
Shape Deformation Using a Skeleton to
Drive Simplex Transformations

Han-Bing Yan, Shi-Min Hu, Member, IEEE, Ralph R. Martin, and Yong-Liang Yang

Abstract—This paper presents a skeleton-based method for deforming meshes (the skeleton need not be the medial axis). The

significant difference from previous skeleton-based methods is that the latter use the skeleton to control movement of vertices,

whereas we use it to control the simplices defining the model. By doing so, errors that occur near joints in other methods can be spread

over the whole mesh, via an optimization process, resulting in smooth transitions near joints of the skeleton. By controlling simplices,

our method has the additional advantage that no vertex weights need be defined on the bones, which is a tedious requirement in

previous skeleton-based methods. Furthermore, by incorporating the translation vector in our optimization, unlike other methods, we

do not need to fix an arbitrary vertex, and the deformed mesh moves with the deformed skeleton. Our method can also easily be used

to control deformation by moving a few chosen line segments, rather than a skeleton.

Index Terms—Shape deformation, skeleton, simplex transformation, animation.

Ç

1 INTRODUCTION

MESH deformation is widely used in computer anima-
tion and computer modeling to represent moving

objects of changing shape. Many techniques have been
developed to help artists sculpt stylized body shapes and
corresponding deformations for 2D and 3D characters, for
example. These techniques include free-form deformation
(FFD), multiresolution approaches, differential methods,
and skeleton-based methods.

The skeleton-based approach uses a skeleton, in which
two or more bones meet at articulating joints to control
shape deformation. This allows intuitive control as it
naturally describes the way in which many objects such
as animals deform the muscles and other tissues that follow
motions of underlying bones in the skeleton. Such methods
are usually controlled by a user-chosen skeleton, rather than
a precisely determined mathematical medial axis. A serious
problem, however, with traditional skeleton-based methods
is that they require a tedious process of weight selection to
obtain satisfactory results, as will be explained later. Worse,
it seems that there is no criterion for weight selection that is
universally applicable to all cases.

In this paper, we present a mesh deformation method
that combines the skeleton-based method and the simplex
transformation method. Although we still control deforma-
tion by a skeleton, our approach has two main differences
from traditional skeleton-based methods. First, we use the
skeleton motion to drive the transformation of simplices,

rather than vertices as done in previous skeleton-based
methods. Second, weights are not used in our method,
avoiding the weight adjustment issue completely; never-
theless, our approach gives high-quality results.

Our approach can be applied to both 2D and 3D triangle
meshes. The inputs to our method are the initial mesh, the
initial skeleton, and the deformed skeleton; the skeleton is
here considered to be a set of straight-line segments
connected together at the joints. The output is the deformed
mesh. In 2D, the simplices that are transformed are the
triangles covering the 2D shape. In 3D, we produce a
suitable set of tetrahedra for use as simplices based on the
input 3D surface mesh.

The main steps of our method are listed as follows:

. We segment the mesh. We allocate each simplex to a
nearby bone, which is the controlling bone for this
simplex.

. We find a transformation matrix relating the initial
and final position of each bone.

. We apply this transformation matrix to the simplices
under that bone’s control.

. We use optimization to ensure connectivity of the final
simplices, keeping each simplex transformation as
close as possible to the value determined by its bone.

This idea works not only for control based on adjustment of
the skeleton, but can be extended to use any suitable small
collection of internal lines to control mesh deformation. It
can also be extended to expand or shrink bones if desired and
to twist part of the mesh by defining twist axes.

This paper is an extended version of work reported at a
conference [1]. Compared to our previous paper, the results
are improved in several important places. First, we
incorporate a translation term in the error energy function
used to determine the deformed mesh: previously, like
other simplex transformation methods, we needed to fix the
location of an arbitrary vertex to locate the deformed mesh
relative to the skeleton. Addition of the translation term

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008 693

. H.-B. Yan, S.-M. Hu, and Y.-L. Yang are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, P.R. China.
E-mail: {yanhb02, yangyongliang00}@mails.tsinghua.edu.cn,
shimin@tsinghua.edu.cn.

. R.R. Martin is with the School of Computer Science, Cardiff University,
CF24 3AA Wales, U.K. E-mail: Ralph.Martin@cs.cardiff.ac.uk.

Manuscript received 21 July 2006; revised 28 Jan. 2007; accepted 2 Jan. 2008;
published online 18 Jan. 2008.
Recommended for acceptance by H. Qin.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0108-0706.
Digital Object Identifier no. 10.1109/TVCG.2008.28.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

renders this unnecessary. This makes it easier for the user to
generate a long animation sequence, giving an automatic
way of ensuring smooth translation results if the skeleton is
moved smoothly. The second improvement is that we have
greatly improved the solving efficiency. The deformation
speed is improved by incorporating Cholesky decomposi-
tion and back substitution, which makes our algorithm
more competitive compared to other skeleton-based meth-
ods. Segmentation efficiency is increased. The third im-
provement is to incorporate graph cut in the segmentation
method, and inaccurate segmentation results caused by
incorrect joint positions at sharp feature can now be easily
avoided. Finally, we show how to incorporate twists and
also extend our skeleton-based method to allow control
using a collection of internal lines, not just a skeleton; we
give details and discuss limitations of this method.

2 RELATED WORK

One of the best known methods for carrying out deforma-
tion is FFD. The classic FFD method [2] encloses a shape in
an elastic lattice control volume such as a Bézier volume,
then deforms the volume by moving its control vertices: as a
result, the shape inside is deformed. This technique has
been extended to use more general lattice structures [3].
Various curve-based deformation methods [4], [5] can
also be classified as similar space-warping deformation
methods. Such space-warping methods are very efficient,
but they do not provide easy control over the details of
complex models.

Multiresolution methods [6], [7], [8] have also been
developed to deform shapes with intricate geometry. A
detailed shape is first decomposed into a base shape and
geometric details. The base shape is deformed using some
suitable technique, and then, the geometric details are
added back. The base mesh can be deformed using FFD or
other approaches. This class of approach has the advantage
of being efficient but care must be taken in how the details
are added back if convincing results are to be obtained.

Differential deformation methods have become popular
recently [9], [10], [11], [12]. Laplacian coordinates [9] are
based on representing surface detail as differences from the
local mean. Poisson mesh methods [12] are based on
manipulating gradients of the mesh’s coordinate functions
and, then, reconstructing the surface from the Poisson
equation. In [13], surface Laplacian coordinates are ex-
tended to volumetric Laplacian coordinates, allowing
volume-preserving deformation. Shi et al. [14] developed
a fast multigrid technique tailored for gradient field mesh
deformation. Huang [15] use cotangent forms to represent
Laplacian coordinates, which are invariant under rotation,
scaling, and translation. This method needs to solve a
nonlinear system; so, a subspace technique is used to
accelerate the solving process.

Simplex transformation is another approach to deformation
and morphing. The use of a matrix decomposition of a global
transformation was proposed in [16] as a means of carrying
out morphing. This method was extended to local transfor-
mations in [17], in which each triangle or tetrahedron is
transformed independently, and the results are then made to
connect consistently using an optimization method. Simplex

transformation has also been used with surface triangle
meshes to perform deformation learned from existing
examples [18], [19]. This method was developed to control
shape deformation by partition the mesh and control each
partition by proxy vertices [20]. Botsch [21] give a mathema-
tical proof that shows an equivalence between the simplex
transformation method and those methods based on differ-
ential representations.

All of the above classes of methods have a similar
disadvantage, in that they do not take into account the
natural way in which many shapes’ features are controlled.
For example, vertebrate animals have a skeleton, and many
other articulating objects such as robots can be modeled as
if they also did. The shapes and movement of such objects
can be understood in terms of the motion of a skeleton.
Therefore, this provides a more intuitive approach to
controlling the deformation of such shapes. Such ideas
are also referred to as skinning [22], envelopes [23], or
skeletal subspace deformation [24].

Existing skeleton-based algorithms define the final
position of a point in the mesh as a weighted linear
combination of the initial state of the point projected into
several moving coordinate frames, one frame for each bone.
The position of a point p0 after deformation can be
written as

p0 ¼
Xn
k¼1

wkpMk; ð1Þ

where p is the point’s initial position, Mk is a transforma-
tion matrix that transforms bone k from its initial position to
its new position, wk is the weight of this point relative to
bone k, and n is the number of bones. Because in (1), each
point is controlled by multiple bones, careful choice of
weights wk is needed, both to avoid self-intersections,
especially near the joints, and also to keep the resulting
shape smooth. Appropriate weight selection is an extremely
tedious process if done manually. Thalmann [25] proposed
the use of virtual bones to control the point positions, which
avoids the use of weights. However, this method only
allows a point to be influenced by at most two segments.
Mohr [26] gave reasons why the traditional skeleton-based
method is incapable of expressing complex deformations,
and he suggested an interactive method to control weights
of points.

In recent years, work has focused on how to learn weights
from examples [24], [27], and [28]. Such learning methods
mainly differ in the detail of how they represent the point
displacements and in the particular interpolation method
used. However, it seems that no single method works well in
all cases [29]. To overcome this problem, the latter paper
proposes a multiweight enveloping method: each component
of the matrix Mk is given a separate weight to provide
maximum flexibility, instead of a single weight for the whole
matrix. Clearly, this means even more weights must be
adjusted. A detailed introduction to the skinning method
of learning deformation from examples is given in [30].
James and Twigg [28] describe a skinning method without
the need for explicitly specifying a skeleton, where a virtual
skeleton is generated by the mean shift clustering method.

694 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

There has also been much work [28], [30], [31] on
accelerating skeleton-based methods using hardware.

In short, the basic problem with skeleton-based methods
is that each point in the mesh is updated independently
using (1), which requires the wi to be carefully chosen to
avoid gaps and artifacts. However, the points are em-
bedded in a shape and are related. The mesh provides
connectivity constraints; previous skeleton-based methods
have not directly used this information. We use this
information explicitly to our advantage. By retaining a
skeleton, we keep its merits of providing a natural and
easily understood control mechanism. By using the con-
nectivity information, we avoid the weight adjustment issue
arising in traditional skeleton-based methods and instead
solve a linear equation to perform a similar task. This
approach is easier and gives high-quality results.

There has been much work on skeletonization [32], [33],
[34] and segmentation [35], [36], [37], [38] as independent
problems, or on creating a skeleton and corresponding
segmentation together [39], [40], [41], [42], [43]. In this
paper, we are interested in the segmentation method,
assuming there is a given skeleton. Therefore, we only
focus on the methods that can create skeleton and
segmentation together or those that can create segmentation
by a skeleton. Katz and Tal [39] compute a fuzzy
decomposition by an iterative clustering scheme, then
refine the decomposition by Graph-Cut method using
geodesic and angular distances. Further more, their
segmentation can be used to compute a skeleton. Lien et
al. [40] suggested how to create a skeleton and perform
segmentation using an iterative approach, but this is not
ideal as the skeleton changes during iteration. Cornea et al.
[41] also proposed a segmentation method that follows
skeleton creation. This method segments the mesh by
tracing the field lines, which was defined during skeleton
creation. Therefore, it also is not appropriate to be used in
segmentation with a given skeleton.

In many cases, artists prefer to specify a skeleton, in
order to be able to achieve the desired animation control,
rather than having an automatically determined skeleton.
Therefore, it is useful to perform segmentation from a given
skeleton directly, without using the metainformation in the
skeleton creation. Li et al. [42] showed how to obtain a
segmentation corresponding to a given skeleton using a
space sweeping method, but this does not seem to work
well if the skeleton is rather coarse. A similar method was
proposed in [43], while it takes the shortest geodesics
between feature points as borders instead of a cross-section
sweeping line. We thus give a new method to segment the
model, which takes into account both euclidean distance
and shortest path distance between simplices and skeleton
bones. Our results show that this method, while simple,
is effective.

For further discussions on skeletons and segmentation, the
reader is referred to the excellent survey by Cornea et al. [44].

Bloomenthal [45] used a segment-based skeleton to de-
form the shape’s mathematical medial axis, which was then
used to drive the shape deformation. Yoshizawa et al. [46]
extended this work by combining it with the Laplacian
coordinates approach.

While revising this paper, the work by Anguelov et al. [47]

came to our attention. Some of its techniques are similar to

those in our earlier paper [1], but it differs in the following

ways. First, we proposed a segmentation method by using a

given skeleton. Second, we try to keep the transformation

matrix of each mesh simplex as similar as possible to the

corresponding bone’s transformation while they try to keep

the mesh edge vectors as close as possible to the transformed

original mesh edge vectors. Third, like in our conference

paper [1], their error energy function has no term to keep the

mesh moving together with the skeleton. As pointed out

earlier, this means that at least one vertex must be fixed before

solving the optimization function, which our current work

overcomes. This will be discussed in detail in Section 6.3. It

seems that more and more people show their interest in

combining the skeleton-based deformation methods and the

deformation methods using mesh local attribute such as [48]

and [49]. The difference between our paper and theirs is

similar to our paper and [47].
In the rest of this paper, we outline basic concepts

concerning simplex transformations and skeletons in

Section 3. We first show our mesh segmentation method

based on the skeleton in Section 4 and then show how to

calculate the bones’ transformations in Section 5. Sections 6

and 7 give our skeleton-based mesh deformation methods,

illustrating them with practical results. Conclusions and

discussions are given in Section 8. Both 2D and 3D triangle

meshes are considered.

3 SIMPLEX TRANSFORMATIONS AND SKELETONS

3.1 Simplex Transformations

A simplex is the simplest possible polytope in a given

space: triangles and tetrahedra are the highest dimension

simplices in 2D and 3D. Given two such simplices S1 and S2

in some space, there exists a unique transformation that

changes S1 into S2. This can be written as

vi ¼Mui þ T; ð2Þ

where M is an affine transformation matrix representing

rotation and shape change information, T is the translation

vector, the ui are the vertices of S1, and the vi are the

corresponding vertices of S2. M and T can be calculated

from the vertex coordinates of S1 and S2, as follows:

M ¼ V U�1; ð3Þ

where in 2D

V ¼ v1 � v3 v2 � v3½ �;
U ¼ u1 � u3 u2 � u3½ �;

ð4Þ

and in 3D,

V ¼ v1 � v4 v2 � v4 v3 � v4½ �;
U ¼ u1 � u4 u2 � u4 u3 � u4½ �:

ð5Þ

Having found M, it can be substituted into (2) to find T .

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 695

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

3.2 Skeletons

The strict mathematical skeleton, or medial axis, is the locus
of the centers of all maximal spheres contained within the
object. Generally, it is quite complex even for simple
3D shapes and may contain sheets, as well as curvilinear
elements. It is also sensitive to small perturbations of the
shape boundary. For simplicity, most skeleton-based
deformation methods use an approximate skeleton to
control deformation, consisting of straight lines of zero
thickness—bones—connected at articulated joints.

In many cases, artists prefer to create the skeleton by
hand to give the desired degree of control over the shape. It
is not very difficult to create such an approximate skeleton
interactively. Automatic methods of skeleton generation
also exist, such as [34] and [42].

4 TRIANGLE MESH SEGMENTATION

In this section, we consider how to segment the triangle
mesh using the skeleton, which decides which triangles are
controlled by each bone. The results of our segmentation
method intuitively correspond to near-rigid components
such as a foot, a lower leg, an upper leg, and so on. We
still follow the basic segmentation approach presented in
our previous paper [1], but some important improvements
have been made to accelerate it and to overcome
previous limitations. We first summarize the segmentation
method used in our previous work and then explain our
improvements.

4.1 Mesh Segmentation Using the Skeleton

We now briefly review the segmentation method from our
previous work; further details are given in [1]. In this
approach, each triangle is controlled by just one bone. We
thus need to segment the model according to the given
skeleton or, in other words, decide which bone should be
used to control each triangle. Having done this, we can then
decide how each triangle should deform. It should be noted
that although we create a tetrahedron for each triangle for
the purposes of 3D deformation, as discussed in Section 6.2,
the tetrahedra need not be created during the segmentation
phase. We segment the mesh according to euclidean
distance and the shortest path distances on the mesh as
follows:

1. Decide the control domain of each bone using range
planes placed at the end of each bone. Range planes
decide which triangles a bone can possibly control.
At bones with free ends, range planes are orthogonal
to the bones; where bones meet, range planes bisect
the angle between bones.

2. Decide which of those bones actually controls each
triangle by choosing the bone with minimum effective
distance with penalty to the triangle [1]. The effective
distance with penalty can be written as

deffpen ¼ deff þ n�; ð6Þ

where deff is the effective distance, and n is the number
of intersections of the effective line and the mesh
boundary. Effective distance is the distance from the
triangle center to the bone along the effective line, a

line that takes into account the orientations of the
range planes at the ends of the bones. The idea here
is to that if we have to pass outside the mesh on the
shortest line from the bone to the simplex, such a
bone is (probably) not a good choice for the
controlling bone for this simplex. A binary tree is
constructed to accelerate the calculation of the
number of intersections.

3. Check if the minimum effective distance with penalty
is less than a threshold—if so, it means the simplex
can be seen by one or more bones (that is, the
straight line referred to above does not cross the
mesh boundary):

. a) If it is less than the threshold, the bone with
the minimum effective distance with penalty
controls this simplex.

. b) If it is more than the threshold, calculate the
shortest path distance in the mesh from the
simplex to the bones for which it is within
range. The bone with the shortest path distance
is the control bone.

Normally, a skeleton is thought of as lying within the
volume defined by the mesh. However, in our method, we
require any free ends of bones of the skeleton (that is, ends
not connected to other bones) to lie just outside the mesh to
ensure that each bone properly controls all the triangles in
its control domain. If a given skeleton has free ends within
the mesh, it is straightforward to extend them outside the
mesh automatically.

Figs. 1, 2, and 3 show segmentation results using this
method. Fig. 1a shows a 2D cartoon character, Fig. 1b shows

696 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 1. 2D skeleton control domain: (a) cartoon character, (b) skeleton,

(c) skeleton control domain.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

a corresponding 2D skeleton, and Fig. 1c shows which bone
controls each triangle, as determined by the method above.
Triangles of a given color are controlled by the bone of the
same color. Fig. 2a shows a 3D skeleton for the Dinopet, and
Fig. 2b shows the control domain of each bone.

4.2 Accelerating Segmentation

In 3D, due to the potentially very large size of the mesh, it
would be very time consuming to test all bones against all
triangles to decide the controlling bone for each triangle. It
is easy to show that if a given triangle is controlled by a
particular bone, then each of its neighboring triangles must
be controlled by the same bone or some bone adjacent to
that bone. This observation can be used to accelerate
segmentation via a traversal process.

We start by selecting a triangle intersected by a bone with
a free end as the initial triangle. Clearly, this triangle can be
seen from that bone and has minimum effective distance with
penalty to that bone so is controlled by it. We next find the
control bones of those triangles adjacent to this triangle
using the same criteria as before but only considering the
same bone and bones connected to it. We then pass to the
neighbors of these triangles, and so on. In principle, it is
possible to construct extreme examples for which this
accelerated method does not work well, but in practice,
this method greatly speeds the segmentation process,
giving greater savings the more bones there are in the
skeleton. Of course, a similar method can also be used to
accelerate 2D segmentation, but the generally smaller mesh
sizes lead to reduced benefits.

The time spent in creating the segmentation and BSP tree
creation for various 3D models is listed in Table 1.
Experiments show that our segmentation algorithm is very
effective and robust.

4.3 Overcoming Limitations

Our segmentation method is based on the skeleton, and thus,
its results depend on the positions of joints. In places where
features are not sharp, positions of joints and corresponding
range planes are not crucial. However, they must be
carefully located where the mesh has sharp features.

For example, Fig. 4a shows a mesh with a sharp feature and
an inaccurately placed skeleton joint: Fig. 4b is the corre-
sponding segmentation result created from the skeleton.

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 697

Fig. 2. (a) Skeleton. (b) Control domain of Dinopet.

Fig. 3. (a) Skeleton. (b) Control domain of woman.

TABLE 1
Timing Information

Fig. 4. Segmentation affected by the joint position.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

Obviously, the segmentation result is not appropriate and
will adversely influence the final deformation results.

In our previous work, we provided an interactive
approach allowing the artist to modify both the joint
positions and make small changes to range line and
range plane orientations. Such an approach is labor
intensive and requires careful work.

As an alternative, in this paper, we propose the use of a
graph-cut method to optimize the segmentation boundaries
to accommodate sharp features, following [39]. If a feature
exists near the boundary where two segmentation compo-
nents meet, we do the following:

1. Find the boundary vertices between these two
components and generate an extended region on
either side for boundary optimization.

2. Build the dual graph of the extended region. In this
dual graph, compute the capacity of each edge based
on dihedral angles.

3. Find the optimized boundary by applying a max-
imum flow algorithm.

Fig. 4c gives the final segmentation result optimized from
the result in Fig. 4b.

If several components meet near a sharp feature, we use
a hierarchical algorithm to refine the segmentation result
from coarse to fine. First, we allocate these components to
two large regions, where each large region contains one or
several connected components. The boundary between the
two large regions is optimized with respect to the feature.
The optimization algorithm is then applied iteratively by
dividing each large region into two smaller regions until
each region has only one component.

Fig. 5 shows the optimization process for one leg of the
Dinopet. Fig. 5a gives the mesh and the inappropriate
placed skeleton, where its ankle joint and heel joint are
inaccurately placed. Fig. 5b shows the original segmenta-
tion obtained by the method in Section 4.1. Fig. 5c shows the
improved segmentation result after the first round optimi-
zation. The boundary at the knee is smoother, while the
two toes are combined to give one region with a smooth
boundary at the ankle. In Fig. 5d, the boundary between
two toes is optimized. This boundary optimization process
is fast enough to interactively display its effects on the
segmentation: much less time is taken than for segmenting
the whole model, as given in Table 1.

We should note that this maximum flow algorithm is
based on dihedral angle calculations, which can give good
results at places where sharp features exist but which works
less well in smooth regions. Thus, we only use this method
to interactively optimize the component boundaries near
sharp feature when we are not satisfied, after performing
segmentation, as in Section 4.1. Small variations in joint
positions in smooth regions have very little visual effect on
deformation results, and such optimization is not necessary
there.

5 TRANSFORMATION OF BONES

In our method, simplex transformations are derived from
the transformations of bones. This section discusses how the
bones’ transformations are computed.

5.1 Transformation for 2D Bones

Given an initial skeleton and the corresponding deformed
skeleton determined by the user, the transformation matrix
for each bone can be calculated. Fig. 6 shows a bone atA1B1 in
the initial skeleton and at A2B2 in the deformed skeleton.
We initially calculate the bone transformation matrix
without scaling, as bones normally have a fixed length. We
later show how to take scaling into account if additionally
required. When we have the transformation matrix of
each bone, the translation vectors can be easily calculated.
In the following, we use e to represent quantities related
to bones.

Without scaling, we translate A1B1 so that A1 coincides
with the origin, the translation vector being eTR1. A1B1 is
then rotated anticlockwise through an angle � around the
origin until it lies in the same direction as A2B2. We
then translate A1B1 so that A1 coincides with A2, the
translation vector being eTR2. This transformation process
can be expressed as

ev ¼ eRðeuþ eTR1Þ þ eTR2; ð7Þ

where eu is any point on the bone A1B1, and ev is the
corresponding point after transformation. The transforma-
tion matrix is given by

eR ¼ cos � � sin �
sin � cos �

� �
; ð8Þ

and the translation vector is

eTR ¼ eR eTR1 þ eTR2: ð9Þ

Now, consider the case with scaling. Suppose the scale
factor is �, so that after deformation, the bone has a length �

698 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 5. Optimization process for inaccurately placed joint position.

Fig. 6. 2D bone transformation.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

times its original length. After translating A1B1 as before,
using the translation vector eTS1, we rotate it until B1 is
located on the x-axis using a rotation matrix eRS1. We then
scale A1B1 until it has the same length as A2B2 using a
scaling matrix eS:

eS ¼ � 0
0 �

� �
; ð10Þ

where � is the scale factor in the direction perpendicular to
the bone. Usually, the animator will choose � to be 1.0, or
the same as �, but may also use other values if desired.
Finally, we rotate A1B1 into the same orientation as A2B2

and translate A1B1 until A1 coincides with A2; the
rotation matrix involved is eRS2, and the translation vector
is eTS2. Overall, we can write

ew ¼ eRS2
eSx eRS1ðevþ eTS1Þ þ eTS2; ð11Þ

where ev is a point on bone A1B1 after rotation, and ew is the
corresponding point after scaling. The overall transforma-
tion matrix in this step is given by eS ¼ eRS2

eSx eRS1.
Substituting (7) into (11), we can write the overall

transformation as the combination of a rotation and a scaling

eM ¼ eS eR; ð12Þ

where if there is no scaling, eS is a unit matrix. The whole
translation vector is now

eT ¼ eSð eTR þ eTS1Þ þ eTS2: ð13Þ

For the later convenience, we write eTS ¼ eSð eTR þ eTS1Þ þ eTS2.

5.2 Transformation for 3D Bones

We now consider how to calculate the transformation
matrix for bones in 3D. In Fig. 7, suppose A1B1, A2B2

represent a bone in 3D before and after deformation. We
translate A1B1 so that A1 lies at the origin. We then create a
unit vector N based at the origin, perpendicular to both
A1B1 and A2B2, and rotate A1B1 around N until A1B1 is in
the same direction as A2B2; let � be the rotation angle.
Finally, we translate A1B1 until A1 coincides with A2. The
transformation matrix eR can be calculated in a similar way
to the 2D case and is found to be

eR ¼ a2 þ �bc� ab�þ c	 ac�� b	
ab�� c	 b2 þ �ac� bc�þ ab	
ac�þ b	 bc�� ab	 c2 þ �ab�

2
4

3
5; ð14Þ

where N ¼ ða; b; cÞ, 	 ¼ sin �, � ¼ cos �, � ¼ ð1� cos �Þ,
�ab ¼ a2 þ b2, �bc ¼ b2 þ c2, and �ac ¼ a2 þ c2. If scaling is

also required, we can determine the scale matrix S, as in
Section 5.1. The overall transformation matrix has the same
form, as in (12), while the translation vector for each bone
has the same form as given in (9) and (13).

6 TRIANGLE MESH DEFORMATION

We now discuss how to drive the triangle mesh deforma-
tion using the skeleton transformations.

6.1 2D Triangle Mesh Deformation

If every triangle were to transform rigidly in the same way
as its controlling bone, gaps or overlaps would occur
between the triangles controlled by adjacent bones, causing
tears or overlaps in the object. We need to enforce vertex
consistency requirements to ensure the mesh retains its
original connectivity.

We do this using an optimization method, which enforces
connectivity while trying to keep each simplex transforma-
tion as close as possible to that of its control bone. An error
function is used to represent the difference between the
actual triangle deformation and the deformation indicated
by the control bone, defined by

E ¼
Xn
i¼1

Ai kMi � eMik2
F þ �kTi � eTik2

2

� �
; ð15Þ

where n is the number of triangles in the mesh, Mi is the
actual transformation matrix for the ith triangle, given by
(3). Ti is the actual translation vector, which can be
calculated by (2). eMi is the ideal transformation matrix of
this triangle, which is the transformation matrix of the
controlling bone of this simplex and is given by (12). eTi is
the ideal translation vector and is given by (13). F is the
Frobenius norm. � is the square of the reciprocal of the
diagonal length of the original mesh bounding box, which is
used to eliminate the influence of the mesh size. Ai is the
area of the ith triangle, which is used to take account of the
triangle area: large triangles should provide a greater
contribution to the error energy function. We minimize E

to get the best deformation results while ensuring mesh
connectivity: the variables in the minimization problem are
the vertex coordinates of the deformed mesh.

This classical quadratic optimization problem can be
transformed into a linear equation by setting the gradient of
E to zero, which can be written in the form:

K0X0 ¼ d0; ð16Þ

where this linear system factors into two independent
subsystems corresponding to the x- and y-coordinates of the
deformed mesh; furthermore, the coefficient matrix for each
subsystem is the same. We obtain

KTKX ¼ KTdx; KTKY ¼ KTdy; ð17Þ

where X and Y are the x- and y-coordinate vectors of the
deformed mesh, of dimension m, the number of vertices in
the mesh. K is a sparse matrix of size m�m, and dx and dy
are vectors with dimension m. KT is the transpose form of
matrix K. We use the direct Cholesky decomposition and
back substitution to solve these sparse linear systems.

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 699

Fig. 7. 3D bone transformation.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

Fig. 8 shows a deformed skeleton and the resulting

deformed mesh for the cartoon character in Fig. 1. The

corresponding mesh has 251 vertices, and 0.02 s were

required to calculate the result on a 3.2-Ghz Pentium 4

machine.
The main difference between our method and traditional

skeleton-based deformation methods is that we use bones to

drive the triangles while they use bones to drive vertices.

Although each triangle tries to follow the transformation

determined by its control bone, it cannot follow it

absolutely—otherwise, there would be gaps between

adjacent triangles, especially for those located near joints.

Note, on the other hand, that if only a few triangles located

near joints changed their shape to preserve connectivity

while others precisely followed the transformations given

by their control bones, the error energy defined in (15)

would be very large. By spreading such triangle distortion

to surrounding triangles, the error is greatly reduced: our

optimization method results in triangle shapes that are as

close as possible to the original triangle shapes.
In Fig. 9, an example is given to show how the distortion

varies according to distance from a joint. The distortion

extent can be described by area change and internal angle

change of triangles. Fig. 9a represents the triangle area

change over the mesh. The triangle area change is

calculated by j4Aj=A, where A is the original triangle area,

and j4Aj is the triangle area change after deformation.

Fig. 9b represents the triangle angle change, which is

calculated by j
P3

i¼14�ij, where j4�ij is an internal angle

change in the triangle. In these images, the lighter the

triangle color, the less the triangle distortion. The distortion

is the heaviest near joints but not limited at joints. The

distortion spreads to the middle of the bone and to the

free joints while it becomes lighter. The triangles near

the middle of the bone, and the free joints always have the

lightest distortion.
We can also use strain [50], a quantitative analysis tool of

deformation to analyze the distortion extent of our

deformation results. Using strain, we get very similar

results, as in Fig. 9, that the triangle deformation is spread

from joints to the middle of bone and free joint while

becoming lighter.

6.2 3D Triangle Mesh Deformation

The above method can also be extended to a 3D tetrahedron
mesh, but in practice, surface triangle mesh models are far
more widely used in computer graphics. Furthermore,
triangle mesh models have far fewer elements than
tetrahedron models—the latter would require much higher
processing times. Thus, for simplicity, here, we consider the
3D triangle mesh case, rather than the tetrahedron case.

With regards to deformation, the 3D triangle mesh case is
very different from the 2D triangle mesh case, because a
triangle is not a maximal dimension simplex in 3D, nor is
there a unique transformation matrix for changing one
triangle into another. Sumner and Popovic [18] gave an
ingenious way of extending a simplex transformation
method to a 3D triangle mesh by constructing a tetrahedron
for each triangle. Here, we basically use the same method for
constructing a tetrahedron, except that we put the new vertex
above the centroid of the triangle rather than over one of its
vertices. Doing so makes the following equations symmetric
in x, y, and z coordinates, simplifying the coding of (18).

We add a fourth vertex to each triangle of both the initial
and deformed mesh to give a tetrahedron. For the initial
mesh, the fourth vertex is added in the normal direction
over the triangle’s centroid. Let v1, v2, and v3 be the vertices
of a triangle on the initial mesh. The fourth vertex is
placed at

v4 ¼
ðv1 þ v2 þ v3Þ

3
þ ðv2 � v1Þ � ðv3 � v2Þffi
ðv2 � v1Þ � ðv3 � v2Þ

p :

The distance between v4 and the centroid is determined in
such a way as to ensure a well-shaped tetrahedron. The
above equation is only used to calculate v4 in the initial
mesh; vertices in the deformed mesh, including v4, are
determined by the optimization process.

The 3D triangle mesh is now deformed using the same
optimization approach as for the 2D triangle mesh in
Section 6.1. In this case, the 3D version of (16) separates into
three independent linear subsystems:

KTKX ¼ KTdx;K
TKY ¼ KTdy;K

TKZ ¼ KTdz: ð18Þ

The dimension of the vectors in (16) is now mþ k, and K is
an ðmþ kÞ � ðmþ kÞ matrix for a mesh with m vertices

700 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 8. (a) Deformed 2D skeleton. (b) Deformed cartoon character. Fig. 9. Distortion spreading. (a) Area change. (b) Angle change.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

and k faces. We use direct Cholesky decomposition and

back substitution to efficiently solve these large sparse

linear equations.
Figs. 10 and 11 give the Dinopet skeletons and results

using our technique. Figs. 12, 13, 14, and 15 illustrate other

3D deformation results. The first model in each Figure is the

original model; others are deformed results produced by our

method. All results were calculated on a 3.2-Ghz Pentium 4

machine. Table 1 shows the times taken to deform the

3D models illustrated in this paper for one time, listing

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 701

Fig. 10. Dinopet skeleton.

Fig. 11. Dinopet model.

Fig. 12. Armadillo model.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

separately times for BSP Tree Creation, Segmentation,
Cholesky decomposition, and Back Substitution for each
deformation.

6.3 Deformation without Translation

In Section 6.1 and 6.2, the error energy function contains
both a transformation matrix and a translation vector. As
done in our previous work [1], it is possible to create an
error energy function that ignores the translation vector.
The simplified energy function is

E ¼
Xn
i¼1

AikMi � eMik2
F ; ð19Þ

which can essentially be solved as before with one
significant difference—this basically affects the position of
the deformed model and has an insignificant effect on its
shape.

In this case, if the deformed mesh is translated by some
vector, the translated mesh will have the same error energy
as the untranslated mesh: translation does not change the

702 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 13. Horse model.

Fig. 14. Female model.

Fig. 15. Palm model.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

error energy in (19). Thus, the problem of minimizing the
error energy in (19) has an infinite number of solutions, and
the coefficient matrix K in (17) or (18) is singular. To obtain
a unique solution, the simplest approach is to fix the
position of one vertex of the mesh.

Fig. 16a shows the deformed skeleton and the deformed
Dinopet model if translation vectors are not taken into
account; the red point is the fixed vertex. Fig. 16b shows the
results taking into account the translation vector.

Different choices of the fixed vertex may lead to different
final mesh positions, even though the deformed meshes
have the same shape. However, when making an animation
using a skeleton, it is important that, as well as the
mesh deformation following the skeleton deformation, any
mesh movement should also follow the skeleton movement.
Mesh deformation techniques should ensure that the
deformed shape moves with the skeleton to give smooth
results in animation making.

This provides a sound reason for including the transla-
tion term in the error energy function in (15). By doing so,
we avoid singularity in the matrix K in (17) or (18), and the
linear system has a unique solution; the mesh moves
naturally with the skeleton.

6.4 Discussion

The main difference between our method and earlier
skeleton-based deformation methods is that we use the
skeleton motion to drive the transformation of simplices,
rather than vertices. Thus, we make use of the connectivity
information in the mesh directly, while they do not.

Another advantage is that our method is much simpler
since no weight selection is needed, nor are any other
arbitrary parameters.

Examples demonstrate that while our method is simple,
it can nevertheless achieve high-quality results. Fig. 17
compares deformation results produced by our method and
the SSD method; in the latter case, we used weights
calculated by the inverse-square approach detailed in [45].
Artifacts are present where the leg meets the body in the
SSD case, see Fig. 17b, but are absent using our method.

A further improvement of this paper over our earlier
work [1] is that by including the translation vector in
the optimization process, there is no need to fix an
arbitrary vertex of the deformed mesh. This is also a
key difference between this work and the other recent
techniques that combine the skeleton and differential-based
(or edge-based) methods [47], [48], [49]. By incorporating

the translation vector, we keep the skin and the skeleton
synchronized, which is very important when generating a
long animation sequence.

7 CONTROL BY LINES

Sometimes, we only need to deform part of a model, while
other parts remain more or less unchanged. In such cases, it
is convenient to control the deformation just by moving a
few lines, rather than having to define and manipulate the
whole skeleton. Our method can easily be extended to do
this. We can also extend our method to twist part of
the mesh.

7.1 Deformation by Lines

To base the deformation on a few lines, we place lines that
work in a similar way to bones into the object: certain
triangles lie inside the control range of each line. We next
determine which triangles are controlled by each line
segment using the methods in Section 4. Clearly, some
triangles may not have any corresponding control lines,
since they may not be in any line’s control domain. A
simple approach to this problem is given as follows: For a
triangle with an associated control line, eM and eT in (15) is
set to the transformation matrix and translation vector of its
control line, calculated using the method in Section 5.2. For
any triangle without a control line, eM is set to an identity
matrix, and eT is set to zero, which means that it tries to keep
its original shape. We now solve (18).

However, using the above procedure directly may mean
a line segment controls triangles over too large a part of the
mesh. Two approaches can be used to avoid this problem,
according to the animator’s requirements. First, we can
artificially decide that any triangle whose minimum
effective distance with penalty is larger than � has no

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 703

Fig. 16. (a) Deformation without translation. (b) Deformation with

translation.

Fig. 17. Deformation using our method and SSD. (a) Our method.

(b) SSD. (c) Details of our method. (d) Details of SSD.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

control line. Second, we may let the user directly select an
effective domain for each line segment to select those
triangles it should influence such as a tube centered on the
control line, a bounding cuboid, or some other user-defined
shape.

Fig. 18 shows the deformation of the Armadillo model
controlled by a line segment. Blue and red lines identify the
original and deformed control lines. The upper part of the
Armadillo’s body is rotated and enlarged 2.5 times.

7.2 Deformation Using a Twist Axis

Sometimes, we may wish to twist part of the model, for
example an animal’s neck. We can control such twists using
a twist axis. Kho and Garland [51] uses line segments for
similar purposes, although their method does not make use
of the simplex connectivity information in the mesh.

The difference between twisting and the simpler rotation
and scaling done earlier is that the transformation matrix
for each bone includes not only a (constant) rotation and
scaling but also a twist that varies linearly from zero at one
end of the bone to a maximum value at the other. Thus,
different triangles along the bone require different trans-
formation equations.

SupposeAB is a twist axis, with twist angles specified to be
0 atA and
 atB. Parameterizing the t at I, the twist angle at J
is t
. We can compute the twist matrix at J using a process
similar to the scaling process in Section 5.2. First, we translate

AB until A coincides with the original point: the translation

vector is eTW1. Then, we use a twist transformation aroundAB,

with twist angle t
: the transformation matrix in this twist

step is eW . Then, we translateAB back to its original place: the

translation vector is eTW2. The twist transformation matrix eW
can be calculated as in (14), replacing eR by eW .The twist

process can be written as

ez ¼ eWðewþ eTW1Þ þ eTW2: ð20Þ

Substituting (7) and (11) into (20), we get an overall
transformation matrix and translation vector for J , which
take into account the rotation, scaling, and twist. The
transformation matrix can be written as

eM ¼ eW eS eR; ð21Þ

while the translation vector can be written as

eT ¼ eWð eTS þ eTW1Þ þ eTW2: ð22Þ

As in the previous section, the ideal transformation
matrix eM for any simplex not controlled by a twist line is set
to the identity, with ideal translation vector is zero.

Fig. 19 gives an example of twisting the neck of the
Dinopet model by 90 degrees. A twist axis is used along the
neck. However, the whole head needs to turn through
the same constant angle. This is achieved by placing a
second control line, which extends the first into the head,
with a constant twist along its length equal to the twist at
the top of the neck.

704 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Fig. 18. (a) Armadillo model and control line. (b) Deformed Armadillo.

Fig. 19. Twisted Dinopet: (a) control lines, (b) original model,

(c) twisted model.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

8 CONCLUSION AND FUTURE WORK

We have presented an improved mesh deformation method,
which combines the skeleton-based and simplex transformation
approaches. We first determine the transformation for bones
of the skeleton and then transfer each bone’s transformation
to those triangles it controls. The correspondence between
simplices and bones is determined automatically. We use an
optimization method to ensure connectivity between trian-
gles controlled by different bones while keeping the mesh
deformation as close as possible to the deformation of the
skeleton. Our method can be used to deform a mesh using
control lines and twist axes.

We may also control the deformation of a mesh by only

moving a few vertices, rather than a skeleton or line segments.

In this case, we simply set the transformation matrix eM to the

identity matrix and translation vector eT to zero for all

triangles. Fig. 20 shows deformation of a moon shape by

choosing new positions for a few constrained vertices: the

blue points identify the original and deformed positions of

these constrained points. If large rotations or scaling exist, this

simple approach does not work well since the identity matrix

is far from the real transformation matrix. However, many

other previous methods have given ways to modify local

intrinsic attributes—see [10], [11], and [12]. These methods

could be extended to modify the transformation matrix and

translation vector to be used in conjunction with our vertex

constraint deformation method. However, investigating such

possibilities is outside the scope of this paper, and we intend

to consider them in future.

ACKNOWLEDGMENTS

The authors would like to thank Stanford University,
Cyberware, and AIM@SHAPE for providing the 3D models
and Peng Jiang, Gwenael Allard, Yi-Fei Zhang, and Yu Zang
for their kind help. They also thank Craig Gotsman, Tao Ju,
Jovan Popovic, and Robert Sumner for helpful discussions.
They appreciate the suggestions of the anonymous reviewers.
This work was supported by the National Basic Research
Project of China (Project 2006CB303106), the National High
Technology Research and Development Program of China
(Project 2007AA01Z336), and the Natural Science Foundation
of China (Project 60673004 and 60333010).

REFERENCES

[1] H.-B. Yan, S.-M. Hu, and R. Martin, “Skeleton-Based Shape
Deformation Using Simplex Transformations,” Proc. 24th Computer
Graphics Int’l Conf. (CGI ’06), Advances in Computer Graphics,
pp. 66-77, 2006.

[2] T.W. Sederberg and S.R. Parry, “Free-Form Deformation of Solid
Geometric Models,” Computer Graphics (Proc. ACM SIGGRAPH
’86), vol. 20, no. 4, pp. 151-160, 1986.

[3] S. Coquillart, “Extended Free-Form Deformation: A Sculpturing
Tool for 3D Geometric Modeling,” Computer Graphics (Proc. ACM
SIGGRAPH ’90,) vol. 24, no. 4, pp. 187-196, 1990.

[4] F. Lazarus, S. Coquillart, and P. Jancène, “Axial Deformations: An
Intuitive Deformation Technique,” Computer Aided Design, vol. 26,
no. 8, pp. 607-613, 1994.

[5] K. Singh and E. Fiume, “Wires: A Geometric Deformation
Technique,” Proc. ACM SIGGRAPH ’98, pp. 405-414, 1998.

[6] D. Zorin, P. Schöder, and W. Sweldens, “Interactive Multi-
resolution Mesh Editing,” Proc. ACM SIGGRAPH ’97, pp. 249-
268, 1997.

[7] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel,
“Interactive Multi-Resolution Modeling on Arbitrary Meshes,”
Proc. ACM SIGGRAPH ’98, pp. 105-114, 1998.

[8] I. Guskov, W. Sweldens, and P. Schroder, “Multiresolution Signal
Processing for Meshes,” Proc. SIGGRAPH ’99, pp. 325-334, 1999.

[9] M. Alexa, “Differential Coordinates for Local Mesh Morphing and
Deformation,” The Visual Computer, vol. 19, no. 2, pp. 105-114,
2003.

[10] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and
H.-P. Seidel, “Differential Coordinates for Interactive Mesh
Editing,” Proc. Shape Modeling Int’l, pp. 181-190, 2004.

[11] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and
H.-P. Seidel, “Laplacian Surface Editing,” Proc. Eurographics/
ACM SIGGRAPH Symp. Geometry Processing, pp. 179-188, 2004.

[12] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh Editing with Poisson-Based Gradient Field Manipulation,”
ACM Trans. Graphics (Proc. ACM SIGGRAPH ’04,) vol. 23, no. 3,
pp. 644-651, 2004.

[13] K. Zhou, J. Huang, J. Snyder, X.-G. Liu, H.-J. Bao, B.-N. Guo,
and H.-Y. Shum, “Large Mesh Deformation Using the
Volumetric Graph Laplacian,” ACM Trans. Graphics (Proc.
ACM SIGGRAPH ’05), vol. 24, no. 3, pp. 496-503, 2005.

[14] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A Fast Multigrid
Algorithm for Mesh Deformation,” ACM Trans. Graphics (Proc.
ACM SIGGRAPH ’06), vol. 25, no. 3, pp. 1108-1117, 2006.

[15] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao,
B. Guo, and H.-Y. Shum, “Subspace Gradient Domain Mesh
Deformation,” ACM Trans. Graphics (Proc. ACM SIGGRAPH ’06),
vol. 25, no. 3, pp. 1126-1134, 2006.

[16] K. Shoemake and T. Duff, “Matrix Animation and Polar
Decomposition,” Proc. Conf. Graphics Interface, pp. 258-264, 1992.

[17] M. Alexa, D. Cohen-Or, and D. Levin, “As-Rigid-as-Possible
Shape Interpolation,” Proc. ACM SIGGRAPH ’00, pp. 157-165,
2000.

[18] R.-W. Sumner and J. Popovic, “Deformation Transfer for Triangle
Meshes,” ACM Trans. Graphics (Proc. ACM SIGGRAPH ’04),
vol. 23, no. 3, pp. 399-405, 2004.

[19] R.-W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic, “Mesh-
Based Inverse Kinematics,” ACM Trans. Graphics (Proc. ACM
SIGGRAPH ’05), vol. 24, no. 3, pp. 488-495, 2005.

[20] K.G. Der, R.W. Sumner, and J. Popovi�c, “Inverse Kinematics for
Reduced Deformable Models,” ACM Trans. Graphics (Proc. ACM
SIGGRAPH ’06), vol. 25, no. 3, pp. 1174-1179, 2006.

[21] M. Botsch, R. Sumner, M. Pauly, and M. Gross, “Deformation
Transfer for Detail-Preserving Surface Editing,” Proc. Vision,
Modeling and Visualization ’06, pp. 357-364, 2006.

[22] Alias|Wavefront, Learning Maya, Version 3.0. Alias, 2000.
[23] Softimage, Softimage 3D, Animating, User’s Guide. Softimage, 2002.
[24] J.-P. Lewis, M. Cordner, and N. Fong, “Pose Space Deformation: A

Unified Approach to Shape Interpolation and Skeleton-Driven
Deformation,” Proc. ACM SIGGRAPH ’00, pp. 165-172, 2000.

[25] N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann, “Joint-
Dependent Local Deformations for Hand Animation and Object
Grasping,” Proc. Graphics Interface ’88, pp. 26-33, 1988.

[26] A. Mohr, L. Tokheim, and M. Gleicher, “Direct Manipulation of
Interactive Character Skins,” Proc. Symp. Interactive 3D Graphics,
pp. 27-30, 2003.

YAN ET AL.: SHAPE DEFORMATION USING A SKELETON TO DRIVE SIMPLEX TRANSFORMATIONS 705

Fig. 20. (a) Original moon and vertex positions. (b) Deformed moon.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

[27] B. Allen, B. Curless, and Z. Popovic, “Articulated Body Deforma-
tion from Range Scan Data,” ACM Trans. Graphics (Proc. ACM
SIGGRAPH ’02), vol. 21, no. 3, pp. 612-619, 2002.

[28] D.L. James and C.D. Twigg, “Skinning Mesh Animations,”
ACM Trans. Graphics, (Proc. ACM SIGGRAPH ’05), vol. 24,
no. 3, pp. 399-407, 2005.

[29] X.-H.C. Wang and C. Phillips, “Multi-Weight Enveloping:
Least-Squares Approximation Techniques for Skin Animation,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation,
pp. 129-138, 2002.

[30] T. Rhee, J. Lewis, and U. Neumann, “Real-Time Weighted Pose-
Space Deformation on the GPU,” Computer Graphics Forum, vol. 25,
no. 3, pp. 439-448, 2006.

[31] P.G. Kry, D.L. James, and D.K. Pai, “Eigenskin: Real Time Large
Deformation Character Skinning in Hardware,” Proc. ACM
SIGGRAPH ’02, pp. 253-260, 2002.

[32] L. Wade and R.E. Parent, “Automated Generation of Control
Skeletons for Use in Animation,” The Visual Computer, vol. 18,
no. 2, pp. 97-110, 2002.

[33] P.-C. Liu, F.-C. Wu, W.-C. Ma, R.-H. Liang, and M. Ouhyoung,
“Automatic Animation Skeleton Construction Using Repulsive
Force Field,” Proc. Pacific Graphics, pp. 409-413, 2003.

[34] A. Verroust and F. Lazarus, “Extracting Skeletal Curves from 3D
Scattered Data,” The Visual Computer, vol. 16, no. 1, pp. 15-25, 2000.

[35] S. Katz, G. Leifman, and A. Tal, “Mesh Segmentation Using
Feature Point and Core Extraction,” The Visual Computer, vol. 21,
no. 8-10, pp. 649-658, 2005.

[36] T.-Y. Lee, Y.-S. Wang, and T.-G. Chen, “Segmenting a Deforming
Mesh into Near-Rigid Components,” The Visual Computer, vol. 22,
no. 9-10, pp. 729-739, 2006.

[37] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R.R. Martin, “Feature
Sensitive Mesh Segmentation,” Proc. ACM Symp. Solid and Physical
Modeling, pp. 7-16, 2006.

[38] S. Berretti, A.D. Bimbo, and P. Pala, “Partitioning of 3D Meshes
Using Reeb Graphs,” Proc. 18th Int’l Conf. Pattern Recognition,
pp. 19-22, 2006.

[39] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” ACM Trans. Graphics (Proc. ACM
SIGGRAPH ’03), vol. 22, no. 3, pp. 954-961, 2003.

[40] J.-M. Lien, J. Keyser, and N.M. Amato, “Simultaneous Shape
Decomposition and Skeletonization,” Proc. ACM Solid and Physical
Modeling Symp., pp. 219-228, 2005.

[41] N.D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian,
“Computing Hierarchical Curve-Skeletons of 3D Objects,” The
Visual Computer, vol. 21, no. 11, pp. 945-955, 2005.

[42] X.-T. Li, T.-W. Woon, T.-S. Tan, and Z.-Y. Huang, “Decomposing
Polygon Meshes for Interactive Applications,” Proc. ACM Symp.
Interactive 3D Graphics ’01, pp. 35-42, 2001.

[43] D. Reniers and A. Telea, “Skeleton-Based Hierarchical Shape
Segmentation,” Proc. IEEE Int’l Conf. Shape Modeling and Applica-
tions, pp. 179-188, 2007.

[44] N.D. Cornea, D. Silver, and P. Min, “Curve-Skeleton Properties,
Applications, and Algorithms,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 3, pp. 530-548, May/June 2007.

[45] J. Bloomenthal, “Medial-Based Vertex Deformation,” Proc. ACM
SIGGRAPH ’02/Eurographics Symp. Computer Animation, pp. 147-
151, 2002.

[46] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Skeleton-Based
Variational Mesh Deformations,” Computer Graphics Forum,
vol. 26, no. 3, pp. 255-264, 2007.

[47] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, and J. Rodgers,
“Scape: Shape Completion and Animation of People,” ACM Trans.
Graphics (Proc. ACM SIGGRAPH ’05), vol. 24, no. 3, pp. 408-416,
2005.

[48] R.Y. Wang, K. Pulli, and J. Popovi�c, “Real-Time Enveloping
with Rotational Regression,” ACM Trans. Graphics, (Proc. ACM
SIGGRAPH ’07), vol. 26, no. 3, pp. 73-1-73-9, 2007.

[49] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman, “Context-
Aware Skeletal Shape Deformation,” Computer Graphics Forum
(Proc. Eurographics ’07), vol. 26, no. 3, pp. 265-273, 2007.

[50] H.-B. Yan, S.-M. Hu, and R.R. Martin, “Morphing Based on Strain
Field Interpolation,” Computer Animation and Virtual Worlds,
vol. 15, nos. 3-4, pp. 443-452, 2004.

[51] Y. Kho and M. Garland, “Sketching Mesh Deformations,” Proc.
Symp. Interactive 3D Graphics and Games, pp. 147-154, 2005.

Han-Bing Yan received the PhD degree from the
Department of computer science and technol-
ogy, Tsinghua University, China, in 2006. He is
currently with the National Computer Network
Emergency Response Technical Team/Coordi-
nation Center of China and the Department of
Computer Science and Technology, Tsinghua
University, Beijing. His research interests include
computer graphics, computer animation, compu-
ter network security, and information security.

Shi-Min Hu received the PhD degree from
Zhejiang University in 1996. He is currently a
chair professor of computer science at Tsinghua
University. His research interests include digital
geometry processing, video processing, render-
ing, computer animation, and computer-aided
geometric design. He is on the editorial boards
of Computer Aided Design. He is a member of
the IEEE and the IEEE Computer Society.

Ralph R. Martin received the PhD degree from
Cambridge University in 1983. He is currently a
professor at Cardiff University. He has published
more than 170 papers and 10 books, covering
such topics as solid and surface modeling,
intelligent sketch input, geometric reasoning,
reverse engineering, and various aspects of
computer graphics. He is on the editorial boards
of Computer Aided Design and the International
Journal of Shape Modelling.

Yong-Liang Yang received the bachelor’s
degree in computer science from Tsinghua
University in 2004. He is currently working
toward the PhD degree in the Department of
Computer Science and Technology, Tsinghua
University. His research interests include com-
puter graphics and geometric modeling and
processing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

706 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

