This article has been accepted foflmblicdteoauiharfsitersisauef afithisijde that, lbast heeson biésinefhily thtpol (Hah teih i

The final veify

p 3l
tieaosrdri

JOURNAL OF IATEX CLASS FILES, VOL. -, NO. -, MONTH DATE

Fast 3D Indoor Scene Synthesis by Learning
Spatial Relation Priors of Objects

Song-Hai Zhang, Member, IEEE, Shao-Kui Zhang, Wei-Yu Xie, Cheng-Yang Luo, Yong-Liang Yang,
and Hongbo Fu

Abstract—We present a framework for fast synthesizing indoor scenes, given a room geometry and a list of objects with learnt priors.
Unlike existing data-driven solutions, which often learn priors by co-occurrence analysis and statistical model fitting, our method
measures the strengths of spatial relations by tests for complete spatial randomness (CSR), and learns discrete priors based on
samples with the ability to accurately represent exact layout patterns. With the learnt priors, our method achieves both acceleration and
plausibility by partitioning the input objects into disjoint groups, followed by layout optimization using position-based dynamics (PBD)
based on the Hausdorff metric. Experiments show that our framework is capable of measuring more reasonable relations among
objects and simultaneously generating varied arrangements in seconds compared with the state-of-the-art works.

Index Terms—3D Indoor Scene Synthesis, Furniture Objects Arrangement, Complete Spatial Randomness.

1 INTRODUCTION

D indoor scene arrangement is to automatically arrange fur-

niture objects, which benefits various applications [1], [2],
[3] including video game, virtual reality, home decoration, or
even creating datasets for 3D scene understanding [4]. With the
emergence of various datasets for 3D indoor scenes [5], [6], [7],
techniques of arranging furniture objects have shifted toward data-
driven approaches [4], i.e., learning priors expressing strategies of
existing layouts of furniture objects.

However, inherent difficulties of 3D indoor scene synthesis
still exist in various aspects. First, it is inevitable for dealing
with furniture layouts parameterized continuously or discretely,
which distribute in complex high-dimensional spaces [8]. A few
works (e.g., [9], [10], [11], [12]) attempt to simplify layouts into
independent cliques or subsets e.g., [10], [11]. Their underly-
ing metric largely depends on ‘“co-occurrence”, which merely
counts co-existence frequencies from existing layouts. However,
co-occurrence is not sufficient to fully indicate the relationship
between furniture objects. For example in Figure 2, ‘nightstand’
often co-exists with ‘chair’ in one room, but they are rather
independent in terms of layout arrangement. On the other hand,
‘nightstand’ has high dependency with ‘bed’ not only due to the
co-existence, but also the spatial closeness and consistency across
layouts. This observation motivates us to learn stronger spatial
relation priors beyond co-occurrences towards more plausible
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Fig. 1. Given a list of furniture objects (Left), we decompose them
into disjoint groups (Top-Middle) with coherence for each individual
group and freedom among groups. By incorporating discrete templates
learned from datasets [5] as priors to guide syntheses, our method
generates various plausible layouts in seconds.

arrangements.

Second, due to innumerable arrangement choices, it is hard
to exhaustively list all possible spatial relations among objects
[13], [14], [15], [16], [17] or to mathematically formulate unified
and accurate models for them [11], [18], [19], [20]. For example,
Chang et al. [13] dictate a specific set of possible relations such
as “support”’, “right”, “front”, etc, which fundamentally limit
the variety of possibly synthesized scenes. To model relations
with multiple patterns, a common approach is to fit observed
layouts with models. While allowing comprehensive exploration
of a continuous layout space, the “fitted models” could poten-
tially introduce unexpected results that are suboptimal, especially
when the underlying layout patterns do not satisfy the model
assumptions. Figure 3 shows less successful examples of sampling
relative positions from a Gaussian Mixture Model (GMM) and a
Convolutional Neural Network (CNN) [20]. We argue that when
the dataset of 3D Scenes is of sufficient size, the exact cases by
observing samples (without fitting continuous statistical models)
already offer adequate layout variations while ensuring layout
quality. This is particularly desirable for practical applications
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(a) A bedroom. (b) Astand & abed. (c) A stand & a chair.

Fig. 2. lllustrating the problems of co-occurrence. With similar frequen-
cies, two relative positions of two pairs of objects are shown in 2a. The
points in 2b and 2c represent the relative positions between two given
furniture objects. Axes are aligned to walls, and bed/chair is centered.
In 2b, the double bed and the nightstand are obviously spatially related,
while there is no obvious spatial relation between the nightstand and the
chair.

where the robustness of the results is a major concern rather than
the unpredictable variousness.

To address the above difficulties, we propose a method to mea-
sure the strength of spatial relations between objects by utilizing
tests for complete spatial randomness (CSR) [21]. A test for CSR
(Section 4) describes how likely a set of events are generated
w.r.t a homogeneous Poisson process. Intuitively, it measures how
obvious certain patterns exist in a set of points. Therefore, objects
with high value of test for CSR tend to be grouped and arranged
together. Objects that fail to pass tests for CSR are ignored, even
if they have high co-occurrence (Section 4).

Furthermore, we present an approach for extracting repre-
sentations of various shapes of layout strategies. Unlike existing
frameworks [11], [19], [22], which fit continuous priors and might
cause the sampling of inappropriate transformations of furniture
objects, our approach first removes outliers inside datasets and
then directly takes the remaining data as “discrete priors”, with
each datum expressing an “exact” transformation incorporating
density peak clustering (DPC) [23]. Finally, we present a frame-
work for automatically synthesizing various arrangements of given
furniture objects w.r.¢ an input room geometry, by partitioning
the input objects into disjoint groups according to the learnt
priors, followed by an optimization. Instead of using Markov
Chain Monte Carlo (MCMC) [22], which typically takes more
than thousands of iterations to converge, we optimize furniture
arrangements based on the Hausdorff metric to cope with the
learned discrete priors, and are able to complete the entire process

in seconds.
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Fig. 3. Fitting continuous statistical models to represent spatial relations
between furniture objects has inherit difficulties. These models can
potentially lead to unexpected results that are not optimal. Instead, our
method can extract and reproduce exact patterns without fitting such
models while ensuring synthesis quality.

In summary, our work makes the following contributions:

1) We incorporate spatial relation prior learning based on
CSR and DPC, which is more effective than simply mea-
suring co-occurrences, thus leading to plausible results
consistent with common sense.

2

2)  Our method improves the robustness and efficiency of
indoor scene arrangement due to the usage of discrete and
exact priors, which ensure predictable and quality object
relationships, and enable efficient layout optimization
based on a Hausdorff metric in seconds.

2 RELATED WORKS

TABLE 1
Qualitative characteristics of similar works to ours.
Method Spatial Measurement Layout Strategy
Yu et al. [22] User Suggestions MCMC
Qi et al. [10] Co-Occurrence MCMC
Wang et al. [20] - CNN
Wang et al. [19] - CNN
Ours Tests for CSR PBD w/ Hausdorff metric

3D Indoor Scene Synthesis aims at generating appropriate
and well-aligned layouts of furniture objects for rooms. Various
solutions considering different input settings and tasks have been
proposed. For example, [24], [25], [26], [27] generate room
layouts based on RGB-D images or 3D scans. Human language
[12], [13], [14], hand-drawn sketches [18], semantic bounding
boxes [28] have also been explored as additional inputs to guide
scene synthesis. Table 1 lists similar works compared to ours. A
full review of existing works on indoor scene synthesis is beyond
the scope of this paper. Please refer to an insightful survey in
[1]. Our work focuses on furniture layout synthesis within a single
room. Please refer to the recent works [29], [30] and the references
therein for floorplan synthesis with multiple rooms.

To synthesize a room layout, typically, two stages are required:
“selecting” a list of appropriate furniture objects and “arranging”
them. One characteristic that classifies different works is whether
or not the two stages are coupled with each other. For example,
[19], [20], [31], [32] iteratively infer the next objects to be
included into rooms, i.e., placing objects depends on each pending
layout. [9], [10], [22] and ours firstly create a list (graph) of objects
of interest and arrange them. It is hard to compare which class of
methods is better. However, making object arrangement decoupled
with object selection gives flexibility to swap or combine different
ways for object selection and arrangement.

As discussed in Section 1, the representations of layout
strategies play an important role in 3D indoor scene synthesis.
To encode prior knowledge, [15], [16], [33] attempt to quantify
interior design rules, i.e., mathematically modeling how we ar-
range furniture objects according to designers or common senses.
In contrast, our framework is data-driven due to the emerging
availability of 3D indoor scene datasets, which enable various
data-driven approaches. For example, Chang et al. [14] model
spatial relations between objects using semantics such as “left”,
“right”, “front”, etc. However, since it is difficult to enumerate
all potential semantics between objects, our discrete priors are
learnt to express as many exact patterns as possible according
to datasets. To fit observed distributions of objects, Gaussian
mixture models (GMMs) are adopted by [11], [18], [34], but [11],
[18] do not have the same input to ours and the priors of [34]
considers only the “XOZ” plane without the “Y” axis (height).
[22], [35] model contexts for objects, e.g., average orientations
and distances between objects, orientations w.r¢ the nearest walls,
etc. Furthermore, Wang el al. [19], [20] train convolutional neural
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Fig. 4. The pipeline of our system.

networks (CNNGs) for placing furniture objects. Instead, we do not
fit any models. Our discrete priors are from exact cases inside ob-
served data. We assemble a subset of discrete ground truth which
already includes sufficient and exact layout patterns from datasets
after denoising. Graph structures are constructed by [9], [10] for
encoding priors, which still resort to co-occurrence but measure
spatial relations inappropriately. Based on contextual models, for
optimizing transformations of furniture objects, Yu et al. [22] and
Qi et al. [10] incorporate MCMC, which is experimentally verified
being inefficient [33]. The reason to incorporate MCMC is due to
the complicated fitted models are not differentiable, while MCMC
enables updating transformations of furniture objects by proposal
functions, i.e., sampling based on previous samples. The stochastic
nature of the sampling strategy often leads to non-optimized
samples being rejected. To ensure convergence, a large number
of iterations is often needed, and each iteration usually requires
costly evaluation to accept/reject samples, making the whole
process computationally expensive. By incorporating the discrete
priors, we measure the loss of arrangements using the Hausdorff
metric, so MCMC is no longer needed, thus accelerating the entire
optimization. A full discussion of MCMC is beyond the scope of
this paper. Please refer to a detailed experiment in [33].

Our task partially resembles [22], but takes an automatic
approach to extract constraints from existing layouts. Instead, the
framework of Yu et al. [22] requires manual assignment of spatial
relations between furniture objects, while learning clustered means
of distances and orientations from a given dataset. Our task also
partially resembles [33], but their approach is not data-driven. We
are also inspired by the works of [11] and [36]. However, the
former requires exemplar scenes as input, while the latter focuses
on the re-arrangement of existing scenes. In contrast, we aim to
learn general patterns for pairs of objects from existing layout
examples for synthesizing new scenes.

Tests for Complete Spatial Randomness (CSR) is a classical
topic [37]. Given a series of points distributed on a plane, a test for
CSR is typically used to answer how likely the points are placed
randomly. Formally, it describes how likely a set of events are
generated w.r.t a homogeneous Poisson process (planar Poisson
process). Previously, most applications of CSR are confined to
ecology [38], e.g., to investigate whether or not a set of observed
plants are located with patterns. Rosin [39] is probably the first
to bring the concept of CSR into computer vision to handle the
problem of how to detect white noises inside images. To the best
of our knowledge, our work is the first to introduce tests for CSR
to solve the problem of 3D indoor scene synthesis.

3 OVERVIEW

(a) dwect =1.12. (b) dit:ch = 2.03. (c) dbemi = 2.47.

Fig. 5. Several results of tests for CSR. 5a plots relative positions be-
tween a wardrobe cabinet and a coffee table, 5b plots relative positions
between a dining table and a chair, and 5c plots relative positions
between a bed and a nightstand. Axes are aligned to walls, and the
former object is centered.

As illustrated in Figure 4, our pipeline is split into an offline
stage for spatial relation prior learning, and an online stage
for automatic scene synthesis based on a given list of furniture
objects and the learnt priors. The pattern of spatial relations
are extracted from datasets in the offline stage. We first learn a
specific spatial strength graph model G indicating how objects are
spatially related with each other (Section 4). In this graph, vertices
represent objects, and edges are associated with weights to encode
the spatial strengths between objects. This is more powerful than
simply counting co-occurrence. We then extract versatile patterns
of layout strategies as discrete “templates” by reducing noises
within datasets such as SUNCG [5] using Density Peak Clustering
[23] (Section 5). Given the learned priors, an empty room, and a
set of user-specified objects, during the online stage, our method
first groups spatially coherent objects into groups (e.g., a bed, a
night stand and a TV Stand, as illustrated in Figure 11b). Next, we
do an instant arrangement for each group by heuristically using
the learned templates. Finally, we adjust the overall layout by
optimizing a consistent loss function (Section 6).

Existing datasets for scene understanding and synthesis, such
as SUNCG [5] and 3D Front [40], typically contain a set of
furniture objects and a set of existing arrangements (rooms),
and reuse each furniture object from several to thousands of
arrangements with other objects. This motivated us to use such
datasets to extract relations between furniture objects instead of
arrangements. Therefore, to make it object-centric, we convert a
given dataset into a multigraph G = (V, E), which is conceptually
a direct mathematical representation of the original dataset: each
vertex corresponds to an object instance and each directional edge
encodes the relative position and orientation between a pair of
objects. More specifically, a vertex v* € V contains a set of
attributes {(d)7,,, 0, to )|lw = 1,2,3...,Q}, ie., the row
values of distances, orientations and translations of an object w.r.t
its nearest walls. For each pair of objects, there are often multiple
edges connecting them, because they may co-exist in different
scenes. In the following prior learning stage, we will remove edges
that suggest an implausible transformation (relative translation
and rotation) between the two furniture objects and consider the
remaining edges as “discrete” and “exact” priors since we do not
intend to fit any statistical model.

Centering an object o;, the k-th edge e*7+* € E from v to v’
is valued by a quadruple (p;’J’k, Py’ ok 27 ik Py’ ’k) representing
the k-th relative translation and orientation of o; w.rt 0;. We
leverage E*J to indicate the set of edges formed from v* to v7,

where v’ is the corresponding vertex in V' of object o;.
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As far as we know, 3D-Front [40]' is the only suitable large-
scale data set for the research of scene analysis and synthesis,
besides SUNCG. 3D-Front contains 34 categories, 9,992 3D
models, 70,000+ rooms, and 1,260,168 co-occurrences between
furniture objects. However, most of objects have only fewer than
10 co-occurrences with another instance. This is too sparse to
extract reliable patterns between two objects. On the contrary,
SUNCG contains 175 categories, 2,266 models (non-furniture
objects such as doors and windows are not included), 520,000+
rooms, and 54,844,805 co-occurrences. Therefore, the dataset we
utilized in this paper is a combination of 3D-Front and SUNCG.
More specifically, for 3D-Front, 30 categories of 9,317 objects
have their corresponding categories in SUNCG. Thus, based on
these categories, we first coarsely cluster objects. Then, based on
visual similarities as illustrated in Figure 9, we enable relation
sharing from objects of SUNCG to objects of 3D-Front. After
combining them, 175 categories of 11,583 objects are achieved
with 55,889,558 co-occurrences, in which only 9,317 objects from
3D-Front have geometric models. Eventually we construct G with
this combined dataset. Based on (G, we measure spatial relations
between objects in Section 4, and learn layout priors in Section 5.

4 SPATIAL STRENGTH GRAPH

Before actually extracting a template from datasets for each pair
of objects, a question naturally arises: do we require templates for
all pairs? As shown in Figure 2, the plots of relative translations of
two objects with high co-occurrence could be very messy, with the
transformations between them rather independent of each other.
This motivates us to learn a spatial strength graph (SSG) so that
a multitude of pairs of objects that have low relations of spatial
strength is ignored when arranging furniture objects. This helps us
synthesize more plausible scenes but also accelerates the synthesis
process.

Formally, an SSG is a weighted graph defined as G = (V, E),
where G denotes an entire graph with V' = V representing all
objects in the dataset and E being the edges with the associated
weights to encode the spatial strength between objects. Here the
question becomes how to measure the weights from a large-
scale dataset with highly diverse co-occurrences regarding spatial
relations, leading us to assemble the aforementioned tests for CSR.
There exist several methods of tests for CSR, including using
the Diggle’s function [21], [41], distance-based methods [37],
[42], [43], angle-based method [44], [45], etc. In this paper, we
follow [44] to test CSR by means of angles. If P and () are two
nearest points to point O, angle € of point O is defined as the
smaller of two possible angles between OP and OQ), clockwise
and counterclockwise, and it is thus always between 0 and .
Therefore, we measure the weights of E by Equation 1, which is
the “d-value” in [44] within the domain of tests for CSR [21]:

d = v/msup |F.(0) — Fe()]. (1)

Here, F,. and F,. are respectively a cumulative distribution func-
tion (CDF) and an empirical distribution function (EDF) w.r.t
angle 6, which is subject to uniform distribution [44]. m is the
number of points formulating F. For each pair of objects o; and
0, the weights E%I are set to d™7 subject to random samples
from E%7 in a ratio of 10%, as suggested in [44] and [46]. If all

1. https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset

1.0 1.5 2.0 25 3.0 35

Values from Tests for CSR
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Fig. 6. The diagram plots the CSR value and co-occurrence of every pair
of objects. Two objects might co-occur in many rooms, while the strength
of their spatial relation could be low, vice versa. For example, the bed
and the nightstand have low co-occurrence, but they are spatially related
according to human intuitions.
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Fig. 7. A comparison between values from tests for CSR and co-
occurrence. The CSR test values better reflect the dependency between
objects compared with co-occurrence.

points are randomly distributed (i.e., following a plannar Possion
distribution), the upper bound of the EDF minus the CDF of
uniform distribution should be close to zero. As shown in Figure
5a, a wardrobe and a coffee table are spatially independent, so
their d-value is low. Although considerable noises exist in Figure
5b, the d-value of a dining table and a chair is still reasonably
high. Finally, Figure 5c shows clear patterns between a bed and a
nightstand.

Figure 6 statistically suggests the differences between tests for
CSR and co-occurrences, where we plot the two measurements
for all pairs of objects, where pairs including an air-conditioner
typically co-occur frequently but air-conditioners are placed in-
dependently to most of other furniture objects according to the
common sense.

Figure 7 shows a quantitative and intuitive comparison be-
tween using co-occurrence and using tests for CSR to measure the
strengths of relations between several common furniture objects.
The results are normalized respectively due to different scales.
The upper triangular part depicts co-occurrence and the lower
part corresponds to the results from tests for CSR, which alleviate
the unreasonableness caused by co-occurrence. It is obvious that
placing a sofa is independent of arranging a double-bed, but
they have a high frequency of co-existence in different rooms of
various types. Such unreliable relations potentially confuse scene
synthesis algorithms. Applying tests for CSR for them is able to
decouple them spatially. It is a similar case for many other objects
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preferring independent layouts with most of the others, such as a
white dryer, a wardrobe and a brown stand.

5 PRIOR LEARNING

Patterns are priors suggesting how we arrange objects in real-
life layouts. Figure 8c shows a pattern of a laptop w.rt an office
chair. Since the relative translations are incorporated, patterns
can inherently avoid unreasonable situations such as collisions.
However, it is obvious that we cannot adopt a unified model
for all patterns, since the patterns can have arbitrary shapes. To
extract arbitrarily-shaped patterns in a discrete representation, we
adopt the approach in [23], which clusters vectors of dimension
D, where D >= 1, according to p (Equation 2) and J (Equation
3). The indicating function I{j<g y returns 1 if d < d. and 0
otherwise.

Pk = Zl{dgdu}(dk,k')a dc = d(nK2)> (2)
k/

Sp=_min (dy). 3

k k,:giglpk/( ook ) 3)

Given a set of edges E*/ from v* to v/ in G where all relative
translations, i.e., attributes of edges (Section 3), are plotted as
shown in Figure 8a, we first calculate pairwise Euclidean distances
di i between all edges ek ¢ Ehi using their translations
try = (p%j’k,p;’j’k,pi’j’k), ie., dg g = ||try — try||. For each
edge "% p. is counted as the number of other edges with their
distances to it less than d.. Taking K = |E%7| edges, d, is the
nK 2-greatest value among all pairwise distances with n = 0.015
as suggested by [23]. {x represents the minimal distance from
a set of K with higher pjs than pi. As a result, despite
arbitrary shapes, merely edges with high p; form a potential
pattern, and each edge with high pj and high §; indexes to a
potential pattern, which is analogous to a cluster center in [23].
In contrast, noises tend to have high values of ¢ while their local
density p is distinctly low. As a result, we only discard noises
and keep the remaining patterns E7, as illustrated in Figure
8b. The rest of accurate patterns form a discrete templates F%7,
which are already fully usable to our framework. Although we
do not fit models and we use the discrete and exact priors for
scene synthesis in our framework, our learnt priors are scalable
to other works for 3D indoor scene synthesis. To incorporate our
model in other works, e.g., MCMC [10], [22], our priors can be
easily fitted to distributions such as using non-parametric kernel
density estimation based on Gaussian kernels, as shown in Figures
8c. Similar to the visualization of dense optical flows [47], we
apply the system of hue, saturation and value (HSV) to represent
orientations, where angles are normalized within (0, 27) as hue,
probability densities are represented as saturation, and values are
all set to 1. Figure 10 shows some other representative results
of learnt priors. Since height differences for most objects do not
vary significantly, we plot the two channels (pi7* pi7-F) and
orientations pé’j "% to make the visualizations of learnt priors more
intuitive.

We also perform similar prior learning tasks for individual
objects with regard to their nearest walls where dy, ;+ becomes
the differences of scalars. In doing so, we keep the values tﬁ)
and 6% with both high values of pj and dy, where tX and 6%
are respectively plausible distances and orientations to the nearest
walls of furniture object k. Consequently, each furniture object is
assigned a set of tfu and a set of 07’2 plausibly as attributes to its
corresponding vertex in G.

ah

(b) De-noised.

(c) Fitted.

(a) Input.

Fig. 8. The overall process of prior learning. (a) is the input with consid-
erable noises. (b) is the de-noised result, which is readily to use in our
framework. (c) depicts the further generalization of our templates into
fitted models, which are applicable for other frameworks such as MCMC.
Different colors in the HSV color space represent different orientations
of objects, as shown in the inset.
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Fig. 9. Reusing existing templates for new objects of similar geometry.
Given a previously unseen office chair (Left), we achieve the layout
strategy of it w.rt a desk (Right) by merging templates of objects
geometrically similar to the chair (Top and Bottom).
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Next, we further generalize our templates to make them
reusable and extensible. We observed that objects with the same
semantics and similar geometries share layout strategies. As
shown in Figure 9, given a new object without the corresponding
priors learnt from our datasets, we find its similar models by
comparing 3D shapes of models using [48], which uses the shape
edit distance s¥, ;, € [0, 1] to measure the degree of similarity,
where s, = 0 indicates two identical models. We select the
top-K results and take the union of the K templates as the
template for the new object.

6 SCENE SYNTHESIS

In this section, we incorporate the learnt SSG and priors to synthe-
size room layouts. Our synthesis process is a two-step approach:
a heuristic arrangement, followed by an optimization. Given a set
of input objects O, we first decompose them into several groups
according to the SSG, and arrange objects within each group,
where relative transformations are immediately indexed by the
templates. Finally, we apply a global optimization to satisfy layout
strategies of objects in O. Note that our framework is capable of
expansion by easily incorporating methods of object selections
such as [10], [49], [S0] or user suggestions [22], [33].

6.1 Heuristic Layouts with Formulated Groups

We first construct an unweighted graph, whose vertices correspond
to input objects O. This graph is described by an adjacency
matrix M,qj, whose entries are determined by G in Section
4. More specifically, if d-value d“V > ¢, where d*“" is the
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(a) DiningTable-Chair
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-

[
T i

(b) CoffeeTable-Sofa  (c) CoffeeTable-Sofa

Fig. 10. Several representative results of learnt priors. The color coding for orientation is the same as Fig. 8.

uU,v

result of a test for CSR, then we set adj = 1, where € is
typically equal to 1.628 as suggested in [44]. After constructing
Mq;, we iteratively create disjoint groups g € Gr of objects by
finding connected components of the graph represented by M q;.
Figure 11 shows examples of resulting groups. It is common
to see a group containing only one object, such as wardrobe,
cabinet or shelf, since their placement usually does not require the
consideration of other objects. Such single-object groups greatly
ease the subsequent optimization process.

(a) Marked relations.

(b) Disjoint graph.

Fig. 11. Formulating functionally coherent groups of objects using the
tests for CSR.

Based on a given room shape (including the position of
doors and windows), partitioned groups, and learnt templates,
we then generate proposals for pending scenes, i.e., objects are
immediately placed and oriented w.r.t their groups and walls.
Intuitively, we heuristically initialize the scene using the learnt
templates instead of totally randomizing it. The discrete priors are
considered multinomial distributions where each sample directly
suggests an exact transformation between two objects. However,
directly sampling the discrete priors only guarantees plausible
transformations for each pair of furniture objects while relative
transformations among furniture objects require the further opti-
mization in the following subsection.

For each group ¢ € G, layouts of g are heuristically gen-
erated by sampling a posterior probability distribution \I!G‘ i(9)

6
(d) DoubleBed-Stand (e) TVStand-TV (f) Desk-Chair
expressed in Equation 4, given templates F (Section 5).
P - NG
U plg) = 9 Ppomg ) @)
Jalg) gg,(E#)dg
_ a(g) : ZH HTEQ ¢EM|T:T(EM¢7T'U‘) (5)

Jalg) g6, (EH)dg
where «(g) denotes the probability of each object 7 € g
being the dominant object 7% in g. Let deg(7) denote the
degree of 7 w.nt M,q;, and is essentially the number of objects
connected with it according to the tests for CSR (Section 4),
and dmaz = maxrcg deg(t). The likelihood ¢z, \p_.(*) is a
multinomial distribution formed by the given template Ert of 7
w.r.t TH, while it is equal to a constant when 7 = TH.

, if deg(T#) = dmax
g(1") 6

1
{r|r€g,deg(T)=dmaz}|

alg) = 0

, otherwise

When sampling \IIG|@:O’ we first randomly decide 7+ of g.
Equation 5 implies that {¢ EH|T:T(-)|T € g} are independent
of each other, so the transformations of objects are sampled
according to their own templates, respectively. In practice, if an
object has a relatively low d-value to 7", we further decompose
the group and assign a new dominant object to it. In some cases,
this heuristic strategy could sample a sufficiently plausible layout
even without a further optimization. However, the heuristic strat-
egy may still results in unreasonable conditions such as collision
between groups, objects out of room boundaries, etc. Next we
show how we adjust objects so that a plausible layout of objects
is eventually presented.

6.2 Template Matching

After the heuristic layout, we do template matching to optimize the
placement of furniture objects and thus make their arrangement
more plausible. As discussed in the previous subsection, heuristic
layout is a way to initialize scenes considering merely transfor-
mations between furniture objects. In this subsection, we globally
optimize entire rooms to achieve more plausible transformations
among them.

Equation 7 mathematically formalizes template matching,
where we are trying to minimize the summation of the Haus-
dorff distances dy between all objects w.r.¢ their templates. X i
indexes the transformation of object o’ and E is a set of sampled
transformations in Section 5.

X* = argmin L(X, E)
X

)

argminZMi’jjdH(Xi,E’i’j) + Col(X,r), (8
X 45
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dgr is a Hausdorff metric between an element to a set of trans-
formations, derived by the distance function dj, under the space of
translation and rotation. The reason for assembling the Hausdorff
distance is that it directly tackles samples instead of distributions.
As explained previously, it is unlikely to mathematically express a
unified distribution to model arbitrary layout patterns. In contrast,
if we could extract samples of arbitrary shape, the Hausdorff
metric enables pipelines to skip model fitting and to optimize
directly using refined samples.

dH(Z‘,S) = E)Ileigldh($7v)7 (9)
dp(x,8) = H:Cp — UpH + exp(ori(zg, vg)), (10)
ori(0,6') = min(27 — [0 — 0’| |0 — 0']), (11)

Equation 12 represents the artifacts among objects and be-
tween objects and walls, where p(x, k) returns the k-th corner
position of the rotated bounding box of furniture object . Ideally,
if there is no collision and no object out of boundary, C'ol(X, r)
should be equal to 0.

COZ(X, 7”) = COlwa”(X, T’) + COlobj(X)
= Z H tR(p(Xi, k‘),p(R, T),p(R, T+ 1))
ik T

+ 3 [T tLo(Xi k), p(X;5, 1), (X5, 1+ 1)).
1,k 1
(12)

Colqy measures whether or not objects are out of walls, whilst
Colop; calculates overlaps among objects. Truncated by ¢ R(-) and
tL(-), v(-) represents the “to-left” test of computational geometry
[51], such as the utilization in [52]. In addition to given objects,
we place doors and windows with the fixed transformations to
avoid blocking them.

13)
(14)

tR(p1,p2,p3) = max(—y(p1, p2, p3),0),
tL(p1, p2, p3) = max(y(p1, p2,p3),0).

Since the underlying metrics are factorized as quadratic terms,
we optimize Equation 9 by utilizing position-based dynamics
(PBD) [53], which is also detailed in [33]. Incorporating heuristic
approaches in section 6.1, the synthesis requires 10 iterations to
converge on average after heuristic attempts.

7 EXPERIMENTS

In this section, we conduct several experiments including compar-
isons to the state-of-the-art techniques to verify the effectiveness
of our framework. Formulating functional groups using CSR
enables us to generate hybrid rooms without manually providing
a predefined room type at the beginning of synthesis [19], [20].
Figure 12 shows various synthesized results. Please find more
results in the supplementary materials.

7.1 Tests for CSR

We conducted a user study to measure how tests for CSR are
consistent with the intuitions of humans. We sorted pairwise
relations by tests for CSR and co-occurrence (COO), respectively.
For each sorted list of pairs, from their respective highest values,
we systematically sample 500 templates at a fixed interval in order
to achieve a set of templates with their values of COO and CSR in
complete ranges that the dataset can derive. Typically, for SUNCG

7

[5], we choose the interval ¢nt = 120. Then four subjects were
invited to judge whether or not two presented sets of templates
were consistent with real-life layout strategies. All subjects are
university students with the typical common sense of arranging
furniture. Note that “common sense” refers to daily layouts that
are commonly seen, instead of professional interior design. The
presented templates are rendered according to Figure 10, where a
major furniture object is rendered from a top view and placed in
the center of each image. The participants were told to decide if
possible transformations of another secondary object in the image
could happen in real life. For example, given a coffee table, should
we place another chair in the suggested positions and orientations?
If the participants are confused about several templates, secondary
objects will be also rendered as shown in the supplementary
materials. Table 2 lists the proportions of reasonable templates
suggested by all the participants, where pairwise relations are
classified according to their room types (e.g., “double-bed &
night-stand” belongs to the Bedroom) since we want to show the
accuracy of tests for CSR in different room types. The results
suggest that the values generated by co-occurrence contain more
pairs that are rather spatially independent.

7.2 Efficiency

Our work is able to synthesize scenes efficiently due to the usage
of the Hausdorff metric and position-based dynamics [53], which
is verified [33] to be faster than using MCMC. In this section, we
conduct an experiment to show the achieved performance gain.
We compared ours with two state-of-art frameworks [10], [22],
since they have the same input and output as ours when arranging
furniture objects, i.e., to arrange a set of furniture objects in
a specified room. Note that “same output” means results only
introduce transformations to furniture objects instead of brand new
instances. Weiss et al [33] also have the same input and output to
ours. However, our work is different from [33] since ours is data-
driven and does not require user-specified constraints for each
synthesis.

Statistically, arrangements are not guaranteed to be identical
with each other. Consequently, since this section compares effi-
ciency, we focus on the time-consumption while arrangements are
merely considered “done” or “not done”. [19] is also a state-of-
art work, but as discussed in Section 2, their object selection and
arrangement are coupled with each other. Thus, we will compare
ours with [19] in Section 7.3.

All the methods are used to synthesize the examples chosen
from Figure 12. For fair comparison, we do heuristic arrangement
for both [10] and [22] to speed up their work. The time costs are
shown in Table 3, where the values with “greater-than signs” de-
note examples requiring more than 20, 000 iterations. According
to our experiments, the reason why MCMC is slow is three-fold.
Firstly, each proposal move of MCMC is randomly performed. It
could help to escape from local minima, but might also move away
from reasonable results. Hence the number of iterations is usually
large. Secondly, MCMC requires to evaluate a costly objective
function to judge whether a proposal can be accepted or not. Thus
even rejecting a proposal is also expensive. Thirdly, it is hard to
find a good termination condition for MCMC in practice. Either
simple thresholding or no further decay of the loss function cannot
guarantee a good layout. In contrast, our discrete priors suggest
more reasonable proposals for each iteration, and thus our method
is more efficient.
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(j) Hybrid Room-4

Fig. 12. Examples of various synthesized results.

(b) Bedroom-2

(e) Bedroom-5

(k) Hybrid Room-5

() Hybrid Room-6

TABLE 2
User study: evaluations of tests for CSR and co-occurrence. Each number represents a proportion of a plausible prior.

Metric Bedroom | Living Room | Bathroom

Dining Room | Balcony | Hall | Garage | Total

Tests for CSR | 93.31% 85.47% 96.67%

92.42% 86.36% | 89.47% | 76.17% | 88.55%

Co-occurrence | 32.26% 43.81% 86.67%

45.76% 23.08% | 38.46% | 36.84% | 43.53%

7.3 Aesthetic and Plausibility

In this subsection, we evaluate the aesthetic and plausibility of
the results generated by our method. Two experiments have been
conducted to demonstrate the strength of ours compared with the
ground truth and PlanIT [19]. First, we re-arrange objects from the
ground-truth, i.e., the scenes originated from the dataset [5] and

compare our results with the results of the original datasets. Since
the evaluations of 3D indoor scenes are subjective, we conduct
a perceptual study to analyze them. In the first experiment, 97
subjects were invited from universities and the society. Subjects
are all elder than 18 so that they have the necessary appreciation
of beauty for room layouts.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

tatipnbX@tian.1109/TVCG.2021.3050143, IEEE



This article has been accepted fofljmblicdtoauiharfsitersisauef afithisijde that, lvast e bléshefhity thistpok (ah t€ihtanmges of pdi

toHinabpibhidatitie plitaliider pio

The final veflionsaftiecosdris\aisaiddbletiin and Comphitter/Ghagploicsrg/10.1109/TVCG.2021.3050143

JOURNAL OF IATEX CLASS FILES, VOL. -, NO. -, MONTH DATE

TABLE 3
Time consumption (in seconds) of different methods for synthesizing
the scenes similar to those in Figure 12.

# of Objects Yu et al. [22] Qi et al. [10] Ours

Bedroom 9 >299.27s 229.76s  0.28s
Living Room 25 >2135.30s  1790.65s 1.88s
Bathroom 8 >313.54s 216.20s  0.29s
Hybrid-1 13 >714.60s  >481.35s 0.64s
Hybrid-2 35 >2313.38s >1667.03s 2.31s
Hybrid-3 28 >1351.15s  1122.63s 1.24s

(c) Kitchen.

(d) Bathroom.

Fig. 13. Comparisons between PlanIT [19] (Left) and our method (Right).

We ask each subject to grade each presented room layout. We
show each subject in total 20 rooms, and she/he would see several
different layouts of a same room but without knowing which
layouts are generated. They rank each layout in the range from
level-1 (poor) to level-5 (perfect). As listed in Table 4, the scores
of our results and the ground-truth are comparable, indicating the
aesthetic and plausibility of our results.

Second, we compare our method with PlanIT [19], a state-
of-the-art method for indoor scene synthesis. See the visual
comparisons in Figure 13. Similarly, we run a perceptive study
to evaluate the results quantitatively and another 49 subjects are
invited from the society similar to the first experiment. However,
the comparison is inherently difficult. As discussed in Section 2,

9

PlanIT couples the object selection task with the arrangement
task. Consequently, to make the same input and output of two
frameworks, we take the object selection results by PlanIT as
input and re-arrange them using our method. Finally, given 20
rooms, we conduct the second perceptive study similar to the first
one. As shown in Table 4, our rearranged results (the last row)
receive consistently higher scores than those by PlanIT (the second
last row). Note that a fair comparison of computational time with
PlanIT would be difficult since PlanIT performs furniture object
selection and arrangement together using neural networks, while
our work requires furniture objects to be given. The running time
of PlanIT depends on how crowded the rooms. It typically requires
at least one minute for a single layout generation.

Although deep learning based approaches have demonstrated
convincing performance on many problems, they inherently strive
to learn the mapping/distribution from training sets, and thus the
performance largely depends on how the data is prepared. For
PlanIT, the relation graph of its training set is heuristically derived
from the SUNCG dataset in the sense that several handcrafted
rules with thresholds are defined to extract ‘support edges’, ‘spatial
edges’, and ‘superstructures’ (cf. Section 4.3 in [19]). Moreover,
to make its neural network model effective on the relation graph,
PlanIT prunes a great number of ‘insignificant’ edges, and keeps
only those with strong object co-occurrences (cf. Appendix A.2
in [19]). Hence the resulting training set mainly reflects co-
occurrences and some other object-wall relationships, so as the
trained neural network. On the other hand, our method explicitly
measures the strengths of spatial relations based on CSR tests. This
allows us to directly integrate discrete yet more accurate spatial
relations into the room layouts, instead of using the relations
implicitly learned by a neural network.

8 CONCLUSION

In this paper, we presented a framework for 3D indoor scene
synthesis based on the analysis of patterns. Instead of using co-
occurrence, we first incorporate tests for CSR to measure more
plausible spatial relations between furniture objects. The state-
of-the-art frameworks for 3D indoor scene synthesis typically fit
models for representing how to arrange furniture objects, and
depend on sampling that causes implausible scenes. To alleviate
this, we first learn priors discretely by assembling density peak
clustering [23]. The resulting priors are essentially a subset of
original data so that they express exact transformations between
objects. Our discrete priors subsequently enable the Hausdorff
metric without resorting to MCMC, thus accelerating it. In the
experiments, we verify the effectiveness and efficiency of our
framework.

This work suffers from at least the following limitations.
Firstly, our way to learn priors is sensitive to the size and density
of datasets. An ideal dataset should be both sufficiently large and
dense, where “large” refers to datasets containing a considerable
number (at least at the scale of thousands) of rooms such as
SUNCG [5], and “dense” refers to each object being used by
hundreds of layouts instead of one or two. This is because density
peak clustering [23] requires sufficient data in able to detect
noises. SUNCG [5] is a sufficiently practical dataset for our
method, but it still contains the aforementioned cases as shown in
Figure 14. which exhibits the so-called “long-tailed distribution”.
Tests for CSR also suffer from the long-tail distribution problem,
since we can never do CSR tests using only one or two pieces
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TABLE 4
User study: aesthetics, where Ours-GT uses our framework to re-arrange furniture objects in the ground truth (SUNCG) [5] and Ours-RE uses our
framework to arrange furniture objects from PlanIT [19].

Methods Bedroom | Living Room | Bathroom | Dining Room | Balcony | Hall | Garage | Hybrid Room | Total

Ground Truth | 2.911 3.422 3.156 3.589 3.378 |2.878 | 3.511 3.367 3.276

Ours-GT 2.944 3202 2.989 3344 3344 | 3.061 | 3.256 3317 3.194

PlanIT [19] 2.884 2.859 2.739 2.78 - - - - 2.834

Ours-RE 3.396 3.541 3.506 3.559 - - - - 3.522
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Fig. 14. A histogram shows the long-tailed distribution of objects in
SUNCG [5]. It plots top-20 categories in SUNCG, where few instances
are used frequently. For example, most of furniture instances are ar-
ranged in less than 5000 scenes or even less than 100 scenes, while
very few instances such as instances of category rug, shelving or plant
occur more than 65, 000 times.

of data. We have attempted to solve the long-tail distribution
problem by clustering furniture objects using shape similarities.
Nevertheless, shape similarity does not guarantee us to find the
most “exactly” similar object. As discussed by Huang et al. [54],
measuring the shape similarity is even subjective. Furthermore,
the way to learn priors is sometimes “gullible” to datasets. For
example, intuitively an office chair is spatially independent of a
wardrobe. However, if in an entire dataset the chair is relatively
transformed to the wardrobe identically in all rooms, the test for
CSR of them could still pass. Note that a real-world dataset is
also applicable to our method if its size and density are reasonable
to ensure robust prior learning and noise removal. 3D real-world
datasets, e.g., SceneNN and ScanNet, still cannot be used in
our method, because most of the objects are incomplete or with
redundant parts in geometry, leading to inaccurate positions and
bounding boxes, and difficulty in shape similarity to share priors.
In addition, acquiring labeled data from real-world is extremely
expensive and current datasets are far below for prior extraction.
For example, SceneNN/ScanNet contains 100/1,513 scenes with
1,482/36,213 objects, and co-occurrences are very limited, and
more importantly there is no label of room belonging.

In the future, we are interested in performing finer comparisons
of 3D shapes for generalizing our templates (e.g., by adopting
3DMatch [55]). Recently, improvements for density peak clus-
tering are also available [56], [57] for better parameter selection
and non-central node allocation. We hope that our pipeline, learnt
models and synthesized layouts can contribute to automatic room
layouts as well as associated domains such as scene understanding
[58]. Besides, the extracted spatial relation priors can also be
potentially used for interactive scene modeling tasks such as a
suggestive 3D scene modeling interface [59].

EP/T014865/1).
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