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Abstract—This paper presents a novel basis function, called spherical piecewise constant basis function (SPCBF), for precomputed

radiance transfer. SPCBFs have several desirable properties: rotatability, ability to represent all-frequency signals, and support for

efficient multiple product. By smartly partitioning the illumination sphere into a set of subregions and associating each subregion with an

SPCBF valued 1 inside the region and 0 elsewhere, we precompute the light coefficients using the resulting SPCBFs. Efficient rotation of

the light representation in SPCBFs is achieved by rotating the domain of SPCBFs. During runtime rendering, we approximate the BRDF

and visibility coefficients using the set of SPCBFs for light, possibly rotated, through fast lookup of summed-area table (SAT) and visibility

distance table (VDT), respectively. SPCBFs enable new effects such as object rotation in all-frequency rendering of dynamic scenes and

on-the-fly BRDF editing under rotating environment lighting. With graphics hardware acceleration, our method achieves real-time

frame rates.

Index Terms—Real-time rendering, precomputed radiance transfer, spherical piecewise constant basis functions.

Ç

1 INTRODUCTION

REAL-TIME realistic global illumination for static or dynamic
scenes under dynamic environment lighting is a challen-

ging problem. The difficulty lies in fast computation of per-
vertex integration of lighting functions (represented by
irradiance environment maps), BRDF, and (self and/or
occluder) visibility functions over the hemisphere of lighting
directions. The precomputed radiance transfer (PRT) techni-
que [1] and its variants [2], [3], [4], [5] have demonstrated their
great ability in real-time rendering of complex scenes under
dynamic environment lighting. They employ different kinds
of basis functions to approximately represent light, BRDF,
and visibility functions, thus making precomputation mem-
ory affordable and simplifying the expensive rendering
integrals to simple and fast dot/multiple products.

There are three desirable properties that basis functions
for PRT should possess. First, the basis functions should be
able to effectively approximate all-frequency signals,
providing all-frequency shadowing effects using only a
low-order basis. Second, they should support efficient

rotation, which has different significance for light, BRDF,
and occluder-visibility functions. Efficient rotation of the
light representation under a basis enables the efficient
rotation of environment lighting. Efficient rotation of the
BRDF representation enables separate storage of BRDF from
a model (instead of storing one BRDF per vertex) and
efficient rotation of BRDF from the local frame at each
vertex to the global frame, thus supporting on-the-fly BRDF
editing. Efficient rotation of the occluder-visibility repre-
sentation enables the occluder-visibility function to be
efficiently rotated from the local frame at an object to the
global frame, thereby allowing rotatable objects in dynamic
scenes. Third, they should support efficient multiple
product. This property is crucial for dynamic scene
rendering, which involves multiple products between light,
BRDF, self-visibility, and occluder-visibility functions.

Several kinds of basis functions have been proposed
for PRT in past years such as spherical harmonics (SH)
[1], wavelet [2], [3], spherical radial basis functions
(SRBFs) [5]. However, each one of them lacks certain
desirable properties, as summarized in Table 1 (see more
details in Section 2).

In this paper, we present a novel spherical basis
representation for PRT, called spherical piecewise constant
basis functions (SPCBFs), which possess all the abovemen-
tioned three desirable properties (Section 3). The key idea is
stated as follows: We first partition a unit sphere on which
light, BRDF, and visibility functions are all defined into a
common set of subregions and associate each subregion
with an SPCBF valued 1 within the subregion and 0 outside
it. The resulting SPCBFs naturally form an orthogonal basis.
Then, we approximate the integrands in the rendering
integral with piecewise constant functions, which are all
represented in the same SPCBF basis. The apparent
advantage of representing the integrands with the SPCBFs
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is that, the rendering integral can then be approximated by
efficient multiple products between the individual coeffi-
cients of the integrands under the basis.

SPCBFs can represent all-frequency signals. However,
not all arbitrary SPCBFs are suitable for all-frequency PRT
rendering. As the environment light is considered distant
and thus is the same for every object point in the scene, we
choose to use the environment map to define the partition
of the unit sphere (that is, the domain of the SPCBFs with
which the BRDF and visibility functions are also repre-
sented). Inspired by importance sampling [6], we partition
the sphere according to the light energy; specifically,
regions with high light intensity are partitioned into small
subregions. Such a deliberate partitioning guarantees that
the resulting SPCBFs are able to represent all-frequency
signals of a given environment map, and yet, the
representation is compact.

Rotating functions in SPCBFs representation can be
easily done by rotating the domain of SPCBFs. However,
as the BRDF and visibility functions are represented with
the same set of SPCBFs as those defined over the
environment map, when the light is rotated, the coefficients
of BRDF and visibility functions in SPCBFs representation
need to be recomputed over the rotated SPCBFs. Recompu-
tation of these coefficients is very time consuming. We
propose to precompute summed-area table (SAT) and
visibility distance tables (VDTs) for BRDF and visibility
integration, respectively. At runtime rendering, we approx-
imate the coefficients of BRDF and visibility by fast lookup
of SAT and VDTs, respectively. With this strategy of
precomputing the light coefficients and runtime approx-
imating the BRDF and visibility coefficients, our method
supports efficient rotation of light, BRDF, and visibility.

Our rendering algorithm involves two approximations.
Roughly speaking, we first approximate the environment
map using disjoint area light sources of constant intensity.
We then use SAT/VDT to approximate the integral of
BRDF/Visibility with respect to each area light source.
Although the individual errors introduced by the BRDF and
visibility representations are possibly large, they will be
significantly weakened by the small light coefficient, thanks
to our importance-sampling-like partitioning of the envir-
onment map. Thus, our method always produces compel-
ling rendering results.

In summary, our main contributions consist of the
following:

. A novel basis for PRT that possesses rotatability, the
ability to represent all-frequency signals, and sup-
port for efficient multiple product.

. A real-time PRT rendering framework that supports
new effects, in particular

– all-frequency rendering of dynamic scenes
involving both object rotation and translation,
and

– on-the-fly BRDF editing under rotating environ-
ment lighting,

and is capable of incorporating existing challenging
effects such as

– local light illumination, and
– local deformable shading.

2 RELATED WORK

In this section, we first discuss the existing PRT techniques
for static and dynamic scenes and, then, give a brief review
of SAT.

2.1 Precomputed Radiance Transfer for
Static Scenes

PRT framework for environment light rendering was first
proposed by Sloan et al. [1]. The rationale of PRT is to
represent the environment light and the light transport
function with a certain linear basis, thus making precom-
putation storage affordable and, meanwhile, approximating
the computationally expensive rendering integral at each
vertex of a scene with a simple dot product of the
coefficients of the basis.

SH is the first type of basis used in PRT rendering. It has
several attractive properties such as orthonormality, rota-
tional-invariance projection, and support of efficient multi-
ple products. The resulting PRT frameworks [1], [7], [8] are
effective in real-time rendering of static scenes under
dynamic low-frequency environment maps. However, as
SH cannot effectively approximate high-frequency signals,
these frameworks can only handle low-frequency shadow-
ing effects and low-frequency materials (BRDF).

Wavelet bases can encode functions at all frequencies in a
compact way. Ng et al. [2] propose a nonlinear wavelet
lighting approximation technique to perform all-frequency
PRT rendering of glossy objects with fixed views or diffuse
objects. Using an efficient triple product wavelet algorithm
[3] or BRDF factorization [9], [10], wavelet-based PRT
frameworks allow high-resolution lighting effects with
changing views. However, unlike SH, wavelet representa-
tions cannot be easily rotated, making efficient rotation of
light, BRDF, and visibility difficult. For example, the rotation
of an environment map requires reprojection of the environ-
ment map to the wavelet basis, which may cause flickering
artifact. To address the problem, Wang et al. [11] give a
computational wavelet rotation method by precomputing
rotation matrices. However, due to large data storage, their
method can only sample rotation matrices at 2D normal
directions, which is insufficient for the 3D rotation space and
thus does not support arbitrary wavelet rotation.

Tsai and Shih [5] propose to use SRBFs for PRT. They
find a compact set of SRBFs to represent for high-frequency
signals of environment light through an optimization
process. Similar to the rotation of functions in our SPCBFs
representation, rotating the functions represented with
SRBFs is achieved by rotating the SRBFs themselves. Unlike
ours, their method employs different sets of SRBFs for the
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light, BRDF, and visibility functions and thus does not need
to change the SRBF representations of BRDF and visibility
functions when the light rotates. However, a combined set
of SRBFs is generally not orthogonal. To our best knowl-
edge, the product of triple or multiple functions represented
with nonorthogonal SRBFs cannot be efficiently calculated,
limiting their method to only static scenes.

Green et al. [12] present a real-time method with
complex view-dependent effects under all-frequency en-
vironment lighting. They approximate the light transport
function as a summation of Gaussian functions, which leads
to a fast convolution with the lighting function at render
time. Their method models high-frequency specular effects
well, but it is unclear how their method can produce high-
frequency shadows.

Recently, Xu et al. [13] propose a real-time homogenous
translucent material editing method. They utilize a 1D
piecewise polynomial basis to approximate the multiple
scattering diffusion reflectance function and the single
scattering exponential attenuation function. However, their
focus is on translucent materials and the method is limited
to approximating 1D curves.

2.2 PRT for Dynamic Scenes

PRT rendering for dynamic scenes is a hard problem
because the movement of objects invalidates the precom-
puted light transport function. Mei et al. [14] present a real-
time rendering method for dynamic glossy objects under
all-frequency environment lighting. Their method is based
on the precomputation of shadow maps under the
assumption that the illuminants are distant.

Zhou et al. [4] introduce a shadow field framework for
rendering dynamic scenes with both distant illuminants
and local light sources. Each occluder’s shadowing effects
are precomputed and stored in the SH or wavelet basis at
the sample points of the occluder’s surrounding space. The
irradiance map of each local light is precomputed in a
similar way. Their approach enables real-time low-fre-
quency shadowing effects (if using the SH basis) and
interactive all-frequency shadowing effects of dynamics
scenes (if using the wavelet basis). Because the occluder
visibility vector in SH can be efficiently rotated to global
frame due to the rotatability of SH, their approach also
supports rotation of objects in low-frequency lighting
environments. Sun and Mukherjee [15] extend the dot or
triple product to a generalized multifunction product in the
wavelet domain. They also propose a just-in-time radiance
transfer (JRT) technique to accelerate shadow computation.
Their method renders all-frequency shadows of dynamic
scenes in real time. As the wavelet representation cannot be
easily rotated, none of the above techniques can handle real-
time rendering of rotating objects in all-frequency lighting
environments.

The amount of PRT data sets can be extremely large and
thus infeasible to store, especially for dynamic scene
rendering. Exploiting intervertex data coherence, several
compression techniques have been proposed [16] such as
clustered principle component analysis (CPCA) [7] and
clustered tensor approximation (CTA) [5]. We adopt CPCA
to compress the PRT data sets.

2.3 Summed-Area Table

Crow [17] introduces the SAT for rapid box filtering

(averaging) in texture mapping. Its usage is later extended

to volume rendering, image and video processing (see [18]

and references therein). As illustrated in Fig. 1, by

preintegrating the top-left rectangular area corresponding

to each sample point, the integral in a rectangle area R

defined by ðl; r; t; bÞ can be rapidly computed with four

lookups: Z
R

fðx; yÞdxdy ¼SAT ðr; bÞ � SAT ðl; bÞ

� SAT ðr; tÞ þ SAT ðl; tÞ:
ð1Þ

When SAT is implemented in graphics hardware, a

precision problem occurs, which can be alleviated with

techniques proposed in [18].
The remainder of this paper is organized as follows: We

introduce the definition of SPCBFs and their properties in

Section 3. We give the overview of the proposed PRT

rendering framework with SPCBFs in Section 4 and

describe the algorithm details in Section 5. After presenting

the implementation details in Section 6, we analyze the

rendering errors of our method in Section 7. Results are

given in Section 8 and conclusion and future work in

Section 9.

3 SPHERICAL PIECEWISE CONSTANT BASIS

FUNCTIONS

In this section, we state the definition of SPCBFs and

discuss their general properties. The PRT framework using

SPCBFs is introduced in the next section.

3.1 Definition

Given a partition fS1; S2; . . . ; Sng of a unit sphere S (that is,

S ¼ S1 [ S2 [ � � � [ Sn, and Si \ Sj ¼ ; for any i 6¼ j), for

each subregion Si, we define a spherical function valued 1

inside Si and 0 elsewhere as an SPCBF Bið!Þ. The set

fBið!Þg forms an orthogonal basis for a function space

defined over the sphere. Any function F ð!Þ in this function

space is called a spherical piecewise constant function (SPCF)

and thus can be represented as a linear combination of the

basis functions fBið!Þg:

F ð!Þ ¼
X
i

ciBið!Þ;

where ci is the coefficient corresponding to the ith basis

function Bið!Þ.
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3.2 Projection and Reconstruction

Due to the orthogonality of fBið!Þg, a scalar function Gð!Þ
defined over the sphere S can be projected into its

coefficients via an integral of Gð!Þ over each subregion Si:

ci ¼
1

Sij j

Z
S

Gð!ÞBið!Þd! ¼
1

Sij j

Z
Si

Gð!Þd!; ð2Þ

where jSij denotes the solid angle of Si.
An approximation of Gð!Þ reconstructed from the

coefficients can be formulated as

Gð!Þ �
X
i

ciBið!Þ;

which approximates the spherical function well by design-

ing a partition of the sphere specific to Gð!Þ (that is,

defining a set of SPCBFs fBið!Þg specific to Gð!Þ).

3.3 Properties

All-frequency. Given a spherical function to be encoded, a

partition of the sphere S (that is, the locations and shapes of

the subregions) can be optimized to fit the function well.

The spatial localization property of SPCBFs allows both

high-frequency and low-frequency signals to be repre-

sented effectively using only a small number of coefficients.
Rotation. SPCBFs support efficient rotation. Rotating

functions represented with SPCBFs can be equivalently

done by rotating the partitioned subregions. Formally,

given a spherical function in SPCBF representation

Gð!Þ �
P

i ciBið!Þ, the reconstruction function G0ð!Þ ro-

tated by R can be represented by

RðGð!ÞÞ � R
X
i

ciBið!Þ
 !

¼
X
i

ciRðBið!ÞÞ ¼
X
i

ciB
0
ið!Þ;

where fB0ið!Þg are the SPCBFs defined over the partition

rotated by R. Once the SPCBFs are rotated, we propose to

use the precomputed SAT/VDT, making the reprojection of

BRDF/visibility to the rotated SPCBFs efficient.
Multiple product. Unlike the SH or wavelet basis, which

needs different methods to compute dot product and

triple/multiple product, SPCBFs support a uniform scheme

to compute them. This is because SPCBFs not only are

orthogonal, implying
R
Bið!ÞBjð!Þd! ¼ 0, for any i 6¼ j, but

also satisfy
R
Bi1ð!ÞBi2ð!Þ � � �Bilð!Þd! ¼ 0, l � 3, when there

exists ij 6¼ ik.
Formally, given a set of spherical functions

G1ð!Þ; G2ð!Þ; . . . ; Gmð!Þ, m � 2 and their representations

in the same set of SPCBFs fBið!Þg:

Gjð!Þ �
X
i

cj;iBið!Þ; 1 � j � m;

the integral of the function products can be approximated

by Z
G1ð!ÞG2ð!Þ . . .Gmð!Þd! �

X
i

Sij jc1;ic2;i . . . cm;i: ð3Þ

In other words, the integration of the product of multiple

functions reduces to a multiple product of their coefficients.

4 OVERVIEW

Without considering interreflection, the rendering equation
for environment map illumination of static scenes [19] is
formulated as

Eðx; !0Þ ¼
Z
S

Lð!Þ�ðx; !; !0ÞV ðx; !Þd!;

where Eðx; !0Þ is the outgoing radiance at a point x of the
scene to be illuminated in direction !0, Lð!Þ is the incident
radiance in direction !, and � and V denote the 4D BRDF
function and the self-visibility function at x, respectively. By
incorporating occluder visibility, Zhou et al. [4] present a
shadow field framework for rendering of dynamic scenes.
The new rendering equation becomes

Eðx; !0Þ ¼
Z
S

Lð!Þ�ðx; !; !0ÞV ðx; !Þ
Y
j

VOj
ðx; !Þd!; ð4Þ

where VOj
is the occluder-visibility function for an opaque

object j at location x.

4.1 PRT Representation in SPCBFs

We approximate the light, BRDF, self-visibility and occlu-
der-visibility functions using the same set of SPCBFs.
Because the environment light is distant and, thus, the
same for all vertices of a scene, we define the partition fSig
of the sphere S and, thus, SPCBFs fBið!Þg, according to the
environment map. With this basis, the integrands in (4) can
be approximated as follows (see a 1D illustration in Fig. 2):

Lð!Þ �
X
i

liBið!Þ;

�ðx; !; !oÞ �
X
i

�x;!o;iBið!Þ;

V ðx; !Þ �
X
i

vx;iBið!Þ;

VOj
ðx; !Þ �

X
i

vOj;x;iBið!Þ;

where li, �x;!o;i, vx;i, and vOj;x;i are the coefficients of the
light, BRDF, self-visibility and occluder-visibility functions
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column shows the corresponding SPCBF representations.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on January 4, 2009 at 11:04 from IEEE Xplore.  Restrictions apply.



in SPCBFs, respectively. Using the multiple product
integration equation of SPCBFs (3), the rendering integra-
tion for dynamic scenes in (4) reduces to a multiple product
between light, BRDF, self-visibility and occluder visibility
coefficients:

Eðx; !0Þ �
X
i

Sij j li�x;!o;ivx;i
Y
j

vOj;x;i

 !
: ð5Þ

4.2 Precomputation

When the environment map needs rotates, we correspond-
ingly rotate the partition, implying that the light coefficients
li remain unchanged (see the rotation property of SPCBFs in
Section 3). However, as the coefficients li, �x;!o;i, vx;i and
vOj;x;i are defined over the same partition of the environ-
ment map, the BRDF and visibility coefficients have to be
recomputed when the SPCBFs are rotated caused by the
rotation of the partition. The recomputation of these
coefficients is very time consuming, requiring us to seek a
precomputation method. Naive precomputation of these
coefficients for all the possible rotations of the partition is
infeasible due to the unwieldy size of the data sets.

Computing the coefficient with respect to Bið!Þ for a
specific function is equivalent to integrating that function
over Si (2). Therefore, to make the precomputation storage
affordable, we employ SAT for BRDF preintegration and
employ VDT for visibility preintegration. The efficient
rotatability of SPCBFs allows us to precompute VDT in
the local frame at each vertex and a global BRDF SAT,
which leads to more compact storage.

Rather than directly store the coefficients, SAT and VDT
employ lookups to compute them. To fast evaluate the
coefficients by simple lookups (1), we parameterize Si and
fit the preimage of Si in the parameter domain, Ci, with an
axis-aligned rectangle Ri (Fig. 3). Let fx : !! p be a
mapping from the hemisphere determined by the local

frame at a given object vertex x to the 2D parameter plane
(Fig. 3), where ! is a 3D direction in the global frame, and p

is a 2D point in the parameter domain. Since the partition
allows rotations of any angle to reduce the fitting error
between Ri and Ci ¼ fxðSiÞ, intuitively, we prefer Si and Ri

of aspect ratio equal to 1. Therefore, we use an axis-aligned
square Ri to compute the coefficients corresponding to Si.
Let ci be the centroid of Si. For a given object vertex x, Ri is
then identified as an axis-aligned square Rxðci; riÞ, whose
respective center and size are fxðciÞ and

ffiffiffi
2
p

ri. Note that we

use a unique pair of parameters hci; rii to represent each
subregion Si.

In summary, the tasks done in the precomputation stage
are listed as follows:

1. Given an environment map, we simultaneously
compute the partition of the illumination sphere
and the parameters hci; rii for each subregion Si
through a bottom-up optimization algorithm to
make two sources of errors tractable (Section 5.1).
The light coefficients li are also computed using (2)
during the optimization.

2. We precompute VDT for visibility (Section 5.3) in the
local frame at each vertex and a global SAT for BRDF
(Section 5.2).

4.3 Runtime Rendering

During runtime rendering, the following steps are
performed:

1. When the environment light rotates, we keep ri and
li unchanged and rotate ci according to the rotation
transformation of the environment light. Let c0i be the
resulting direction by rotating ci.

2. At each vertex x, we compute �x;!o;i for each
subregion Si by fast lookup of SAT (Section 5.2)
and compute vx;i and vOj;x;i by fast lookup of VDT
(Section 5.3) using the axis-aligned square Rxðc0i; riÞ.

1

3. We sum the multiple products of li, �x;!o;i, vx;i, and
vOj;x;i over all the subregions to approximate the
outgoing radiance Bðx; !0Þ at point x in direction
!0 (5).

5 ALGORITHM

We give the details of the SPCBF-based PRT rendering
algorithm in this section. We first describe an approach to
partition an environment map (Section 5.1). We then
explain how to precompute and runtime look up SAT for
BRDF (Section 5.2) and VDT for visibility (Section 5.3).

5.1 Environment Map Partitioning for SPCBF
Construction

Our PRT rendering algorithm involves two approximation
steps: The approximation of the rendering integral by a
multiple product of the integrands in SPCBFs and the
approximate representation of each subregion Si with
hci; rii. The approximation errors of both steps are highly
dependent on the partition of the environment map. In this
section, we first define two metrics (that is, �i and �i) to
measure these two sources of approximation errors for a
given subregion Si. We then present a bottom-up algorithm
to partition the environment map under the guidance of
these error metrics.

According to the definition of SPCBFs, we associate

each subregion Si with an SPCBF Bið!Þ. The light

coefficient corresponding to Bið!Þ is then computed as

li ¼ 1
jSij
R
Si
Lð!Þd!. We use the variance �2

i of the light

intensity within Si to measure the approximation error of
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1. The coefficients computed by looking up SAT or VDT are essentially
only the approximate coefficients under the original set of SPCBFs.

Fig. 3. (a) We define a mapping fx from the hemisphere determined by
the local frame at a vertex x to the 2D parameter plane. (b) Then, we
approximate a subregion Si by the preimage of an axis-aligned
rectangular region Ri in the parameter domain under fx.
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representing the light function with an SPCF liBið!Þ
within Si.

Since the BRDF and visibility functions are dependent on
rotation of the partition, and thus are not fixed with respect
to Si, we cannot give an exact representation to measure the
approximation errors of BRDF and visibility caused by
SPCBF representations. Fortunately, what we really care for
is largely the expected approximation error of representing
the rendering integral with a multiple product of the
integrands in SPCBFs, rather than the representation error
of each integrand. Clearly, to reduce the expected approx-
imation error, we need to restrict subregions with high-
intensity light to small areas while allowing subregions
with low-intensity light to have large areas, that is, we
prefer small values of jSijli. Therefore, we use the following
metric to measure the expected approximation error of
representing the rendering integral with a multiple product
of the coefficients in SPCBFs:

�i ¼ jSij li �2
i :

In a sense, our strategy is similar to the strategy of sampling
environment map based on importance proposed by
Agarwal et al. [6].

Now, we explain how to define a metric �i to measure
the fitting error of representing the shape of the subregion
Si with hci; rii. We set ci as the centroid of Si and aim to find
an optimal value of ri that results in the minimum fitting
error. Let Ui ¼ [x2�f

�1
x ðRxðci; riÞÞ denote the union of the

preimages of the axis-aligned squares Rxðci; riÞ at every
position x of a model surface � under the mapping fx.
Intuitively, Ui is the circular region covered when rotating a
rectangle-like shape around the center ci. For a direction !
within Ui, the probability that ! is covered by f�1

x ðRxðci; riÞÞ
at a certain position x, denoted by �ið!Þ, is different.
Specifically, the probability �ið!Þ is only related to the
distance between ! and ci and can be approximated as

�ið!Þ �
1; ratioð!Þ < ratio0;
ratioð!Þ�ratio0

ratio1�ratio0
; ratio0 < ratioð!Þ < ratio1;

0; ratioð!Þ > ratio1;

8<
:

where ratioð!Þ ¼ j!� cij=ri, and ratio0 and ratio1 are the
minimum and maximum values of ratioð!Þ among all
x 2 Ui, respectively.2 Due to the different covering prob-
ability �ið!Þ within Ui, using only the boundaries of Si and
Ui are not sufficient to define the approximation error �i of
representing Si with hci; rii. Therefore, we propose to define
�i by minimizing the area difference between Ui and Si
weighted by the covering probability �ið!Þ in a least-
squares sense:

�i ¼ min
ri

Z
Si

�ið!Þ ðTið!Þ � 1Þ2 þ ð1� �ið!ÞÞ T 2
i ð!Þ d!;

where Si ¼ Si [ Ui, and Tið!Þ ¼ 1 if ! 2 Si, and 0 otherwise.
We iterate over a finite number of possible values to find
the optimal value of ri.

We aim to find a partition of the environment map that
minimizes

P
i �i�

t
i , where t is a scalar to control the relative

importance of �i and �i for guiding the partitioning

(experiments show that t ¼ 0:5 gives best results). An ideal

partition would have the subregions all having equal

energy and each having a corresponding axis-aligned

square in the parameter domain. This minimization

problem is solved by a bottom-up algorithm. Considering

each pixel in the initial environment map as a subregion, we

iteratively merge the subregions under the guidance of �i
and �i. For each iteration, we select two connected

subregions and merge them into one subregion. The

selection criterion is that, among all the candidate subregion

pairs, the newly merged subregion introduces the least

change to the current overall error
P

i �i�
t
i . Each iteration

decreases the number of the current subregions by one.

Therefore, after thousands of iteration steps, we obtain a

prescribed number of subregions. This procedure takes

about 30 seconds for a 6� 32� 32 environment map. The

pseudocode of environment map partitioning is listed in

Algorithm 1.

Fig. 4 shows two examples of partitioning environment

light maps. Note that the regions with high-intensity light

have dense distribution of subregions. This effect is very

similar to the importance sampling strategy [6]. In our

experiments, we found that 20 � 40 subregions are enough

to give compelling rendering results for most kinds of

environment maps.
Besides distant environment maps, our method can also

handle local lights by employing the source radiance field

(SRF) of shadow field framework [4]. At each sample point

around a local light, we partition the recorded radiance map

from that local light to a set of subregions and associate each

subregion with hci; rii. The remaining tasks are similar to

what we do for rendering under environment maps.
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2. ratio0 ¼
ffiffiffi
2
p

=2 and ratio1 ¼ 2 in our adopted hemisphere parameter-
ization method (Section 6.1).
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5.2 BRDF SAT Precomputation and Runtime
Lookup

According to (2), computing the BRDF coefficient �x;!0;i at a
point x is equivalent to integrating the BRDF function
�ðx; !; !0Þ over subregion Si (Fig. 3a). Equivalently, the
integral can be evaluated over the corresponding region Ci
in the 2D parameter domain (Fig. 3b). In addition, as BRDF
is a function of both incoming light direction ! and
outgoing view direction !0 relative to a local orientation at
x, BRDF at the local frame of every vertex is the same.
Therefore, the evaluation of �x;!0;i in the local frame at x can
be formulated as

�x;!0;i ¼
1

Sij j

Z
Si

�ðx; !; !0Þd! ¼
1

Cij j

Z
Ci

�ðp; !00Þdp;

where !00 denotes the view direction !0 rotated to the local
frame at x. We approximate the integral 1

jCij
R
Ci
�ðp; !00Þdp

using the SAT technique as explained below.
In the precomputation step, for each view direction !00,

we preintegrate the SAT of the BRDF function as

SAT ðu; v; !00Þ ¼
Z
Rðu;vÞ

�ðp; !00Þdp;

where ðu; vÞ is a point in the parameter domain correspond-
ing to a light direction in the global frame, and Rðu; vÞ is a
rectangle determined by points ð0; 0Þ and ðu; vÞ (Fig. 1).

Unlike previous related methods [3], [4], [15], which define
the BRDF in the global frame and require 6D BRDF data
storage, our method only needs a global 3D or 4D BRDF SAT,

sinceSAT ðu; v; !00Þ is the same in the local frame at any vertex
x of a scene. For an anisotropic BRDF, we have to tabulate the
view direction !00 over the whole hemisphere, which is 2D, so
the global BRDF SAT is 4D. For an isotropic BRDF, we only
need to tabulate the polar angle of the view direction !00;
therefore, the whole SAT is 3D.

The coefficient �x;!0;i can be approximately evaluated by
the following formula:

�x;!0;i ¼
1

Cij j

Z
Ci

�ðp; !00Þdp �
1

Rij j

Z
Ri

�ðp; !00Þdp;

where Ri ¼ Rxðci; riÞ is the axis-aligned square associated
with Si in the local parameter domain at x. Therefore,
during runtime rendering, �x;!0;i (the integral

R
Ri
�ðp; !00Þdp

over Ri) can be efficiently computed by using only four
lookups of the SAT (1).

Because we compute and store the BRDF SAT indepen-
dently of a scene to be rendered, we achieve the following
benefits. First, we can on-the-fly swap or edit the BRDF of a
model. For analytic BRDFs, given the new parameters, the
BRDF SAT data (a 3D/4D table) can be regenerated on the fly,
achieving interactive editing of BRDF. Second, under the
assumption that visibility integrals are ignored for local
shading, our method can easily handle local deformable
shading effects, as the BRDF integral is computed in local
frame.

5.3 Visibility VDT Precomputation and Runtime
Lookup

Similar to the BRDF integral, the SAT technique is directly
applicable to the fast approximation of the visibility
integrals. However, noticing that visibility data are binary,
we propose a more efficient method to approximate the
visibility integrals, called VDT. In this section, we first
present the idea of approximating the integral of a general
visibility function over a square in the parameter domain
using VDT and then explain how to use the VDT technique
to approximate the self-visibility and occluder-visibility
coefficients efficiently.

Given a 2D visibility map vðpÞ (Fig. 5a), which is a
function of point p in the hemisphere parameterization
domain, the VDT (Fig. 5b) is defined as follows:

VDT ðpÞ ¼ dðpÞ signðpÞ;

where dðpÞ is the nearest distance from point p to the binary-
change boundary of vðpÞ, and signðpÞ ¼ 1 if vðpÞ ¼ 1, and
�1 otherwise. We use the method proposed by Danielsson
[20] to compute dðpÞ. We propose to approximate the
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Fig. 4. Examples of environment map partition. Left column: the original

environment maps. Right column: the partitioned subregions bounded

by green lines.

Fig. 5. VDT definition. (a) A visibility map. (b) The corresponding VDT.
The distance is normalized.
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integral of vðpÞ over the square Rðq; rÞ, which is centered at
q and of size

ffiffiffi
2
p

r, as

1

Rðq; rÞj j

Z
Rðq;rÞ

vðpÞdp � minð1;maxð0; F ðq; rÞÞ; ð6Þ

where F ðq; rÞ ¼
ffiffi
2
p

VDT ðqÞþr
2r approximates the percentage of

points with value 1 in the integral square Rðq; rÞ.
VDT has several advantages. First, only one lookup is

needed for visibility integral approximation, which is four
times faster than the lookup of SAT. Second, unlike SAT, VDT
has no precision problem when used in graphics hardware.
Third, VDT is a continuous signal, which can be compressed
more efficiently while giving fewer artifacts. However, using
VDT to look up an integral is only accurate when the visibility
boundary is a straight line (see a comparison example in
Fig. 10). Nevertheless, our experiments show that rendering
results are acceptable in most cases.

5.3.1 Self-Visibility

Similar to the evaluation of the BRDF coefficients, the self-
visibility coefficient vx;i can be approximated by an integral
over the square Ri ¼ Rxðci; siÞ in the 2D parameter plane of
the hemisphere in the local frame at x:

vx;i ¼
1

Sij j

Z
Si

V ðx; !Þd! � 1

Rij j

Z
Ri

V ðx; pÞdp:

In the precomputation step, we ray trace to compute the
visibility map V ðx; pÞ at each vertex x in its local frame and
generate the corresponding VDT VDT ðx; pÞ (that is, per-
vertex 2D VDT). We call all these tables collectively as the self-
visibility distance field (SVDF). During runtime rendering, we
compute the approximation of vx;i (that is, 1

jRij
R
Ri
V ðx; pÞdp) by

(6) through one lookup of VDT ðx; pÞ.

5.3.2 Occluder Visibility

We employ the shadow field framework [4] to handle
dynamic-scene rendering. Similar to the approximation of
the self-visibility coefficients, we approximately compute
the occluder-visibility coefficient vOj;x;i using the following
formula:

vOj;x;i ¼
1

Sij j

Z
Si

VOj
ðx; !Þd! � 1

Rij j

Z
Ri

VOj
ðx; pÞdp:

In the precomputation step, we compute and store
2D visibility data for each sampled point in the
3D surrounding space of an object using the sampling
method of object occlusion field (OOF) [4]. As our
rendering framework utilizes SPCBFs instead of the SH
or wavelet basis used by Zhou et al. [4], our method
differs from theirs in the following aspects. First, at each
sampled point x around an object Oj, we capture the
visibility map only on the hemisphere defined by the
direction from x to the center of Oj, rather than the
visibility map in the global frame. Second, we store a
VDT instead of a visibility map at each sampled point.
The VDTs at all sampled points are collectively referred
to as the occluder visibility distance field (OVDF). In the
rendering step, we approximate each occluder integral on
the VDTs of the sampled points using (6). Similar to that
in [4], the VDT at an intermediate point is approximated
by a trililnear interpolation of the eight nearest samples.

6 IMPLEMENTATION

We have implemented our rendering algorithm on graphics
hardware. This section presents the implementation details,
including hemisphere parameterization, data compression
and the shader program in GPU.

6.1 Hemisphere Parameterization

We use a variant of the Lambert equal-area parameterization
method mentioned in [21] to parameterize a unit hemisphere,
which is originally used for building an area-preserving
mapping between a unit sphere and a unit disk. Specifically,
we define a one-to-one mapping from a unit hemisphere to a
unit disk through the following mapping function:

ðu; vÞ ¼ fðx; y; zÞ ¼ ðx=
ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

; y=
ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

Þ:

For the convenience of sampling and storage, we extend the
unit disk to a 2�2 square (Fig. 6a).For BRDF andself-visibility
functions, the extended region is valued by 0. For occluder
visibility function, the extended region is valued by 1.

We have also tested cube map parameterization and
hemisphere parameterization [22], but we find that the
Lambert equal-area parameterization gives the least distor-
tion. The cube map parameterization is not area preserving,
and the size of a region changes when mapping from a
sphere to a cube map, leading to noises. The hemisphere
parameterization in [22] produces artifacts when a region
crosses the diagonal of the unit disk.

6.2 Data Compression

Let !0 and ! denote the view and light directions,
respectively, and let �0 denote the polar angle of the view
direction !0. For an isotropic BRDF �ð!; �0Þ, we sample ! at
32� 32 directions of the hemisphere parameterization and
�0 at 32 angles. For an anisotropic BRDF �ð!; !0Þ, we sample
both ! and !0 at 32 � 32 directions. As there is only one
globally stored BRDF SAT, no compression is needed.

The 4D SVDF is precomputed with a sampling rate of
32� 32�N , where 32 � 32 is the size of the VDT at each
vertex, and N is the number of vertices in the scene. The 5D
OVDF is precomputed at 32� 32� ð6� 32� 32Þ � 16,
where 32 � 32 is the VDT size, ð6� 32� 32Þ � 16 is because,
like OOF in [4], we use a cube sampling of 6� 32� 32 to
sample the space around each object on 16 different
concentric spheres with radii ranging from 0:4r to 6r,
where r is the radius of the bounding sphere. As a result,
the data of the SVDF for a 40K vertex mesh is about 160M
(32FP), and the data of the OVDF is about 384M. Both of
them need to be compressed before putting into the GPU.

For SVDF compression, we use the Clustered PCA (CPCA)
method [7]. Taking a 40K vertex model for example, with
256 clusters and eight eigenvectors for each cluster, a
compression ratio of about 1:17(9M) gives a good result.
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Fig. 6. Modified Lambert equal-area parameterization.
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We compress OVDF as follows: For each concentric
sampling sphere (using cube map sampling), we split all the
six faces of the cube map into 2 � 2 segments and obtain
24 segments on each sphere, like in [9]. We use 16 concentric
sampling spheres, resulting in a total of 24� 16 ¼ 384
segments. Each segment is compressed using PCA. With
eight eigenvectors per segment, a compression ratio of
about 1:26(15M) gives a good result.

We pack BRDF, SVDF, and OVDF data into textures to load
into the GPU. For higher accuracy, we use 16FP textures
instead of 8BP. For BRDFs, we pack both isotropic and
anisotropic BRDFs into 3D textures.3 For the compressed
SVDF and OVDF, we pack the eigenvalues and the cluster
indices of the vertices into 2D textures. Eigenvectors of SVDF
and OVDF are packed into 2D and 3D textures, respectively.

We use one more texture to store hci; rii associated with
each partitioned subregion, which is updated after the
rotation of the environment light in each frame.

6.3 Shader Program in GPU

Although our algorithm is a per-vertex rendering method,
we utilize the render-to-vertex-array technique and perform
the rendering process in two steps. In the first step, we pack
the object vertices into a 2D rectangle, with each vertex
corresponding to one pixel in the rectangle, and use a pixel
shader program to calculate the color for each pixel and
render the rectangle to a frame buffer object (FBO). The color
is copied from the FBO to the vertex array using the
OpenGL extension pixel buffer object (PBO). In this step, the
vertex attributes are needed for color calculation at each
vertex; so, we pack the positions, normals, and tangents of
the vertices into a 2D texture. In the second step, we use the
OpenGL extension vertex buffer object (VBO) to render the
scene using the color calculated in the first step. The
pseudocode of the pixel shader is shown in Algorithm 2.

In the shader program, several textures are looked up for
each vertex, namely, attribute texture, BRDF texture,
eigenvalue, cluster index, and eigenvector textures of SVDF
and OVDF. As a result, texture fetching is the bottleneck.
We use occluder culling to accelerate it (as shown in Fig. 7).
To do this, we perform multipass rendering in the first step,
with one pass for each subregion. The resulting images of
each pass are blended together to generate a final image.
Then, before each pass, we determine the occluders that can
be neglected in that pass using CPU, and only send the
remaining occluders to the GPU.

7 ERROR ANALYSIS

7.1 Errors in SPCBF-Based PRT Representation

Previous all-frequency PRT frameworks choose a basis
separately for each integrand (that is, the light, BRDF, and
visibility functions), guaranteeing that the representation of
each function in its own basis has a low error rate. In
contrast, our method determines a basis according to the
environment map and represents both the BRDF and
visibility functions in the same basis as the light function.
Since the light-driven basis is not optimized based on the
BRDF and visibility signals, the representation error of
BRDF or visibility might be large.

We show that the potential large errors in the BRDF and
visibility representations are effectively suppressed in the
multiple product computation (5). If the partition of the
environment map is dense enough, all the representation
errors of light, BRDF, and visibility in SPCBFs should be
small. For a specific SPCBF Bið!Þ, the representation error
of BRDF or visibility corresponding to Bið!Þ is likely to be
large only when the corresponding subregion Si is large.
However, since we design an error metric that is similar to
an importance sampling strategy [6] to guide the environ-
ment map partitioning (Section 5.1), the subregions with
large areas must have low-light intensity. Therefore, after
multiplying the light, BRDF, and visibility representations
together, the low-light intensity value (approaching zero)
significantly weakens the errors introduced by the BRDF
and visibility representations.

We have tested a variety of rendering scenarios to
investigate how the representation error of BRDF or
visibility is related to the sizes of the subregions. All the
experiments demonstrate that although the representation
error of each term is possibly large, the errors in the final
multiple product are always very small (see statistical data
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3. Specifically, we pack 4D anisotropic BRDF of resolution 32� 32�
32� 32 to a 3D texture of size ð4� 32Þ � ð8� 32Þ � 32.

Fig. 7. Occluder culling. For subregion Si, to process object O0, only

occluder O2 needs to be considered, whereas O1, O3, O4 can be

ignored.
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in Table 2 and an example of light, self-visibility, and BRDF
representations in SPCBFs shown in Fig. 8, with errors
corresponding to the underlined row in Table 2). We use the
Sum of Squared Difference (SSD) error to measure the error
between an approximation representation and its corre-
sponding ground truth.

7.2 Errors in SAT and VDT Lookup

During runtime rendering, we use the parameter hci; rii
associated with each subregion Si to fast look up SAT (VDT)
for the computation of the corresponding coefficient of
BRDF (visibility). The approximation error introduced in
this step is guaranteed to be negligible when Si is small
enough, because we exploit the mismatch error metric of
Rxðci; riÞ and Ci ¼ fxðSiÞ to guide the partition of the
environment map. By experiments, we found that the SSD
error in the BRDF or visibility coefficient computed through
lookups, which is due to both the mismatch between the
square Rxðci; riÞ and Ci and the variance of BRDF or
visibility in Si, is almost linearly proportional to the region
size of Si (Fig. 9). Therefore, the errors in the SAT and VDT
lookups are also suppressed when computing the multiple
product of light, BRDF, and visibility coefficients, because
for each subregion, the light intensity is roughly inversely
proportional to its region size.

Fig. 10 illustrates a comparison example between using
SAT and VDT for computing the visibility coefficients.
Compared with the ground truth (obtained by ray tracing),
the rendering results with either SAT or VDT have only
small SSD errors. VDT approximation leads to slightly
larger errors, since the assumption that visibility boundaries
are straight is not always fully satisfied, causing more black
shadows. As expected, VDT approximation gives less
artifacts than SAT approximation when the compression
ratio becomes higher, since VDT is more suitable for
compression due to its continuous representation.

7.3 Errors in Rendered Images

In Figs. 11 and 12, we compare the proposed PRT rendering
results with the ground truth and the results of the area-
weighted wavelet method [2] for both Kitchen and Grace
Cathedral environment maps. 20, 30, 60, and 100 SPCBFs are
used in our method, and 20, 30, 60, and 100 wavelet terms (for
each of RGB channels) are used in the wavelet method [2].L2

errors are measured for both methods. From the figures, we
can see that the rendering error of our method under all-
frequency environment lighting is small. Results with
100 SPCBFs are almost as accurate as the ground truth; with
30 SPCBFs, the accuracy is as that of wavelets with 100 terms
per channel. Note that, under the same number of basis
functions, our method is faster than the methods based on
Wavelets for the computation of multiple products but needs
more storage (to store SAT and VDT).

8 RESULTS AND DISCUSSIONS

The performance of different scenes is shown in Table 3. We
have applied occluder culling to dynamic scenes. The
performance is reported on a Pentium IV 3.2-GHz PC with
an Nvidia GeForce 7800GT 256-Mbytes graphics card.
Interactive frame rates are achieved for large dynamic
scenes under all-frequency environment lighting, and real-
time frame rates are achieved for static scenes under all-
frequency environment lighting, which is much faster than
previous methods.

Fig. 13 compares the results of SVDF under different
levels of compression, whereas Fig. 14 compares the results
of OVDF under different levels of compression. Figs. 15 and
16 show some rendering results of the robot scene and the
kitchen scene. Fig. 17 shows rendering results of different
BRDFs; we use the BRDFs in [23]. Fig. 18 shows results of
local light illumination and local deformable shading.
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TABLE 2
Representation Errors of Light, Self-Visibility, and BRDF

Functions in SPCBFs and Errors in the Final Multiple Products

Fig. 8. Top row: the light (Uffizi Gallery environment map), self-visibility,

and BRDF functions (from left to right). Bottom row: the corresponding

SPCBF representations.

Fig. 9. Relationship between the SSD errors ðy-axisÞ of the (a) self-
visibility and (b) BRDF coefficients of a subregion Si computed through
SAT/VDT lookups, and the region size of Si ðx-axisÞ is almost linear.
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Limitations. Since an optimization process is needed to
find a set of SPCBFs for a given environment light, which
typically takes about 30 seconds with our unoptimized
implementation, real-time replacement of environment
maps is not allowed. The method based on SRBFs [5]

shares the same limitation. Furthermore, our method cannot
handle some situations where the BRDF has more details in
a large partitioned region of the environment map, since
BRDF is represented with the SPCBFs optimized for the
light. Last, our current framework does not allow indirect
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Fig. 10. Comparison between using SAT and VDT for computing the visibility coefficients. All the scenes are rendered under rectangle-shaped area
lights of solid angle ¼ �=36. Left four subfigures: top row (left: error ¼ 0:02 percent, right: error ¼ 0:01 percent) and bottom row (left: error ¼ 0:30
percent, right: error ¼ 0:13 percent) are results using SAT and VDT, respectively. Note the difference in the cast shadows (of the stems of the plant
or of the teapot handle and spout) on the ground plane. The artifacts arose because the assumption that visibility boundary is a straight line does not
hold here. Right four subfigures: Top row are rendered using SAT with compression rate 1:14 (left) and 1:29 (right); bottom row are rendered using
VDT with compression rate 1:14 (left) and 1:29 (right).

Fig. 11. Rendering of a Buddha scene in Kitchen. Note the difference in the shadow boundaries.

Fig. 12. Rendering of a teapot scene in Grace Cathedral. Note the difference in the glossy area and the shadow boundaries.
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lighting, because supporting varying viewing directions
and dynamic scenes requires a 4D transport matrix at each
vertex, making precomputation not memory affordable.
Unlike the original PRT method proposed by Sloan et al. [1],
many of the following techniques in [3], [4], and [5] also
sacrifice indirect lighting for newer effects.

9 CONCLUSION AND FUTURE WORK

In this paper, we present a new basis function SPCBF for

PRT, which is able to represent all-frequency signals and

support efficient rotation and efficient multiple product.

By precomputing the light coefficients and runtime

computing the BRDF and visibility coefficients, the

proposed PRT framework in SPCBFs supports a variety

of rendering effects.

In our current implementation, we use SAT and VDT

to fast approximate the coefficients of BRDF and

visibility, respectively. This step inevitably introduces

approximation errors and involves large size precomputa-

tion storage (per-vertex 2D VDT). We are seeking new

fast integration techniques, which are more precise and

need less storage.

There exists a number of interesting directions for

further investigation. First, the proposed method is

limited to direct lighting. As future work, we would like

to incorporate indirect lighting and interreflection into our

framework. Second, we would also like to extend our

current material representation, 4D BRDF, to higher

dimensional materials, like spatial variant BRDF and

BTF. Third, we will explore other compression techniques

(for example, tensor approximation techniques [5]) rather

than CPCA to compress the visibility data.
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TABLE 3
Performance Results

Fig. 15. Rendering results of the robot scene under dynamic environment map and changing view. The robot is composed of 12 components.

Fig. 14. OVDF compression result. From left to right: uncompressed, using 16 eigenvectors, using eight eigenvectors, and using four eigenvectors.

Fig. 13. SVDF compression result. From left to right: uncompressed, using 256 clusters and 16 eigenvectors, using 256 clusters and eight

eigenvectors, and using 128 clusters and eight eigenvectors.
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