitive elements according
to the input exemplars, while generating impressive results,
to synthesize a 3D volume, 3D exemplars must be given.

2.3 Synthesis of Volume Interiors and Natural
Objects

Other works focus on texturing the interior of a specific
object. These approaches can provide realistic results for
objects with complex interior structures, but require lengthy
user interaction. Furthermore, the texture created is
dependent on the specific boundary given. This is less than
ideal for texturing classes of related objects, and objects with
complex topology.

Cutler et al. [25] use a procedural approach to generate
the interior of solid models, based on a scripting language;
the texture generated is layered. Owada et al. [26] describe
a user interface for browsing and designing 3D objects
whose internal texture is generated from user-specified 2D
cross-section images; a similar approach is also employed
by Pietroni et al. [27]. Takayama et al. [28] extend the idea
of lapped textures [29] to the 3D case and provide an
interface to design anisotropic solid textures. However,
synthesis is based on 3D solid texture exemplars generated
manually or provided by some other method—typically
one of the methods mentioned earlier which generate
implausible structures. Takayama et al. [30] use diffusion
surfaces to design and represent the structure and color of
3D models. These methods are more concerned with the
object to be illustrated and its structure, and again the
results are object dependent.

3 ALGORITHM

Our method starts from three mutually orthogonal 2D
example images containing cross-sections of the desired
texture. The texture should consist of discrete particles
which are embedded in a matrix in some regular or
semiregular pattern. With each input image, a binary mask
must be provided to indicate the locations of cross-sections
of particles. This can be simply generated by thresholding
and manually refined by the user, as needed. From the
input images, we first reconstruct particles, and analyze
their neighborhood relationships. We then iteratively add
particles to the volume to be textured, to ensure the result
has a plausible interior structure. Sometimes, our approach
can result in textures with gaps, and we show how this
issue can be remedied by postprocessing the particles’
positions and shapes. Our method is capable of producing
textures with semiregular patterns while needing little user
interaction. We now discuss the steps in our pipeline.

3.1 Reconstructing Particles

We first reconstruct the 3D particles used to build the
output texture, based on the particles’ 2D cross-sections
seen in the three orthogonal input images.

First, the cross-sections for each particle present in each
image are extracted, giving three sets Pi, ði ¼ 1; 2; 3Þ of
cross-sections from different views. As in general the cross-
sections may not be registered, we do not know which
particle cross-sections are associated and how they are
aligned. We use a brute force approach to this problem. We
construct triples of cross-sections, one selected from each of
Piði ¼ 1; 2; 3Þ, respectively. There are P1P2P3 possible triples
in total. To decide which triples most plausibly represent
particles, we should find those triples of aligned cross-
sections which have minimal summed matching error
between each pair of cross-sections. In practice, we
constrain the distance between the aligned center and the
centroid of the each cross-section to be no more than half of
the minimal distance between the boundary and the
centroid. As shown in Fig. 3c, in each cross-section, the
aligned center must thus be located in the area enclosed by
yellow dashed lines. This quickly provides good alignment
and helps to avoid unhelp cases, e.g., where cross-sections
have little or even no intersection (as in Fig. 3d). Although
this may reject some plausible alignments, given the
randomness and richness of cross-sections, other suitable
similar particles can generally be generated from other
candidate triples and alignments.

The matching error takes into account both color and
shape. It is set to the average color difference in RGB space
along the intersection line between the pair of cross-
sections; to penalize cross-sections with incompatible
shapes, the color difference is set to its maximum value in
places along the intersection line where one cross-section

462 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Fig. 3. (a) A triple of three orthogonal cross-sections. Matching error of a
triple is the sum of average color differences along each intersection
after aligning the cross-sections. (b) Reconstructing the particle shape in
one octant by sweeping a morphing plane. (c) The aligned center is
constrained to locate in the area enclosed by yellow dash lines. (d) An
example showing bad alignment.

has a different diameter to the other (see the yellow line
segments in Fig. 3a). The lower the matching error, the more
likely the triple corresponds to a meaningful particle. Users
can explicitly set an error threshold to avoid implausible
shapes; in practice, we retain triples whose error is less than
20 percent of the maximum error which occurs—this
worked well for the examples in the paper.

Various approaches can be used for modeling the 3D
shapes of particles given three orthogonal 2D profiles.
Dischler and Ghazanfarpour [31] assume the particles to
be generalized cylinders, and model 3D shape by sweeping
a generatrix curve around some base curve. Jagnow et al.
[32] extend this approach to support multiple morphed
curves swept as generatrix curves; this can lead to more
natural results. We employ a modified version of the latter,
using the three 2D cross-sections in a triple to reconstruct
that particle’s shape as well as its color.

Consider the positive octant. Two of the cross-sections
are arbitrarily chosen as sweeping planes (the red and blue
planes in Fig. 3b, denoted c0 and c2), while the third is used
as a base plane (the green plane in Fig. 3b, denoted c1). The
general idea is to sweep c0 to c2 around the y axis.

More specifically, we first construct a morph sequence
between c0 and c2. Doing so is simple if c0 and c2 are both
convex: we represent c0 and c2 in polar coordinates, and
continuously morph the radius. For nonconvex shapes, as
the topology of the cross-section is equivalent to a disk,
some other shape interpolation technique must be used to
construct the morph; we follow [33]. The morph sequence of
cross-sections is then scaled in the zx plane to agree with the
boundary given by c1. The volume swept by the morphed
cross-sections along the boundary of c1 represents the shape
of the particle in this octant.

For every point p in the swept volume, we can find three
corresponding points in the three cross-sections, respec-
tively: two morphed points p0, p2 in c0, c2 and one projected
point p1 in c1. The color of p is set to the color of that pi,
i ¼ 1; 2; 3 whose color is closest to the mean color of the three.

The above does not work directly if c1 is not star-shaped
with respect to the origin. In this case, if either of c0 and c2

is star-shaped, we choose it as the base plane instead;
otherwise, we just discard this particle as too complicated.

Shapes of some generated particles are illustrated in Fig. 4.
The reconstructed particles are used to synthesize the
volumetric structure in the next step, using a selection
process.

The cross sections c0 and c2 generally do not have exactly
the same size along the y axis. In our algorithm, the shape is
continuously morphed from c0 to c2 along the y axis. Note,
however, the matching error rejection step discards shapes
which are too inconsistent, so most selected candidate
triples lead to plausible shapes without artifacts. In Fig. 5,
starting with the rightmost texture in Fig. 4, we show the

cross-sections and particles generated from them, for of the
two candidate triples with largest matching errors. Even
these particles have plausible shapes.

3.2 Placement of Particles

To generate a plausible texture, the global placement of
particles in the result should be in agreement with the
observed cross-sections in the input images. Jagnow et al.
[5] use a stereological approach to estimate the 3D
distribution of particles from the distribution of profiles in
2D images. However, this only considers macroscopic
statistics of the particles, and is not sufficient to preserve
systematic structures like regular patterns. We employ an
alternative approach. We first analyze the input exemplars
to gather information about possible neighboring particles
for each particle, represented in a candidate neighbor set
NPðpÞ for each particle p. Each element of NPðpÞ is a pair
ðq;dÞ indicating that particle q is an acceptable neighbor for
p for at a spatial translation d.

The texture is built by iteratively adding particles to the
volume according to information in these precomputed
candidate neighbor sets. Dischler et al. [34] use a similar
image texturing method which considers co-occurrences of
neighboring particles from 2D exemplars, but the method
has had to be extended for volume synthesis as we do not
have explicit 3D information.

We find each candidate neighbor set by first computing
2D candidate neighbor sets as follows. Given the 2D cross-
section c of some particle in an input image, we find the
neighboring cross-sections near c. The 2D candidate
neighbor set NCðcÞ for c is the set of pairs ðc0;d0Þ where c0

is some other cross-section in the same input image as c and
d0 is the translation between their centers (see Fig. 6). In
practice, we only consider the k nearest neighboring cross-
sections. If all cross-sections were circles of the same size, to
get one-ring neighbors, k would be 6. To allow for irregular
particle shapes and hence a more variable number of close
neighbors, we increase k somewhat, using k ¼ 10 in all

DU ET AL.: SEMIREGULAR SOLID TEXTURING FROM 2D IMAGE EXEMPLARS 463

Fig. 4. Generated particles.

Fig. 5. Two particles constructed from candidate triples with large error.

In each example, the candidate triple is shown on the left and the
constructed particle is on the right.

Fig. 6. Left: given particle p, p0 is one of its 3D candidate neighbors.
Right: it is chosen by considering 2D candidate neighbors of its
corresponding cross-section c within the input exemplars.

examples shown here. We can consider d0 to be a 3D
translation where the component perpendicular to the
image is zero. Thus, for some particle p, let its set of three
2D cross-sections be CðpÞ. The set of particles corresponding
to cross-section c is given by PðcÞ ¼ fp j c 2 CðpÞg. Then,
the candidate neighbor set NPðpÞ is given by

NPðpÞ ¼
[

c2CðpÞ

[
ðc0;d0Þ2NCðcÞ

fðp0;d0Þjp0 2 Pðc0Þg:

Intuitively, NPðpÞ contains those particles which could be
neighbors of particle p, together with their positional
relationship.

To synthesize the overall volume V , we use a list Lc to
store all candidate neighbors of every particle which has
been added to V . We start by putting a random particle p into
the volume V at the volume center, and add all its candidate
neighbors from NPðpÞ to Lc. Then, we iteratively take an
element ðp0;d0Þ from Lc (chosen as described later) and as
long as p0 does not overlap with any existing particles, it
is added to V , and Lc is updated as a result; otherwise, p0 is
discarded and we consider the next possibility. Usually,
volume synthesis is performed within a cube, with wrap-
around coordinates—any particle which goes outside the
cube reappears on the opposite side (this allows us to
generate a tilable texture), so, eventually, there is no space to
add further particles. The algorithm stops when Lc is empty,
that is, no further particles can be added to the volume. See
Algorithm 1. A key issue is how to choose the next particle to
take from Lc. A simple approach is to sort all Lc according
to distance between the particle and the volume center, and
to take the particle closest to the center at each iteration. This
causes the set of added particles to grow isotropically in
space, and also results in closely packed particles. Another
approach is to add particles in quasi-layered order, which is
appropriate if the particles are arranged in regular or
semiregular patterns.

Algorithm 1. Texture Synthesis

Require: C {set of all particles}

NPðpÞ {candidate neighbor set for each p 2 C}
Ensure: A synthesized volume V with plausible structures

V ;, Lc ;
Add one randomly chosen particle p to V

Add each element in NPðpÞ to Lc
while Lc is not empty do

ðp;dÞ the front element of Lc in some chosen order

Remove ðp;dÞ from Lc
if p has no overlap with any particles in V then

Add p to V

Add each element in NPðpÞ to Lc
end if

end while

return V

Suppose p is a particle placed in the volume. Each

candidate particle in NPðpÞ is computed based on one of the

three texture planes x� y, y� z, or z� x. For quasi-layered

order, we add the particles layer by layer: we first tile an

initial x� y plane, and the volume is then grown vertically

along the z axis. Using such a layer-based approach is more

natural for regular or semiregular patterns, such as brick-

work or a stone wall. The candidates in Lc are the union of

those in Lc;x�y, Lc;y�z, and Lc;z�x, each containing candidates

computed from one texture plane. During tiling process, we

preferentially add particles from Lc;x�y first, which makes

the volume tend to grow horizontally along in x and y

directions. After adding a new particle, the three subsets are

all updated. The order within a subset such as Lc;x�y is

determined by sorting them according to distance from the

center of that plane. We lazily take the first suitable particle

found. The selection process is thus very efficient, and also

successfully preserves the texture pattern of the input

exemplars. Fig. 7 illustrates steps of the tiling process using

quasi-layered order.

3.3 Coloring the Matrix

The matrix material between the particles usually has little

regular structure, so we modify the parallel technique

introduced by Dong et al. [4] to synthesize the color of

matrix. We only build candidates for masked out pixels of

the input exemplar images, and directly “correct” the

nonparticle voxels. Typically, we use a neighborhood size

of 5 and perform two passes of corrections.
Putting all these ideas together, we can now fill the

volume with colored texture. Some examples are shown in

Figs. 9 and 12.

3.4 Packing Refinement

The volume filling constructed by Algorithm 1 may contain

undesirable gaps: “unlucky” choices made for earlier

particles may result in no suitable particles remaining to fill

the gaps, and furthermore, the spatial relations of 3D

particles derived from the exemplars may be somewhat

imprecise. This is particularly a problem for textures densely

packed by particles with irregular shapes. The quality of the

results can be improved by two optional extra steps:

adjusting particles’ positions, and adjusting their shapes.
To adjust the particle’s positions, we employ a simple

repulsion scheme. For two infinitesimal point particles r and

s, we define a repulsive force Frs acting on r due to s to be

464 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Fig. 7. Tiling snapshots using the quasi-layered order.

Frs ¼ �
�

drs
vrs;

where vrs is the unit vector from r to s and drs is their
distance. For two extended particles p and q, we generalize
the above equation to give the force Fpq:

Fpq ¼
Z
r2p;s2q

� �

drs
vrs;

so in a discrete setting, the force Fp on particle p is

Fp ¼
X
q 6¼p

Fpq:

Computing a precise value for Fp is expensive and not
worthwhile. In practice, we sample the volume using a 643

grid, and compute Fp over a 173 neighborhood region.
We iteratively update the particles’ positions based on these
repulsive forces, moving p in the direction of Fp. The
distance moved is limited by an exponentially decreasing
threshold. Typically, we perform no more than 20 iterations.

After adjusting particles’ positions, we may further
improve the texture by filling undesirable gaps, by pushing
each particle boundary toward its center’s Voronoi cell. To
avoid deforming the particle too much, we use an
approximately uniform scaling approach. In direction d,
the maximum allowable scaling factor fd is determined by
the requirement that the particle’s boundary should not be
too close to its Voronoi boundary. The overall uniform

scaling factor fu for the particle is the minimum of fd over
each direction orthogonal to a Voronoi cell boundary. We
set the final scaling factor in direction d to minðð1 þ
�Þfu; fdÞ. Increasing � fills gaps more, but causes more
deformation of the particle’s shape; a suitable default value
is � ¼ 0:1.

For simplicity, we implement a discrete version of the
Voronoi diagram on a grid, and compute the nearest
particles for each grid node to give the discrete Voronoi cell
for each particle. The allowable closeness of particles to
their Voronoi boundaries can be automatically calculated as
half the average thickness of the matrix from image
exemplars, or can be set by the user. After scaling particles,
particles are necessarily located inside the Voronoi cells,
which also removes any overlap of particles caused by the
position adjustment step. Fig. 8 shows an example of the
overall adjustment process.

4 RESULTS AND DISCUSSIONS

4.1 Results

We have tested our algorithm using a wide range of 2D
exemplars, using three orthogonal images with corre-
sponding masks as input. The time taken for synthesis
depends on the number of particles generated in the solid
texture cube. With a discrete resolution of 1283, the time
taken for estimating and placing particles is about 1 second
for tens of particles, and no more than 10 seconds for
about 3,000 particles, using a quad core 2.27 GHz CPU.
The total time including the optional refinement step is no
more than 5 minutes.

Our algorithm can generate three kinds of texture: those
with regular, semiregular, or irregular patterns. Here, we
demonstrate our results and show the strengths of our
methods over existing techniques.

The main advantage of our approach over earlier
methods is its ability to generate solid textures containing
particles placed in a regular or semiregular pattern, as
shown in Fig. 9. Co-occurrence of 3D particles is well

DU ET AL.: SEMIREGULAR SOLID TEXTURING FROM 2D IMAGE EXEMPLARS 465

Fig. 8. Left: input exemplar. Middle: initial texture with gaps. Right: final
texture after particle adjustment.

Fig. 9. Synthesized regular and semiregular solid textures; in each example, our result is shown on the left and the result based on [4] is on the right.
The first three cases are rendered with a transparent matrix to help see the internal structure.

captured by the candidate neighbor sets, allowing genera-
tion of an appropriate volumetric structure.

While perfectly regular structures can be fairly simply
generated by procedural techniques, it is tedious to have to
devise a new procedure for each structure. This paper
contains examples with five different regular patterns, each
of which would need a different procedure. In addition,
construction of plausible particle shapes for use in a
procedural approach, with variation in shapes and color,
is not a trivial task; it may also be hard to adjust the
procedure to suit variable sized particles. A further
disadvantage is that small repetition units may lead to
noticeable repetition in generated output. One main
advantage of our method is when synthesizing semiregular
textures like the first row in Fig. 9. No existing methods can
produce satisfactory results for such cases, and procedural
based methods would also find it difficult to do so.

We have also compared our methods with the approach
in [4], using 7� 7 neighborhoods, four passes and a four
level pyramid. As shown in Fig. 9, through some 2D slices
look similar to the input exemplars, the interior structures
are not well preserved.

For textures with irregularly distributed particles, our
algorithm can successfully preserve the global appearance
of the input exemplars and provide results comparable to
those in [5], while doing so more efficiently (see Fig. 10).
Excluding the time for manually modeling particles, the
time spent by [5] varies from a few minutes to an hour,
depending on the particle density, size, and complexity.
The most time consuming part of our method is step based
on the algorithm in [4] to synthesize the color of the matrix,
which takes no more than 1 minute. The rest of our
algorithm takes less than 20 seconds. In addition, our
algorithm constructs the particles automatically which

makes it more practical; we also produce specific colors
for particles and the matrix, rather than a constant color
with noise as in [5]. Fig. 10 also provides a comparison to
the method in [4], which results in undesired color blending
in some regions.

For irregular textures, we note that simply placing
particles at random positions cannot produce satisfactory
results, as it will result in gaps and overlaps. We may try as
an alternative to place points in locations leading to a
desired Voronoi diagram to get dense packing, but if the
shapes and sizes of (the given) particles have large
variations, determining suitable locations for Voronoi cells
which match the set of particles is a difficult task. In
practice, large gaps will still occur; on the other hand,
deforming the particle to fit its Voronoi cell may cause its
shape to differ too much from its original shape. Fig. 11
shows such a result based on such an approach for the
texture in Fig. 8, using the same number of particles as
computed by our algorithm and randomly placing them in
the volume. Even after deforming the particles, the result
looks very different to the input exemplar.

Further results of our method are shown in Fig. 12; using
the same input exemplars, comparisons to the output
produced by the methods in [3] and [4] are shown in Fig. 13.

4.2 Particle-Aware Texture Editing

The textures we produce have particles embedded in a
matrix. This nature can be taken into account when
deforming objects having such textures. For example, we
can model the particles as quite rigid, while the matrix is
some more readily deformable material. Under a nonrigid
transform, the shapes of the particles should deform little
(or not at all), and most of the deformation should take
place in the matrix. Fig. 14 demonstrates a simple case of
deforming a textured cube by bending. The particle centers
are transformed first, and a small local deformation applied
to each particle; the rest of the deformed cube is again filled
with matrix.

Another case of texture editing is shown in Fig. 15, we
directly change the particles’ color according to some
existing solid texture to produce various results.

4.3 Limitations and Applicability

Our algorithm works best when the input 2D images have
particles arranged in a fairly regular cellular-like structure,
like a stone wall or pile of pebbles. There are several cases in
which our method does not provide high-quality results:
although the shapes of inferred particles are plausible, their
placement may not be as expected.

466 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Fig. 10. Comparative results. (a) Input image. (b) Our result. (c) Result
based on [5]. (d) Result based on [4].

Fig. 11. Comparison to a random particle placement approach. Left:
randomly placed particles, showing large gaps and overlaps. Middle:
after particle deformation, particle shapes are significantly distorted, and
unlike the input texture. Right: our result.

First, if the three input exemplars do not correspond to
an intuitive volume structure, packing may be rather
disorganized, as shown in the first row of Fig. 16. In such
cases, it is in fact rather unclear what a “natural” answer
actually would be.

Second, we pack the particles using only nearest
neighbor information, which may not be sufficient, if the
three input exemplars imply some longer range organiza-
tion. For example, the three input exemplars may be
composed of particles packed in concentric rings (see the
second row in Fig. 16), leading to an expected 3D structure
comprising concentric spheres of particles. Further work is
needed to handle such cases. Indeed, in general, synthesis
of solid texture from 2D exemplars is an underconstrained
problem, and 2D exemplars of three orthogonal views are
not able to provide enough information to reproduce the
volume. As another example, consider particles arranged in

a body-centered cubic structure. It would be tricky to

synthesize such a solid texture from three 2D exemplars.
Overall, the strength of our method lies in producing

plausible results when the “natural” result is a semiregular

structure of some kind.

5 CONCLUSION

This paper has given a novel technique for synthesizing
solid textures from 2D cross-section views of semiregular
structures containing 3D particles. Plausible 3D particle
shapes are ensured by reconstructing them from compatible
cross-sections. Analyzing the input texture tells us how to
place particles in 3D to build up a texture in which the
structure is well preserved. Experiments show that our
algorithm can produce more realistic semiregular solid
textures from 2D exemplars than previous approaches.

DU ET AL.: SEMIREGULAR SOLID TEXTURING FROM 2D IMAGE EXEMPLARS 467

Fig. 12. Further solid textures synthesized using our approach. For the dragon model, the image at the lower right uses transparent bricks to show
the volumetric structure. The closeup view of the gargoyle model shows the particles embedded in a translucent matrix.

Synthesizing a 3D volume from 2D exemplars always
requires assumptions about missing information. Given a
2D image texture, people rely on their experience to
imagine the corresponding volume. While there is no
universally correct approach to generating solid textures
from exemplars, we use intuitively reasonable methods to
reconstruct the shapes of particles, and to determine their
placement. As the placement of particles is based on local
neighborhood information, future work might improve
upon this by considering longer range, and even global

structures. Higher levels of interdependence between
different textures could also be employed to generate
complex materials, composed of different objects made
from different textures—such as a tree with wood inside
and bark outside. We also hope to extend our method to
handle other types of high-dimensional textures like
bidirectional texture functions [35], and to combine our
method with volumetric deformation techniques [36], [37]
for data visualization, edit propagation schemes [38], [39]
for supporting intuitive stroke-based inputs, and texture
compression and filtering [40].

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Project of China (Project Number 2012CB316400), the Natural
Science Foundation of China (Project Numbers 61120106007,
60970100). Shi-Min Hu is the corresponding author.

468 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Fig. 16. Failures. In each case, the three orthogonal input exemplars are
copies of the same image on the left. Plausible particle shapes are
generated, but placement fails to produce a satisfactory overall
structure.

Fig. 15. Change particles’ and matrix color: (left) original texture,
(middle) particles’ color is changed according to existing solid texture(-
right), which is synthesized by Kopf et al. [3].

Fig. 13. Examples textured using the same 2D input data as in Fig. 12, but other texturing methods. The first five examples use the method in [4],
while the example at the bottom right uses the method in [3]. Each example shows a textured cube, and two slices through it which reveal the internal
texture structure.

Fig. 14. Deformation: (left) particles and matrix equally rigid, (middle)
and (right) weak and strong preservation of particle shapes. The matrix
is omitted to show the interior structure.

REFERENCES

[1] D.R. Peachey, “Solid Texturing of Complex Surfaces,” SIGGRAPH
Computer Graphics, vol. 19, pp. 279-286, 1985.

[2] K. Perlin, “An Image Synthesizer,” SIGGRAPH Computer Graphics,
vol. 19, pp. 287-296, 1985.

[3] J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-
T. Wong, “Solid Texture Synthesis from 2D Exemplars,” ACM
Trans. Graphics, vol. 26, pp. 2:1-2:9, 2007.

[4] Y. Dong, S. Lefebvre, X. Tong, and G. Drettakis, “Lazy Solid
Texture Synthesis,” Computer Graphics Forum, vol. 27, pp. 1165-
1174, 2008.

[5] R. Jagnow, J. Dorsey, and H. Rushmeier, “Stereological Techni-
ques for Solid Textures,” ACM Trans. Graphics, vol. 23, pp. 329-335,
2004.

[6] Y. Liu, W.-C. Lin, and J. Hays, “Near-Regular Texture Analysis
and Manipulation,” ACM Trans. Graphics, vol. 23, pp. 368-376,
2004.

[7] N. Pietroni, P. Cignoni, M. Otaduy, and R. Scopigno, “Solid-
Texture Synthesis: A Survey,” IEEE Computer Graphics and
Applications, vol. 30, no. 4, pp. 74-89, July/Aug. 2010.

[8] S. Worley, “A Cellular Texture Basis Function,” Proc. 23rd Ann.
Conf. Computer Graphics and Interactive Techniques, pp. 291-294,
1996.

[9] A. Lagae and G. Drettakis, “Filtering Solid Gabor Noise,” ACM
Trans. Graphics, vol. 30, pp. 51:1-51:6, 2011.

[10] P. Merrell and D. Manocha, “Model Synthesis: A General
Procedural Modeling Algorithm,” IEEE Trans. Visualization and
Computer Graphics, vol. 17, no. 6, pp. 715-728, June 2011.

[11] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the Art in
Example-Based Texture Synthesis,” Proc. Eurographics Conf., 2009.

[12] G. Djamchid and D. Jean-Michel, “Spectral Analysis for Automatic
3-D Texture Generation,” Computers and Graphics, vol. 19, pp. 413-
422, 1995.

[13] G. Djamchid and D. Jean-Michel, “Generation of 3D Texture Using
Multiple 2D Models Analysis,” Computer Graphics Forum, vol. 15,
pp. 311-323, 1996.

[14] D.J. Heeger and J.R. Bergen, “Pyramid-Based Texture Analysis/
Synthesis,” Proc. 22nd Ann. Conf. Computer Graphics and Interactive
Techniques, pp. 229-238, 1995.

[15] L.-Y. Wei, “Texture Synthesis by Fixed Neighborhood Searching,”
PhD dissertation, Stanford, CA, USA, 2002.

[16] X. Qin and Y.-H. Yang, “Aura 3D Textures,” IEEE Trans.
Visualization and Computer Graphics, vol. 13, no. 2, pp. 379-389,
Mar. 2007.

[17] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture
Optimization for Example-Based Synthesis,” ACM Trans. Graphics,
vol. 24, pp. 795-802, 2005.

[18] S. Lefebvre and H. Hoppe, “Parallel Controllable Texture
Synthesis,” ACM Trans. Graphics, vol. 24, pp. 777-786, 2005.

[19] C. Ma, L.-Y. Wei, B. Guo, and K. Zhou, “Motion Field Texture
Synthesis,” ACM Trans. Graphics, vol. 28, pp. 110:1-110:8, 2009.

[20] G. Zhang, S. Du, Y. Lai, T. Ni, and S. Hu, “Sketch Guided Solid
Texturing,” Graphics Models, vol. 73, pp. 59-73, 2011.

[21] J. Zhang, K. Zhou, L. Velho, B. Guo, and H. Shum, “Synthesis of
Progressively-Variant Textures on Arbitrary Surfaces,” ACM
Trans. Graphics, vol. 22, pp. 295-302, 2003.

[22] L. Wang, K. Zhou, Y. Yu, and B. Guo, “Vector Solid Textures,”
ACM Trans. Graphics, vol. 29, pp. 1-8, 2010.

[23] L. Wang, Y. Yu, K. Zhou, and B. Guo, “Multiscale Vector
Volumes,” ACM Trans. Graphics, vol. 30, pp. 167:1-167:8, 2011.

[24] C. Ma, L.-Y. Wei, and X. Tong, “Discrete Element Textures,” ACM
Trans. Graphics, vol. 30, pp. 62:1-62:10, 2011.

[25] B. Cutler, J. Dorsey, L. McMillan, M. Müller, and R. Jagnow, “A
Procedural Approach to Authoring Solid Models,” ACM Trans.
Graphics, vol. 21, pp. 302-311, 2002.

[26] S. Owada, F. Nielsen, M. Okabe, and T. Igarashi, “Volumetric
Illustration: Designing 3D Models with Internal Textures,” ACM
Trans. Graphics, vol. 23, pp. 322-328, 2004.

[27] N. Pietroni, M.A. Otaduy, B. Bickel, F. Ganovelli, and M. Gross,
“Texturing Internal Surfaces from a Few Cross Sections,”
Computer Graphics Forum, vol. 26, pp. 637-644, 2007.

[28] K. Takayama, M. Okabe, T. Ijiri, and T. Igarashi, “Lapped Solid
Textures: Filling a Model with Anisotropic Textures,” ACM Trans.
Graphics, vol. 27, pp. 1-9, 2008.

[29] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures,” Proc.
27th Ann. Conf. Computer Graphics and Interactive Techniques,
pp. 465-470, 2000.

[30] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi, “Volumetric
Modeling with Diffusion Surfaces,” ACM Trans. Graphics, vol. 29,
pp. 180:1-180:8, 2010.

[31] J.-M. Dischler and D. Ghazanfarpour, “Interactive Image-Based
Modeling of Macrostructured Textures,” IEEE Computer Graphics
Applications, vol. 19, no. 1, pp. 66-74, Jan./Feb. 1999.

[32] R. Jagnow, J. Dorsey, and H. Rushmeier, “Evaluation of Methods
for Approximating Shapes Used to Synthesize 3D Solid Textures,”
ACM Trans. Applied Perception, vol. 4, pp. 5:1-5:27, 2008.

[33] M. Alexa, D. Cohen-Or, and D. Levin, “As-Rigid-As-Possible
Shape Interpolation,” Proc. 27th Ann. Conf. Computer Graphics and
Interactive Techniques, pp. 157-164, 2000.

[34] J.-M. Dischler, K. Maritaud, B. Levy, and D. Ghazanfarpour,
“Texture Particles,” Computer Graphics Forum, vol. 21, pp. 401-410,
2002.

[35] K. Xu, J. Wang, X. Tong, S. Hu, and B. Guo, “Edit Propagation on
Bidirectional Texture Functions,” Computer Graphics Forum, vol.
21, pp. 401-410, 2002.

[36] Y. Wang, C. Wang, T. Lee, and K. Ma, “Feature-Preserving
Volume Data Reduction and Focus+Context Visualization,” IEEE
Trans. Visualization and Computer Graphics, vol. 17, no. 2, pp. 171-
181, Feb. 2011.

[37] X. Zhao, B. Li, L. Wang, and A. Kaufman, “Texture-Guided
Volumetric Deformation and Visualization Using 3D Moving
Least Squares,” The Visual Computer, vol. 28, pp. 193-204, 2012.

[38] X. An and F. Pellacini, “AppProp: All-Pairs Appearance-Space
Edit Propagation,” ACM Trans. Graphics, vol. 27, pp. 40:1-40:9,
2008.

[39] K. Xu, Y. Li, T. Ju, S. Hu, and T. Liu, “Efficient Affinity-Based Edit
Propagation Using K-D Tree,” ACM Trans. Graphics, vol. 28, pp.
118:1-118:6, 2009.

[40] C.-F. Hollemeersch, B. Pieters, P. Lambert, and R. Van de Walle,
“A New Approach to Combine Texture Compression and
Filtering,” The Visual Computer, vol. 28, pp. 371-385, 2012.

Song-Pei Du received the BS degree in
computer science from Tsinghua University in
2009. He is currently working toward the PhD
degree in the Department of Computer Science
and Technology, Tsinghua University. His re-
search interests include computer graphics,
geometric modeling and image processing.

Shi-Min Hu received the PhD degree from
Zhejiang University in 1996. He is currently a
professor in the Department of Computer
Science and Technology at Tsinghua Univer-
sity, Beijing. His research interests include
digital geometry processing, video processing,
rendering, computer animation, and computer-
aided geometric design. He is associate editor-
in-chief of The Visual Computer (Springer), and
on the editorial boards of Computer-Aided

Design and Computer & Graphics (Elsevier). He is a member of the
IEEE and the ACM.

Ralph R. Martin received the PhD degree in
1983 from Cambridge University. He is currently
a professor at Cardiff University. He has
published more than 200 papers and 12 books,
covering such topics as solid and surface
modeling, intelligent sketch input, geometric
reasoning, reverse engineering, and various
aspects of computer graphics. He is a fellow of
the Learned Society of Wales, the Institute of
Mathematics and its Applications, and the British

Computer Society. He is on the editorial boards of Computer Aided
Design, Computer Aided Geometric Design, Geometric Models, the
International Journal of Shape Modeling, CAD and Applications, and
theInternational Journal of CADCAM.

DU ET AL.: SEMIREGULAR SOLID TEXTURING FROM 2D IMAGE EXEMPLARS 469

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

