
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 1

Semantic Labeling and Instance Segmentation
of 3D Point Clouds using Patch Context Analysis

and Multiscale Processing
Shi-Min Hu, Senior Member, IEEE, Jun-Xiong Cai, Yu-Kun Lai, Member, IEEE

Abstract—We present a novel algorithm for semantic segmentation and labeling of 3D point clouds of indoor scenes, where objects in
point clouds can have significant variations and complex configurations. Effective segmentation methods decomposing point clouds
into semantically meaningful pieces are highly desirable for object recognition, scene understanding, scene modeling, etc. However,
existing segmentation methods based on low-level geometry tend to either under-segment or over-segment point clouds. Our method
takes a fundamentally different approach, where semantic segmentation is achieved along with labeling. To cope with substantial
shape variation for objects in the same category, we first segment point clouds into surface patches and use unsupervised clustering to
group patches in the training set into clusters, providing an intermediate representation for effectively learning patch relationships.
During testing, we propose a novel patch segmentation and classification framework with multiscale processing, where the local
segmentation level is automatically determined by exploiting the learned cluster based contextual information. Our method thus
produces robust patch segmentation and semantic labeling results, avoiding parameter sensitivity. We further learn object-cluster
relationships from the training set, and produce semantically meaningful object level segmentation. Our method outperforms
state-of-the-art methods on several representative point cloud datasets, including S3DIS, SceneNN, Cornell RGB-D and ETH.

Index Terms—Segmentation, Labeling, Clustering, Patch Context, Semantics, Scene Understanding

F

1 INTRODUCTION

With the development of 3D acquisition techniques, in par-
ticular low-cost RGB-D cameras such as the Kinect [1] and
Matterport cameras [2], 3D data becomes much more avail-
able. Multiple scans are usually needed to capture objects
due to occlusions. When scans are aligned and fused, the
resulting data is usually in the form of unstructured point
clouds, making it a universal representation for scanned 3D
data. Therefore, point cloud based scene understanding is
essential for real-world applications such as autonomous
driving, housekeeping robots, and virtual reality.

Machine learning has achieved great success on 2D im-
age understanding. However, the point cloud of a typical
3D scene contains complex details, requiring millions of
points, which are significantly more than the number of
pixels in typical 2D images for machine learning. Moreover,
the point distribution is unstructured, making it difficult
for many deep learning methods, especially those based
on convolutional neural networks (CNNs). To handle these
problems, many existing works [3], [4], [5], [6], [7] use 3D
voxel grids to represent 3D shapes on which CNNs can
operate. However, the voxel resolution and shape precision
for these methods are highly restricted due to the extra
dimension. Therefore, they are only suitable for smaller-
scale object-level 3D model analysis.

• Shi-Min Hu and Jun-Xiong Cai are with the Department of Computer
Science and Technology, Tsinghua University, China.
E-mail: shimin@tsinghua.edu.cn, caijunxiong000@163.com

• Yu-Kun Lai is with the School of Computer Science & Informatics, Cardiff
University, UK. E-mail: Yukun.Lai@cs.cardiff.ac.uk

Recently, pioneering work PointNet [8] and Point-
Net++ [9] made a good attempt to learn CNNs directly on
point clouds. They take unordered points as classification
units. When applied to scene labeling, such methods split
the whole point cloud into blocks with a reasonable number
of points (e.g. 4096) to make it more manageable. However,
suitable block partitioning can be difficult to determine. The
work [10] uses a multiscale approach to make the PointNet
block size more flexible. Nevertheless, sampled points are
unordered, which restricts the pooling operations and the
use of blocks also limits the effectiveness of learning context
from the training data. By exploiting patch cluster based
context information and multiscale processing, our method
achieves an accuracy of 88.0% on the S3DIS (Stanford Large
Scale 3D Indoor Spaces) dataset [2] which outperforms the
PointNet method by 13%.

In this paper, we propose a novel learning based ap-
proach to semantic labeling and segmentation of point
clouds. In particular, we use indoor scenes as examples
because they are challenging due to occlusion, clutter and
diverse object types, and have important real-world appli-
cations such as robot navigation and modeling. We combine
an unsupervised clustering of patches with a supervised
approach to learn reliable contextual information involving
both patch clusters and object labels. This intermediate
patch cluster representation allows each object category
to contain highly diverse patches, and reliable contextual
relationships to be learned as similar patches are considered
together. Furthermore, to avoid over/under-segmentation
in patch segmentation, instead of treating patch segmen-
tation and labeling as two separate problems, we propose
an effective multiscale approach that performs joint patch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 2

(a) input point cloud (b) patch segmentation (c) semantic labeling (d) semantic segmentation

Figure 1. Results of our semantic segmentation and labeling. Given the input point cloud (a), our method exploits patch clusters and patch cluster
based contextual information learned from the training set to perform robust multiscale patch based segmentation (b). This provides a basis for (c)
semantic labeling (with different colors corresponding to objects of different types) and (d) semantic instance segmentation (where colors are used
to differentiate individual instances, regardless of their types).

segmentation and labeling, with suitable levels guided by
learned contextual information. We further learn object-
cluster relationships and use them to guide semantic seg-
mentation, breaking down a whole 3D point cloud into in-
dividual object instances. The work [11] proposes a context-
based method for object segmentation of images captured in
uncontrolled environments, demonstrating the effectiveness
of context. Yi et al. [12] propose a clustering-based method
which uses hierarchical part segmentation for learning part-
label context. However, their method requires explicit part
level labeling that is usually not available for indoor scene
data. Moreover, the context among objects in indoor scenes
is less strict than context among object parts, and is therefore
more complicated. Our method uses patch context analysis
to provide a uniform framework for learning part-part, part-
label and label-label context implicitly, avoiding the need for
part level labeling.

To work effectively with a small amount of training
data, we focus on the geometry information only, as color
information can often vary substantially even for objects
of the same type (e.g. a chair can be in wood color or
painted white). An example of our patch segmentation,
semantic labeling and semantic segmentation is given in
Fig. 1. When segmenting the input point cloud into patches,
our patch segmentation method with locally adapted levels
reduces over-/under-segmentation. Based on this, we use
the learned model to produce semantic labeling which as-
signs object labels to individual patches, as well as semantic
segmentation which partitions the input point cloud into
meaningful individual objects.

The main contribution of this paper is an efficient and
effective learning based approach to semantic labeling and
instance segmentation of unstructured 3D point cloud data.
We introduce patch clusters as an intermediate represen-
tation for effectively representing and learning contextual
information. Multiscale patch segmentation processing fur-
ther helps segment point clouds in a suitable level and make
the method generalize well to datasets with different char-
acteristics. In the training stage, cluster-label relationships
and cluster-object relationships are learned, which are used
to guide joint patch segmentation and classification, with
locally adapted segmentation levels automatically deter-
mined. Our learning based method for semantic segmenta-
tion and labeling works effectively for cluttered point cloud
data with a small amount of training data.

Compared with traditional point cloud segmentation,
our method achieves semantic level segmentation, avoiding

over/under segmentation. Compared with semantic label-
ing, our method is efficient, works directly on unstructured
point clouds, and outperforms state-of-the-art methods for
both labeling accuracy and efficiency.

We also produce a point cloud benchmark based on the
ETH dataset with manually labeled ground truth data at
the point level for evaluation of both instance segmentation
and semantic labeling techniques, which will be available at
https://cg.cs.tsinghua.edu.cn/semantic.

2 RELATED WORK

Geometry-based shape segmentation. Shape segmentation
is an important problem for many downstream applica-
tions, including object recognition, scene modeling, robot
navigation, etc. Traditional methods for point cloud seg-
mentation focuses on the geometric information which can
be directly analyzed from the input point cloud. When
typical geometric primitives such as planes, cylinders etc.
are of interest, segmentation can be achieved by explicitly
fitting geometric primitives to the input point cloud [13].
For general unstructured point clouds, it is common practice
to form a connected graph based on the neighborhood of
each point. Point cloud segmentation can then be achieved
by either pursuing coherence within each segment, often
using region growing [14], or by analyzing clues for region
boundaries which can be formulated as a graph-cut prob-
lem [15]. For segmenting objects into parts, van Kaick et
al. [16] use convexity clues and shape signatures. Schnabel
et al. [17] use an efficient RANSAC algorithm for shape seg-
mentation. Attene et al. [18] perform hierarchical analysis
for sampled surface point clouds. All these geometry based
methods however do not take semantics into account. As
a result, they may produce results with over-segmentation
or under-segmentation, and often resort to user interaction
to help guide the segmentation when high quality results
are needed. For mesh segmentation where the input is a
complete 3D mesh object and the purpose is to partition
it into meaningful parts [19], learning based methods [20]
have shown significant advantage of approaching semantic
segmentation. The work [21] exploits co-analysis to improve
mesh segmentation, demonstrating the benefits of building
statistical models of shape parts. The method is unsuper-
vised and therefore only segments shapes into parts based
on geometric similarity, without assigning detailed semantic
classes. Therefore, although aiming for semantic part seg-
mentation, in their paper, the method is only applied to a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 3

collection of high-quality 3D meshes representing shapes of
the same category and containing similar parts. The method
cannot be directly generalized to process 3D scene point
clouds which have much noise and occlusion, and contain
objects with flexible layout. Moreover, each object category
can have substantial variations of geometric shapes. In
this work, we propose a novel supervised learning based
method for semantic segmentation and labeling of complex
3D indoor scenes by exploiting shape and contextual infor-
mation from the training data.

Point cloud based 3D modeling. Point cloud segmen-
tation is often an integrated step in 3D scene acquisition
and modeling. Shao et al. [22] segment individual RGB-D
images into regions that correspond to objects, which are
then used for modeling with 3D objects from a database.
When the segmentation is not ideal, they resort to user
input to provide essential guidance. Single RGB-D images
have limited views and often contain occlusions. Their
method fuses results from multiple RGB-D images when
necessary. This provides a plausible solution, although the
segmentation step does not benefit from more complete
information that could be obtained by fusing multiple RGB-
D images into a point cloud. Nan et al. [23] instead take
3D point clouds as input. To address the challenge of point
cloud segmentation, they use object level classification to
validate and correct segmentation in an iterative manner.
However, for challenging cases with cluttered scenes and
objects significantly different from models in the database,
this greedy approach can produce sub-optimal results. Chen
et al. [24] improve the robustness of indoor scene modeling
from point clouds by using object-level context information
learned from a synthetic scene database. The context infor-
mation however is only effective when objects involved are
correctly segmented. Wang et al. [25] decompose the input
point cloud into primitives and achieve scene modeling
using graph-matching of primitives. The method requires
successful primitive fitting to work effectively, which can be
challenging for cluttered scenes with complicated objects.
Wang and Xu [26] detect local structures composed of
planes, cylinders and primitive surfaces, leading to robust
recovery for LiDAR scans. Li et al. [27] present a volumetric
patch-based optimization technique for constructing a com-
plete 3D model for an object from a single RGB-D image.

Indoor scenes often contain repeated objects with certain
variability. Instead of modeling the entire scene, Kim et
al. [28] learn primitive-based models in the training stage,
which are then used to recognize repeated objects, allowing
variability between parts. Their method requires in the
learning stage several scans of interested objects, and does
not handle cases where parts cannot be represented as prim-
itives. The work [29] exploits self-similarity by identifying
occurrence of similar near-planar patches using clustering.
The method is only based on geometric similarity, so cannot
identify semantically related objects with different shapes.
Our method aims to produce object-level semantic segmen-
tation and labeling, where the same object category may
have substantial shape variations.

For real-time reconstruction and modeling, Wang and
Kuo [30] reconstruct 3D scenes by using features to opti-
mize camera poses. Yan et al. [31] propose a visual SLAM
approach to aligning virtual and real worlds together, which

is served for Augmented Reality applications. Zhang et
al. [32] detect plane primitives and use them as constraints
to improve the obtained point cloud. Xu et al. [33] develop
an automatic scanning system that performs real-time RGB-
D image fusion, segmentation and modeling. To cope with
challenging segmentation, they use a PR2 robot to push the
target item to make segmentation easier. Wang et al. [34]
produce piecewise planar models (PPM) of complex scenes
via multi-level energy minimization. They focus on plane re-
construction and texture reconstruction for large buildings.
Our work focuses on semantic segmentation and labeling,
addressing a key step between scene construction and scene
modeling.

Semantic labeling and understanding of indoor scenes.
Most research in semantic labeling works on RGB-D data
using machine learning. Such work identifies specific objects
from RGB-D images as 3D bounding boxes which requires
estimating both objects and their orientations [35], [36], [37]
and [1], [7] achieve pixel level labeling of object categories
using a recurrent CNN. Such techniques however only work
for RGB-D images rather than point clouds as they rely on
a large amount of training data with regular topology.

Semantic labeling of 3D point clouds is a much more
challenging task. Silberman et al. [1] propose a semantic
region segmentation method for RGB-D image just for 4
labels (ground, furniture, prop, structure). Koppula et al. [38],
[39] develop an approach to semantic labeling of 3D point
clouds for indoor scenes. This method treats patch-based
segmentation and labeling as two separate problems and
uses a standard region growing technique for patch seg-
mentation. It learns context information between object la-
bels. At runtime, semantic labeling is formulated as an
optimization problem, which is solved using mixed inte-
ger programming. However, the consistency of patch-based
segmentation significantly affects the effectiveness of sta-
tistical learning. Moreover, objects are typically associated
with patches with large variations, and similar patches can
often be part of different object categories. This negatively
affects the effectiveness of learning. Also, both training and
applying the trained model are expensive, especially for
problems with a larger number of patches. They use both
color and geometry information, as well as camera related
features. Our method assumes the input is in the simplest
form, namely point cloud data with geometry only.

To address the limited availability of point cloud data,
one approach is to propagate labels learned from ImageNet
to 3D point clouds [40]. This avoids training using point
cloud data directly, although the performance is still below
that of [38]. The work [41] develops a method for semantic
labeling of point cloud data without the need of handcrafted
features. However, their method requires the input data to
contain both the point cloud and the corresponding RGB-D
images, so cannot be applied to our problem with only point
clouds as input.

Some work considers specific higher-level semantics
such as functionality and interaction of objects [42], and
checking safety and stability of objects in the scene [43]. For
robotic applications, Wu et al. [44] propose a learning based
method for task-specific semantic labeling of RGB-D images
where the desired level of semantic labels depends on the
need of the task.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 4

3 OUR METHOD

Our method takes 3D point clouds as input, with each point
containing the position p(px, py, pz) and normal direction
n(nx, ny, nz). Each point in the training set also carries a
manually assigned label l and object obj. Given a test point
cloud, our aim is to assign a label to each point for semantic
labeling, and for instance segmentation, segment the point
cloud into semantically meaningful objects. As explained
before, we focus on analyzing geometry information and
ignore color information.

Point
Cloud

Patches
(Labeled)

Clusters

Point
Cloud

Patches
(SegLevel=1)

Classify

PatchContext Patches
(Classified)

SegLevel+=1

Semantic
Segmentation

Object
Relation

Figure 2. Pipeline of our method.

The pipeline of our method is summarized in Fig. 2.
In the training stage, point clouds are first segmented into
patches guided by provided object labels to ensure object
boundaries are well preserved. Obtained patches are then
clustered with each cluster representing patches with similar
characteristics. Using clusters as an intermediate represen-
tation allows contextual rules to be identified more robustly.
We further learn pairwise patch context information from
the training dataset. In the test stage, we perform classifica-
tion based on learned contextual rules and patches gener-
ated at different segmentation levels. Multiscale processing
controls and selects appropriate segmentation levels for
local regions guided by semantic labels and related context.
For instance segmentation, this is followed by merging
semantic patches according to the learned pairwise cluster-
object model to obtain instance level segmentation.

3.1 Patch Generation using Dynamic Region Growing

In this step, we propose a simple Dynamic Region Growing
(DRG) method to efficiently cluster a point cloud into a set
of disjoint patches with smooth geometry. Unlike traditional
region growing algorithms (e.g. [29]), our method dynami-
cally updates the patch shape feature during region grow-
ing, making it more robust to normal noise and sampling,
as demonstrate in Figs. 3 and 8.

Region growing for the ith patch Pi starts with a new
seed point chosen from unassigned points with the mini-
mum curvature1. Denote as oi and ni the center point and
the normal of the growing patch Pi, which are re-estimated
every time when the patch size (i.e. the number of points
in the patch) |Pi| reaches c1|P̃i|. Here, |P̃i| is the size of
the patch when last estimated. c1 is a constant multiplier set
to 1.5 in our work. Considering a point p(x) ∈ Pi and a

1. This feature is calculated using the PCL library, and defined as the
ratio of the minimum eigenvalue to the sum of three eigenvalues when
applying PCA to points in the local neighborhoods.

(a) Traditional Region Growing

(b) Our Dynamic Region Growing (DRG)

Figure 3. Patch segmentation results of an office scene from S3DIS with
(k1, k2) = (0.8, 1cm). (a) the result of [29], (b) our DRG result. [29]
produces over-segmentation due to normal noise, whereas DRG can
tolerate noise to a considerable extent.

point p(y) /∈ Pi closest to it, p(y) can be added to Pi if the
following conditions are satisfied:

‖n(y) · ni‖ > k1

‖(p(y) − oi) · ni‖ < k2

‖(p(y) − p(x)) · ni‖ < c2 (1)

where the threshold c2 is set to 0.5cm. Here, the first two
conditions specify the constraint that the new point should
fit with the patch normal plane, and the last condition
requires consistency during the growing step.

k1 and k2 are key parameters that control the patch
segmentation results. Looser constraints of k1 and k2 may
cause ambiguous under-segmentation and stricter ones can
result in over-segmentation. As under-segmentation causes
objects to be mixed in patches, existing methods typically
choose parameters leaning towards over-segmentation. We
take a different, more robust approach. In the training stage,
k1 and k2 are set to 0.5 and 5cm. And we use the known
point level labels to restrict region growing and only add
points with a consistent label to the growing patch. In the
test stage, multiscale processing is used to automatically select
locally appropriate k1 and k2 to avoid under-segmentation
or over-segmentation (see Sec. 3.4 for more details), using
the learned patch-based semantic model for guidance. Al-
though different strategies are used in the training and test
stages since the label information is only available during
training, both strategies aim to produce segmentation that
better respects semantic boundaries. Fig. 3 compares our
DRG result with the traditional region growing method [29],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 5

which shows our method is more robust to noise and
suppresses over-segmentation.

3.2 Patch Clustering
To make probability analysis more robust and efficient, we
cluster patches using an unsupervised clustering method,
based on their feature similarity.

3.2.1 Feature descriptors
We first compute the Oriented Bounding Box (OBB) for
each patch. OBB takes the patch normal as its orientation
and projects points onto the fitting plane. Then, the fitting
rectangle is computed within the fitting plane, defined as the
rectangle with the minimum area covering all the projected
patch points, for which the optimal solution is efficiently ob-
tained using a Convex Hull Algorithm (withO(n logn) time
complexity) and Rotating Calipers Algorithm [45] (with
O(n) time complexity), where n is the number of points
in the patch.

Figure 4. OBBs.

An example of OBBs for patches
of a chair is given in Fig. 4 which
provides a good approximation to the
shape and allows patch features and
relations to be calculated efficiently.
We then define 9 feature descriptors
that can be calculated from a patch,
as summarized in Tab. 1. They are
easy to compute and cover the location
(height), shape, size and point distri-
bution of a given patch; a similar set of features are widely
used in existing research. As we will explain in the next sub-
section, these features are normalized in a consistent way
without the need of manually specifying their contributions.

F Description
f1 Minimum height
f2 Maximum height
f3 Curvature of the patch
f4 Angle between patch plane and horizontal plane
f5 Area of the concave hull
f6 Length of the fitting rectangle
f7 Ratio between length and width of bounding box
f8 Ratio between area f5 and the fitting rectangle area
f9 Point density – ratio between patch size and area f5

Table 1
Feature descriptors of a patch.

3.2.2 Clustering
To allow each object to contain patches with diverse char-
acteristics and learn rules from examples robustly, we in-
troduce patch clusters as an intermediate representation to
bridge between patches and objects. Patch clustering can be
efficiently achieved using unsupervised clustering for all the
patches in the training set.

For each patch Pi, we have the 9-dimensional feature
descriptor Fi = (f

(i)
1 , f

(i)
2 , ..., f

(i)
9). Instead of clustering

directly in this feature space, we notice that there are
substantial variation of feature values for the same feature
type (the height of an object can be 0 for objects on the
floor, but can also be much larger), as well as between
feature types (the range of angles are very different from
those of the height for example). To address these, we

normalize each feature f (i)k with the standard deviation of
the feature σk, and perform logarithm to cope with large
difference in values. Specifically, we obtain a transformed
vector Vi = (v

(i)
1 , v

(i)
2 , ..., v

(i)
9) as follows:

v
(i)
k = ln(

f
(i)
k

σk
+ ε), (2)

where ε is a small offset value which is set to 1
e to ensure

the validity of ln function with 0 as input.
We define the feature discrepancy between the patches

Px and Py as the `1 norm of the difference of feature vectors
Vx and Vy :

d(Vx,Vy) = |Vx −Vy|1 =
9∑

i=1

|v(x)i − v(y)i |. (3)

To perform unsupervised patch clustering, we use the K-
means++ algorithm [46] (with O(KN) time complexity
where K is the number of clusters and N is the number of
patches). Traditional clustering methods require the number
of clusters and initial cluster centers to be specified, which
can be data dependent and difficult to determine. Unlike
these methods, K-means++ just takes a parameter of the
maximum cluster distance which can be easily determined
by features and has better adaptability for different datasets.
The number of clusters K is determined using an itera-
tive process where clusters are iteratively added until the
maximum cluster distance within the same cluster exceeds
a threshold (typically chosen as 1.7 in our experiments). Al-
ternative spectral clustering method requires high computa-
tional and memory costs and fails to produce segmentation
results due to memory overflow because typically a large
number of patches need to be clustered. Even with efficient
approximations such as Nyström approximation [47], the
memory requirements remain high.

After clustering, we assign each patch Pi in the training
set to a cluster ci based on its closest cluster center. Each
patch in the training set also contains its object category
label li. We pre-compute a base confidence confbase for a
cluster c to belong to object label l using the statistics from
the training set, as well as the mean feature vector for each
cluster V̄(c), which will be useful for the later classification
task.

conf base(c, l) =
|{Pi | ci = c, li = l}|
|{Pi | ci = c}|

, (4)

V̄(c) = mean{Vx|cx = c}, (5)

where | · | is the number of elements in the set, and mean{·}
is the mean vector of elements in the set.

3.3 Patch Context Analysis

Unlike previous work where contextual information is an-
alyzed at the object level [24], [38] which is sensitive to
segmentation correctness, and requires explicit modeling
for objects and their parts, we propose a new model that
represents patch-based contextual relationships using co-
occurrence statistics of clusters and labels, which represent
both the part-to-part and object-to-object context informa-
tion simultaneously.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 6

For every training 3D point cloud, we compute all
pairs of adjacent patches. To achieve this, we estimate the
distance d(Px,Py) between two patches Px and Py as
the minimum distance between their oriented bounding
boxes d(OBBx, OBBy) as they usually provide a good
approximation to patches. d(OBBx, OBBy) is defined as:

d(OBBx, OBBy) = min
X∈OBBx,Y∈OBBy

‖X−Y‖, (6)

where OBBx and OBBy represent the volumes of the
OBBs, and X and Y are arbitrary points within them. For
efficient implementation, we check if OBBx

⋂
OBBy 6= ∅,

and set d(OBBx, OBBy) to 0 if this is the case. Otherwise,
d(OBBx, OBBy) can be efficiently calculated as

min(min
X∈Vx,Y∈Sy

‖X−Y‖, min
X∈Sx,Y∈Vy

‖X−Y‖), (7)

where V and S refer to the vertices and bounding surfaces
of the corresponding OBB.

We set the adjacent distance threshold d1 = 0.50m, the
adjacent patch pair set P is defined as:

P = {(Px,Py)|d(OBBx, OBBy) ≤ d1}. (8)

For any patch pair (Px,Py) ∈ P , we further analyze their
spatial relationship rxy , which can include one or more of
the following possibilities: adjacent (patch distance is smaller
than 0.5m), close (patch distance is smaller than 3cm), orthog-
onal, parallel and co-planar.

For each pair of patches (Px,Py) ∈ P in the training set,
we obtain a patch context quintuple q = (cx, cy, rxy, lx, ly).
We count the number of occurrences for each quintuple,
denoted as γq . Among all the patch pairs in the training
set belonging to the same clusters and with the same rela-
tionship as q, we further work out the proportion that has
the same labels as in q, denoted as τq :

τq =
γq∑

x̃

∑
ỹ γ(cx,cy,rxy,lx̃,lỹ)

(9)

Let us denote the set of patch context quintuples asQ. q ∈ Q
if the following conditions are satisfied:

γq ≥ t1, τq ≥ t2. (10)

The former condition states that the quintuple should ap-
pear sufficient number of times to avoid accidentally ac-
cepting an erroneous quintuple, where t1 is the minimum
frequency required and the latter says that the regula-
tion strength should be sufficiently high (i.e. the quintuple
should state a dominant contextual relationship). We set
t1 = 2 and t2 = 0.75 in our experiments.

3.4 Semantic Labeling

In the test stage, given an unknown 3D point cloud, the aim
of semantic labeling is to segment it into a patch set {Pi}
and assign the correct object label to each patch.

3.4.1 Single Level Semantic Labeling
We first describe single level semantic labeling. We use a
region growing algorithm similar to the one in Sec. 3.1
although do not constrain region growing to points with the
same label as label information is not available for the test

dataset, which produces the patch set {Pi}. We will then
need to assign an object label li to each patch Pi.

We define a score s for label assignment as

s({li}) =
∑
i

confp(Pi, li) +
∑
x

∑
y

confpc(Px,Py, lx, ly),

(11)
where confp considers the confidence of assigning label li
to patch Pi. We use a weighted sum of base confidence
confbase(c, li) for cluster c to belong to label li, where the
weight decreases when the patch Pi is more different from
the cluster center:

confp(Pi, li) =
∑
c

w(Pi, c)confbase(c, li), (12)

where the weight w(Pi, c) is defined as

w(Pi, c) = exp

{
−d

2(Vi, V̄
(c))

2

}
. (13)

Here, d is the distance between feature vectors of the patch
Pj and cluster center c, as defined in Eq. 3. Although it
is possible to replace the definition of d with Mahalanobis
distance, our choice is more consistent with the distance
measure used throughout the pipeline.

The binary term confpc(Px,Py, lx, ly) measures how the
patch pair (Px,Py) satisfies patch context rules, and is
defined as

confpc(Px,Py, lx, ly) =

{
τq, q ∈ Q
0, otherwise

, (14)

where q = (cx, cy, rxy, lx, ly), cx and cy are the nearest
clusters to patches Px and Py , to make the problem more
manageable. We turn this problem into a label assignment
problem by minimizing the following energy:

E({li}) =
∑
i

Ei(li) +
∑
x

∑
y

Ex,y(lx, ly), (15)

where we define the unary energy term Ei(li) = 1 −
confp(Pi, li), and the binary energy term Ex,y(lx, ly) =
1− confpc(Px,Py, lx, ly). The binary energy term however
does not in general satisfy the property:

Ex,y(lx, lx) + Ex,y(ly, ly) ≤ Ex,y(lx, ly) + Ex,y(ly, lx) (16)

which is required for many multi-label graph-cut algo-
rithms, since for certain pairs, the confidence of them being
assigned different labels can be higher than the same label.
We solve this optimization problem efficiently using the
ICM (iterated conditional mode) method [48] which works
for arbitrary energies.

3.4.2 Semantic Labeling with Multiscale Processing
Ideally, patch-based segmentation should produce consis-
tent segmentation for both training and testing to allow
learned models to be effectively applied. However, the
result of the region growing algorithm is highly controlled
by the parameters k1 and k2. In the training phase, the
label information helps to instruct the segmentation so by
setting looser thresholds, the obtained result can largely
avoid under- or over-segmentation. However, in the test
phase, setting a single set of thresholds that works in all
the cases is difficult. For example, using larger k1 and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 7

k2 cannot segment a board from the wall as they have
similar depth, while using smaller k1 and k2 can easily over-
segment complex shapes such as a sofa and produce many
small pieces. To address this challenge, we propose to use
a multiscale semantic labeling procedure that uses labeling to
guide the segmentation process and chooses locally suitable
scales for segmentation and labeling.

Our multiscale semantic labeling takes a set of scale
levels, each determined by k1 and k2 parameters. Leveli =
(k

(i)
1 , k

(i)
2), i = 1, 2, 3,

We initialize the 0th level by treating the entire point
cloud data as a single root patch P(0). We then consider
each successive level h, starting from h = 1.

We first segment each patch P
(h−1)
i in the (h − 1)th

level into subpatches, using the hth level parameters. This
produces a candidate patch set S(h). Not all the patches
in S(h) will be accepted. We use semantic labeling to help
determine whether such further segmentation is beneficial.

We classify the subpatches in S(h) using the single level
semantic labeling described in Sec. 3.4.1. Assume the parent
patch for P

(h)
i in the hierarchy is P

(h−1)
j , and the object label

for P
(h)
i is l(h)i .

We define the score of assigning li to a patch Pi as the
sum of the subset of terms in the global score s({li}) with Pi

and label li involved. Note the following definition works
for any level:

s(Pi, li) = confp(Pi, li) +
∑
y

confpc(Pi,Py, li, ly). (17)

We further define a normalized score s̃(Pi, li) using all the
possible labels:

s̃(Pi, li) =
s(Pi, li)∑
l s(Pi, l)

. (18)

A subpatch P
(h)
i is accepted if both of the following two

conditions are satisfied:

l
(h)
i 6= l

(h−1)
j (19)

s̃(P
(h)
i , l

(h)
i) > s̃(P

(h−1)
j , l

(h−1)
j). (20)

The former states that the subpatch has a different object
label from its parent patch. Otherwise the patch should
not be further segmented to avoid over-segmentation. The
latter says the normalized confidence score for the subpatch
should be higher than the parent patch.

The Levelh patches {P(h)
i } are composed of patches

from the three sources: 1) accepted subpatches in S(h), 2)
patches in {P(h−1)

i } with all the subpatches rejected, and
3) remaining points re-segmented using the parameters in
the (h − 1)th level. The last case is introduced to handle
(h−1)th level patches with subpatches partly accepted. The
result (patches and their assigned labels) of the last level is
treated as the result of multiscale semantic labeling.

In our work, we set 5 different segmentation levels.
As we will show later, these parameters do not need to
be carefully chosen and the performance is significantly
better than the results obtained using single level patch
segmentation.

3.5 Semantic Instance Segmentation

The aim of semantic segmentation is to break down the
input point cloud into disjoint semantic regions, each cor-
responding to an independent object made up of patches
shared with the same label. We utilize the labeling result
to help obtain semantic segmentation of the input scene.
Specifically, we merge the labeled patches into the object
level with their classified labels and patch cluster-object
relationships.

Similar to the patch context for semantic labeling, for
each pair of patches (Px,Py) ∈ P in the training set, we
further obtain a patch cluster-object relationship quintuple
q′ = (cx, cy, r

′
xy, l, pred). cx and cy are the clusters associ-

ated with patches Px and Py . r′xy describes the relationship
of patches Px and Py , which is similar to patch rela-
tionship rxy defined previously, although with the adjacent
relationship excluded as we only consider close patches for
merging.

Denote by ox and oy the object IDs patches Px and Py

belong to. pred states whether the two patches belonging to
the same object. pred = 1 if ox = oy and 0 otherwise. l refers
to the label of the patch pair, and a patch pair is considered
for merging only when they share the same label, as patches
belonging to different object categories obviously belong to
different object instances. (For experiments where the label
information is unavailable, l is ignored and fixed to 0 in this
formulation).

We count the number of occurrences for each quintuple,
denoted as γ′q′ . Among all the patch pairs in the training
set belong to the same clusters, with the same relationship
and label as q′, we further work out the proportion with the
same object relationship (whether or not belonging to the
same object) as q′, defined as:

τ ′q′ =
γ′q′∑

pred=0,1

γ′(cx,cy,r′xy,l,pred)

(21)

Define quadruple t = (cx, cy, r
′
xy, l) for describing patch

(cluster)-object relationships. Denote by T+ the set of posi-
tive relationships, showing regions that should be merged.
t ∈ T+ if the following conditions are satisfied:

γ′(cx,cy,r′xy,l,1)
> t3, τ

′
(cx,cy,r′xy,l,1)

> t4. (22)

Similarly, denote by T− the set of negative patch-object
relationships showing regions that should not be merged.
t ∈ T− if the following conditions are satisfied:

γ′(cx,cy,r′xy,l,0)
> t3, τ

′
(cx,cy,r′xy,l,0)

> t4. (23)

We set t3 = 2 and t4 = 0.9 in our experiments. The semantic
segmentation algorithm starts with treating each patch as an
object on their own. Let Px be the set of patches that belong
to ox, the object that contains patch Px. Then, initially,
Px = {Px} ,∀x. We process each patch pair iteratively in
the decreasing order of τ ′q′ . Then, for every pair of patch
Px and Py being considered, we compute the patch-object
relationship between any patch Px̃ ∈ Px and Pỹ ∈ Py ,
denoted as Txy . Then we merge Px and Py into the same
object, if the following are satisfied:

lx = ly, Txy ∩ T+ 6= ∅, Txy ∩ T− = ∅. (24)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 8

In other words, their semantic labels are identical, and there
are rules for patches in these sets to be merged, but not rules
to stop them from merging. This process repeats until all the
patch pairs are processed.

4 RESULTS AND DISCUSSIONS

We now present our results for semantic labeling and seg-
mentation of indoor scenes. We tested our algorithm on a
computer with an Intel Xeon CPU E5-2620 2.0GHZ CPU
and 32GB memory.

4.1 Running Times
We compare our method with the method for semantic
labeling of 3D point clouds [38], [39] (see Tab. 3). This
method takes an existing patch segmentation as input. For
the Cornell RGB-D dataset [38] where the average patch
number is around 50 per scene, their training time is about
2-3 hours. For our benchmark with a moderate number
of 486 patches on average, their training time increases
dramatically to 7 days. Moreover, their test time for each
scene also increases massively to 10 hours. In contrast, our
method takes point cloud data as input and our multiscale
approach jointly solves patch segmentation and semantic
labeling. Even for our benchmark data with an average of
1.5 million points per scene, our training time is only 8
minutes, and the test time is 17 seconds for the single-level
case and 45 seconds for multiscale processing, which are
hundreds of times faster.

To provide a breakdown of running times for our mul-
tiscale approach, the running time for patch segmentation
is 5 seconds for the first time and 2 seconds for subsequent
levels as KD-tree initialization is one-off. The running times
for feature extraction and semantic labeling/segmentation
are 8 seconds and 2 seconds respectively.

For larger datasets, such as S3DIS, our method still
works efficiently, while the method [38] is unable to produce
results due to running out of memory.

4.2 Semantic Labeling Results
We use our benchmark based on the ETH database, Cornell
RGB-D, SceneNN and S3DIS to evaluate semantic label-
ing. To demonstrate our method, we use single-level seg-
mentation with two parameters settings. LevelA: (k1, k2)
= (0.5, 5cm) uses looser thresholds so tends to produce
fewer, bigger patches. LevelB : (k1, k2) = (0.9, 1cm) on the
other hand uses tighter thresholds and produces a larger
number of smaller patches. We also use our multiscale patch
segmentation, with the local segmentation level guided by
semantic labeling. For multiscale segmentation, we use 5
levels with the following settings for (k1, k2): (0.5, 5cm),
(0.6, 4cm), (0.7, 3cm), (0.8, 2cm) and (0.9, 1cm). There is
no need to carefully choose these parameters due to the
robustness of our multiscale segmentation, so we simply
choose evenly distributed thresholds. The same parameter
setting is used for all experiments.

ETH benchmark. ETH point cloud dataset [29] is a high-
quality point cloud dataset containing 18 office point cloud
scenes constructed from laser point cloud data. As [29] does
not provide labels, we manually labeled the point cloud

data in two ways to support evaluation: 1) semantic label
for each point, useful for evaluating semantic labeling, 2)
individual object segmentation, useful for evaluating in-
stance segmentation. Specifically, we use a large number
of semantic labels, floor, wall, door, board, chair, desk,
keyboard, monitor, mouse, cup, CPU, laptop, window, desk
cabinet, basket, trash, phone, vase, lamp, eraser, radiator,
bookcase, cabinet, pipe, box, headset, bag, table, plants,
trunk, sofa, pillow, paper, clothes rack, outlet, clothes,
plastic bag, slipper and fan. The benchmark will be made
available to the community to facilitate future research.

Out of the 18 office scenes, we take 12 scenes for training
and the rest 6 scenes for testing. We select 25 common
classes to test our labeling performance. All the selected
classes are shown in Tab. 2. The remaining classes appear
fewer than 5 times across the whole dataset, and therefore
are meaningless to test learning capabilities. For this dataset,
we use label guided segmentation in the training set, which
generates 5493 patches for training as well as 278 clusters
and 17361 patch context relationships.

Tab. 2 shows the performance of our semantic labeling.
For each class, we report the F-measure (the harmonic mean
of precision and recall) to give a concise, balanced perfor-
mance indicator. Our algorithm performs well on majority
of the classes. Fig. 5 compares our semantic labeling results
without and with patch-based contextual information. The
multiscale approach is used for both results. We can see
that the contextual information helps resolve ambiguities,
such as the board, the keyboard and the phone, which are
incorrectly labeled without using context. It helps improve
the performance from 86.98% to 93.81%. Please refer to
Tab. 2 with detailed performance comparisons which shows
the improvement of patch context.

Fig. 6 shows an example of patch segmentation results.
The result of LevelA segments the chair and the wall rea-
sonably well, although certain objects such as the board and
the keyboard are under-segmented, since they are near co-
planar to the wall or desk with only a small depth difference.
The result of LevelB on the other hand segments the board
correctly, although objects such as the desk or monitor might
be over-segmented, leading to incorrect semantic labeling.
With under-segmentation, it is not possible to correct this in
the later stages of the pipeline. Although over-segmentation
may still allow correct labels to be assigned, while the un-
reasonable patch boundaries would affects the performance
of semantic labeling. Our multiscale patch segmentation
produces reasonable patches across the whole input point
cloud data. The effectiveness of multiscale processing is
also demonstrated in Fig. 7 where the overall accuracy of
our method increases with an increasing number of levels.
Multiscale segmentation helps improve the overall point
accuracy rate from 85.12% to 93.81% for our benchmark
based on the ETH dataset. Such performance gain gradually
diminishes when the number of levels reaches 5. Similar
performance gain is achieved with different datasets.

Note that [38] requires patch segmentation as input,
to avoid potential loss of performance due to poor patch
segmentation, we use label guided segmentation as the initial
patch segmentation for their method. If a standard region
growing based patch segmentation were used, the perfor-
mance would be lower.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 9

F-measure floor wall door board chair desk
key-

board
monitor mouse cup CPU window

desk
cabinet

LevelA 98.76 88.05 00.00 00.00 77.23 86.13 00.00 82.55 00.00 83.13 00.00 72.59 60.04
LevelA + PC 98.75 89.19 99.68 00.69 92.62 86.70 00.38 89.70 00.00 78.08 78.66 82.11 72.27
LevelB 97.16 85.16 41.31 68.87 72.08 73.08 00.00 23.80 00.00 00.00 00.00 38.81 71.76
LevelB + PC 98.05 92.76 96.91 94.20 86.33 76.61 35.09 84.72 00.00 51.29 37.02 62.18 71.98
Koppula [38] 78.90 80.61 00.00 00.28 68.27 79.64 61.98 86.89 50.03 89.38 36.48 00.00 00.00
MultiScale 99.48 96.08 00.00 98.48 71.27 93.76 00.00 82.97 00.00 77.41 00.00 77.40 71.31
MultiScale+ PC 99.59 97.56 99.87 98.55 92.51 96.52 91.63 87.83 63.93 70.04 53.43 82.51 75.18

F-measure basket trash phone vase eraser radiator
book

cabinet
pipe plant paper

clothes
rack

clothes Overall

LevelA 70.37 79.76 00.00 00.00 00.00 60.02 44.47 48.50 53.52 00.00 22.88 00.00 79.69
LevelA + PC 84.88 83.48 36.43 39.02 00.00 80.63 71.09 51.83 56.06 26.13 40.90 41.34 85.12
LevelB 53.20 45.97 00.00 00.00 00.00 09.81 28.53 00.00 00.00 00.00 00.00 00.00 78.19
LevelB + PC 72.76 71.44 01.37 32.43 11.09 57.65 54.63 04.67 03.04 10.68 09.84 47.29 86.73
Koppula [38] 00.04 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.40 00.00 00.00 00.00 66.25
Multiscale 72.30 80.88 00.00 00.00 48.77 59.95 52.29 45.50 53.58 07.32 16.89 00.00 86.98
Multiscale+ PC 87.09 84.55 82.83 15.14 70.34 78.16 79.55 49.11 66.12 51.20 62.81 40.09 93.81

Table 2
Semantic labeling performance (F-measure) on our benchmark based on the ETH dataset with 25 classes. LevelA, LevelB : results with single

level segmentation using two parameter settings (looser and tighter thresholds). Multiscale: our multiscale segmentation and labeling. +PC
means the method uses pairwise patch context information.

(a) Multiscale (b) Multiscale+ PC (c) Groundtruth

Figure 5. Comparison of our semantic labeling results without (a) and with (b) patch context (as indicated by +PC). The multiscale approach is used
in both cases. In this example, patch context helps significantly improve labeling for on-desk objects such as the keyboard, mouse and phone.

Our benchmark based on ETH dataset
Average
Points

Average
Patches

Training
Time(12 scenes)

Test
Time

Koppula [38]
1.5million

486 7days 10h
single level - 8min 17s
multiscale - 8min 45s

Cornell RGB-D dataset
Office
Home

Average
Points

Average
Patches

Training
Time (4 - folds)

Test
Time

Koppula [38] 0.5million 46 2.5h 15min
0.6million 51 3.2h 14min

our method 0.5million 46 4.2s 200ms
0.6million 51 3.5s 200ms

SceneNN dataset [49]
Average
Points

Average
Patches

Training
Time(62 scenes)

Test
Time

Koppula [38] 1.7million 947 Failed Failed
Our method - 25min 29s

Stanford 3D dataset [2]
Average
Points

Average
Patches

Training
Time(6 - folds)

Test
Time

Koppula [38] 0.8million 317 Failed Failed
Our method - 47min 35s

Table 3
Running time comparison for semantic labeling on both ETH dataset,

Cornell RGB-D dataset, SceneNN and Stanford 3D dataset.

To test the robustness of our patch segmentation method,
Fig. 8 shows the patch segmentation results using our
method for the original scene, the scene with added normal
noise, and the downsampled scene. For each point, the
added normal noise has a Gaussian distribution with 0
mean and 30◦ standard deviation. For downsampling, we

keep half of the points from the original scene. Note that
such operations are applied to the entire dataset, including
the training set, to simulate real-world scenarios where the
quality of data is poorer. The patch segmentation results as
well as the overall accuracies are reported. Our dynamic
region growing method is robust, with the drop of accuracy
under 1% for the noisy dataset, and under 2% for the
downsampled dataset.

Cornell RGB-D dataset. Cornell RGB-D dataset contains
25 office scenes and 34 home scenes. As our aim is object
level semantic segmentation and labeling, to test the capa-
bility of handling diverse shapes within each category, we
generate object level labels by grouping relevant part labels.
For example, both chair back rest and chair base patches are
considered to belong to chairs. We thus have 9 object classes
for office scenes: table, floor, monitor, chair, keyboard, CPU,
paper, printer and book, and 10 classes for home scenes: floor,
table, bed, shelf, pillow, sofa, chair, quilt, book and laptop.

We compare our method with [38] using the code
provided by the authors. The average performance for both
office and home scenes is reported in Tab. 4. We use the
same metrics as in [38], where micro P/R (precision/recall)
means the percentage of patches correctly labeled, macro
results refer to the average precision and recall of every
class. The max class is the baseline in [38] corresponding to
labeling every patch with the class containing the maximum
number of patches. We use the complete pipeline in their

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 10

(a) patches:LevelA + PC (b) patches:LevelB + PC (c) patches:Multiscale+ PC (d) labelling:Labelguided

(e) labelling:LevelA + PC (f) labelling:LevelB + PC (g) labelling:Multiscale+ PC (h) labelling:Groundtruth

Figure 6. Comparison of our semantic labeling and patch segmentation results using patch context with different patch segmentation levels (a)(e)
single-level LevelA, (b)(f) single-level LevelB , (c)(g) multiscale processing. Top row: patch segmentation result, bottom row: labeling result.

Figure 7. Overall accuracy of labeling results on different benchmarks
with different levels of multiscale processing. Higher level means stricter
thresholds. ETH dataset has high-quality normals and benefits from high
levels of patch segmentation. SceneNN results have less improvement
due to incomplete labeling and thus limited context. S3DIS results
improve rapidly in low levels due to their RGB-D camera input with
relatively high noise. Office Scenes

micro macro
method P/R Precision Recall
max class 26.91 26.91 11.11
Koppula [38] 77.01 73.08 58.82
Our Method 80.88 74.30 69.02

Home Scenes
micro macro

method P/R Precision Recall
max class 23.01 23.01 10.00
Koppula [38] 47.26 39.57 34.06
Our Method 52.80 50.36 41.05

Table 4
Labeling results on the Cornell RGB-D dataset. For consistency, we

report the performance measured at point level, rather than patch level
as in [38].

paper (color+geometry+context). Note that their method
also utilizes camera related features which our method does
not exploit. As our method is based on geometry only, we
ignore the color information in our pipeline. Nevertheless,
our method achieves better performance than [38] (with an
overall improvement of 3.87% and 5.54% respectively in

terms of micro P/R), demonstrating the effectiveness of our
method.

SceneNN dataset. The SceneNN dataset [49] is a labeled
point cloud dataset that contains 95 scenes, fused from RGB-
D images. We take 62 scenes for training and the remaining
33 for testing, with random partitioning. The SceneNN
dataset contains 360 different labels. We merge labels of
different styles in the same category into one label. For
example, chair1, chair2 and seat are treated as chair. We then
select 15 most common classes with at least 20 instances
(chair, monitor, desk, table, wall, floor, trash bin, door, shelf,
pillow, keyboard, computer, bed, window and fridge) for testing.

We perform experiments with both our method and
[38]. The results are shown in Tab. 6. Our method achieves
fairly good performance with an overall accuracy of 73.5%.
Patch context analysis contributes to an improvement of 5%.
Note that for this dataset, many points are unlabeled. So
the multiscale processing has less effect as shown in Fig 7.
The method [38] failed in the training stage due to out of
memory.

S3DIS dataset. The S3DIS dataset [2] includes 6 ar-
eas and 271 rooms captured by Matterport cameras, with
ground truth point-level labeling of 13 object categories,
including chairs, tables, etc. We compare our method with
state-of-the-art deep learning based methods [8], [10]. We
use the Intersection over Union (IoU) measure for con-
sistency with existing methods. As shown in Tab. 7, our
method achieves significantly better accuracy than [8], [10].
Methods with +RGB mean they use color in addition to
3D information. Detailed per semantic class IoU results are
presented in Tab. 5 which shows our method is better than
existing method for nearly all the semantic classes. Fig. 9
shows an example. Our method produces results similar to
the groundtruth.

4.3 Instance Segmentation Results
We are not aware of existing semantic instance segmenta-
tion methods on point cloud data. The method [50] uses
a learning based approach to perform indoor scene seg-
mentation for unknown objects. This method takes RGB-D

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 11

(a) Original scene (b) LevelA (85.12%) (c) LevelB (86.73%) (d) Multiscale (93.81%)

(e) Scene with added noise (f) LevelA+noise (84.78%) (g) LevelB+noise (85.94%) (h) Multiscale+noise (92.74%)

(i) Scene with downsampling (j) LevelA+ds. (83.49%) (k) LevelB+ds. (83.57%) (l) Multiscale+ds. (91.95%)

Figure 8. Experiments testing the robustness of our DRG patch segmentation. First row: results of the original scenes, second row: results for
scenes with added normal noise, third row: results for scenes with downsampling. The overall accuracies are reported in brackets.

IoU mean IoU ceiling floor wall beam column window door table chair sofa bookcase board
PointNet [8] 40.0 84.0 87.2 57.9 37.0 19.6 29.3 35.3 51.6 42.4 11.6 26.4 12.5
PointNet+RGB [8] 43.5 81.5 86.7 64.8 29.4 16.3 39.1 48.1 52.5 42.5 05.4 37.6 30.4
Engelmann [10] 43.0 86.5 94.9 58.8 37.7 25.6 28.8 36.7 47.2 46.1 18.7 30.0 16.8
Engelmann+RGB [10] 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 06.9 39.0 30.0
Ours 64.6 98.2 98.7 75.2 63.6 37.1 54.3 73.2 72.1 72.7 09.9 56.7 63.1

Table 5
Comparison of IoU between our method and deep learning methods for each semantic class in the S3DIS dataset.

Accuracy
mean
IoU

overall
accuracy

avg. class
accuracy

MultiScale 41.2 68.3 51.7
MultiScale+ PC 45.8 73.5 54.7

Table 6
Accuracy and mean IoU results of our method on SceneNN dataset.

Accuracy
mean
IoU

overall
accuracy

avg. class
accuracy

PointNet [8] 40.0 72.1 52.9
PointNet+RGB [8] 43.5 75.0 55.5
Engelmann [10] 43.0 75.4 55.2
Engelmann+RGB [10] 49.7 81.1 66.4
Ours 64.6 88.0 75.6

Table 7
Comparison of labeling accuracy between our method and deep

learning methods on the S3DIS dataset.

images as input. Nevertheless, since it uses a graph-based
model, it can be generalized to point cloud data. However,
although the method works well on simpler RGB-D datasets
with fewer patches, when applied to our benchmark, the
SVM appears to predict every graph edge as belonging

to different objects. This is because in the training set of
pairwise relationships, this case is dominant, and SVM
suffers from imbalanced training data. While this problem
may be relieved by imbalanced learning techniques [51],
such extension is non-trivial and beyond the scope of this
paper.

We perform semantic segmentation on ETH dataset us-
ing the same training/test separation. We use statistical
measures including Rand Index (RI), Global Consistency
Error (GCE) and Local Consistency Error (LCE) to quanti-
tatively evaluate different results [19]. Note that some other
quantities such as cut discrepancy used for mesh segmenta-
tion evaluation do not generalize well to point cloud data as
cuts are not clearly defined. For RI, larger is better where for
GCE and LCE, smaller is better. As can be seen from Tab. 8,
by exploiting the object label information in the training
set, more specific and effective patch-object relationships
can be learned. This along with contextual information
leads to improved object level segmentation results. Our
multiscale segmentation only works with label information
and achieves the highest performance, significantly better
than the baseline region growing method (implemented in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 12

(a) Raw point cloud (b) Patch segmentation (c) Semantic labeling (d) Ground-truth labeling

(e) Raw point cloud (closeup) (f) Patch segmentation (closeup) (g) Semantic labeling (closeup) (h) Ground-truth labeling (closeup)

Figure 9. Semantic labeling results on the S3DIS dataset. (a) raw point cloud, (b) patch segmentation result with multiscale processing, (c) semantic
labeling result, (d) groundtruth, (e)-(h): closeup views of results in (a)-(d).

PCL 1.8). Both multiscale segmentation and patch context
contribute to this improvement. Fig. 10 shows semantic
segmentation results of a scene using different settings, with
incorrect segmentation highlighted. By using label informa-
tion, the learned model can effectively separate the two
monitors. The multiscale processing further improves ro-
bustness and can effectively segment objects such as chairs.

RI GCE LCE
RegionGrow[PCL1.8] 85.03 16.55 10.56
LevelA (without label) 89.21 14.23 09.40
LevelA (with label) 90.97 11.24 04.49
LevelB (without label) 91.20 17.97 15.48
LevelB (with label) 92.75 16.31 08.15
Multiscale (with label) 97.16 07.98 03.63

Table 8
Instance segmentation results. LevelA, LevelB : instance

segmentation results using single-level segmentation with two different
settings (looser and tighter thresholds). Multiscale: our multiscale

instance segmentation result. without label : semantic label information
is unavailable. with label : semantic label information is available and

used in the pipeline for semantic instance segmentation.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to semantic
segmentation and labeling of 3D point clouds. We segment
input point clouds into patches, and introduce patch clus-
ters as an intermediate representation between patches and
semantic labels. We further develop a novel multiscale patch
segmentation and classification approach using learned
patch contextual information as guidance. Representing
contextual information in the form of patches and their re-
lationships makes the model less sensitive to segmentation
inconsistencies. We demonstrate that our method produces
improved performance over state-of-the-art methods. Our
current method relies on similar patches for learned models
to work effectively. Our current patch segmentation method
is efficient, but may produce over-segmentation for highly
curved surfaces, and fail to produce consistent segmentation
for non-rigidly deformed objects. Since our method is patch-
based and exploits patch context, it is tolerant with a certain

(a) LevelA without label (b) LevelA with label

(c) LevelB without label (d) LevelB with label

(e) Multiscale with label (f) GroundTruth

Figure 10. Results of our semantic segmentation, compared with the
ground truth segmentation. Incorrect segmentation is highlighted.

level of occlusions, but the performance can be affected
when the scene is highly occluded. We would like to address
these in the future, e.g. by generalizing the patch segmen-
tation method. With recent effort, point cloud datasets [2],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 13

[49], [52] are being released. They provide potential for
deep learning methods like PointNet [8]. We would like to
combine CNN methods with patch shape analysis to further
improve our work in the future.

ACKNOWLEDGMENTS

This work was supported by the National Key Technology
R&D Program (Project Number 2017YFB1002604), the Natu-
ral Science Foundation of China (Project Number 61521002,
61761136018) and Tsinghua-Tencent Joint Laboratory for
Internet Innovation Technology. We would like to thank the
authors and contributors of the ETH dataset [29], the Cornell
RGB-D dataset [38], the SceneNN dataset [49] and the S3DIS
dataset [2] for making the datasets available. We also thank
authors of [38] for providing their code.

REFERENCES

[1] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor seg-
mentation and support inference from RGBD images,” in European
Conference on Computer Vision, 2012, pp. 746–760.

[2] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fis-
cher, and S. Savarese, “3D semantic parsing of large-scale indoor
spaces,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 1534–1543.

[3] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volu-
metric and multi-view CNNs for object classification on 3D data,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 5648–5656.

[4] H. Su, F. Wang, E. Yi, and L. J. Guibas, “3D-assisted feature
synthesis for novel views of an object,” in International Conference
on Computer Vision, 2015, pp. 2677–2685.

[5] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-
view convolutional neural networks for 3D shape recognition,”
in International Conference on Computer Vision, 2015, pp. 945–953.

[6] K. Guo, D. Zou, and X. Chen, “3D mesh labeling via deep convo-
lutional neural networks,” ACM Transactions on Graphics, vol. 35,
no. 1, p. 3, 2015.

[7] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich fea-
tures from RGB-D images for object detection and segmentation,”
in European Conference on Computer Vision, 2014, pp. 345–360.

[8] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” pp. 77–85,
2017.

[9] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” in
Neural Information Processing Systems, 2017, pp. 5099–5108.

[10] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, “Explor-
ing spatial context for 3D semantic segmentation of point clouds,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 716–724.

[11] R. Mottaghi, X. Chen, X. Liu, N. G. Cho, S. W. Lee, S. Fidler,
R. Urtasun, and A. Yuille, “The role of context for object detection
and semantic segmentation in the wild,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 891–898.

[12] L. Yi, L. Guibas, A. Hertzmann, V. G. Kim, H. Su, and E. Yumer,
“Learning hierarchical shape segmentation and labeling from
online repositories,” ACM Transactions on Graphics, vol. 36, no. 4,
p. 70, 2017.

[13] P.-A. Fayolle and A. Pasko, “Segmentation of discrete point clouds
using an extensible set of templates,” The Visual Computer, vol. 29,
no. 5, pp. 449–465, 2013.

[14] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Segmentation
of point clouds using smoothness constraint,” in ISPRS Commis-
sion V Symposium ‘Image Engineering and Vision Metrology’, vol. 36,
no. 5, 2006, pp. 248–253.

[15] A. Golovinskiy and T. Funkhouser, “Min-cut based segmentation
of point clouds,” in International Conference on Computer Vision
Workshops, 2009, pp. 39–46.

[16] O. van Kaick, N. Fish, Y. Kleiman, S. Asafi, and D. Cohen-Or,
“Shape segmentation by approximate convexity analysis,” ACM
Transactions on Graphics, vol. 34, no. 1, p. 4, 2014.

[17] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-
cloud shape detection,” Computer Graphics Forum, vol. 26, no. 2,
pp. 214–226, 2007.

[18] M. Attene and G. Patanè, “Hierarchical structure recovery of
point-sampled surfaces,” Computer Graphics Forum, vol. 29, no. 6,
pp. 1905–1920, 2010.

[19] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for
3D mesh segmentation,” in ACM Transactions on Graphics, vol. 28,
no. 3, 2009, p. 73.

[20] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3D mesh
segmentation and labeling,” ACM Transactions on Graphics, vol. 29,
no. 4, p. 102, 2010.

[21] O. Sidi, O. Van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or,
“Unsupervised co-segmentation of a set of shapes via descriptor-
space spectral clustering,” ACM Transactions on Graphics, vol. 30,
no. 6, p. 126, 2011.

[22] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo, “An
interactive approach to semantic modeling of indoor scenes with
an RGBD camera,” ACM Transactions on Graphics, vol. 31, no. 6, p.
136, 2012.

[23] L. Nan, K. Xie, and A. Sharf, “A search-classify approach for clut-
tered indoor scene understanding,” ACM Transactions on Graphics,
vol. 31, no. 6, p. 137, 2012.

[24] K. Chen, Y. Lai, Y.-X. Wu, R. R. Martin, and S.-M. Hu, “Automatic
semantic modeling of indoor scenes from low-quality RGB-D
data using contextual information,” ACM Transactions on Graphics,
vol. 33, no. 6, 2014.

[25] J. Wang, Q. Xie, Y. Xu, L. Zhou, and N. Ye, “Cluttered indoor scene
modeling via functional part-guided graph matching,” Computer
Aided Geometric Design, vol. 43, pp. 82–94, 2016.

[26] J. Wang and K. Xu, “Shape detection from raw LiDAR data with
subspace modeling,” IEEE Transactions on Visualization & Computer
Graphics, vol. 23, no. 9, pp. 2137–2150, 2017.

[27] D. Li, T. Shao, H. Wu, and K. Zhou, “Shape completion from a
single RGBD image,” IEEE Transactions on Visualization & Computer
Graphics, vol. 23, no. 7, pp. 1809–1822, 2017.

[28] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas, “Acquiring
3D indoor environments with variability and repetition,” ACM
Transactions on Graphics, vol. 31, no. 6, p. 138, 2012.

[29] O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornung, and
R. Pajarola, “Object detection and classification from large-scale
cluttered indoor scans,” Computer Graphics Forum, vol. 33, no. 2,
pp. 11–21, 2014.

[30] C. Wang and X. Guo, “Feature-based RGB-D camera pose op-
timization for real-time 3D reconstruction,” Computational Visual
Media, vol. 3, no. 2, pp. 95–106, 2017.

[31] Z. Yan, M. Ye, and L. Ren, “Dense visual SLAM with probabilistic
surfel map,” IEEE Transactions on Visualization & Computer Graph-
ics, vol. 23, no. 11, pp. 2389–2398, 2017.

[32] Y. Zhang, W. Xu, Y. Tong, and K. Zhou, “Online structure analysis
for real-time indoor scene reconstruction,” ACM Transactions on
Graphics, vol. 34, no. 5, p. 159, 2015.

[33] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun,
and B. Chen, “Autoscanning for coupled scene reconstruction and
proactive object analysis,” ACM Transactions on Graphics, vol. 34,
no. 6, p. 177, 2015.

[34] W. Wang, L. Hu, and Z. Hu, “Energy-based multi-view piecewise
planar stereo,” Science China Information Sciences, vol. 60, no. 3, p.
32101, 2017.

[35] S. Song and J. Xiao, “Sliding shapes for 3D object detection in
depth images,” in European Conference on Computer Vision, 2014,
pp. 634–651.

[36] ——, “Deep sliding shapes for amodal 3D object detection in
RGB-D images,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 808–816.

[37] Z. Ren and E. B. Sudderth, “Three-dimensional object detection
and layout prediction using clouds of oriented gradients,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1525–1533.

[38] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3D point clouds for indoor scenes,” in Neural Informa-
tion Processing Systems, 2011, pp. 244–252.

[39] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contex-
tually guided semantic labeling and search for three-dimensional
point clouds,” The International Journal of Robotics Research, vol. 32,
no. 1, pp. 19–34, 2013.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 9, MARCH 2018 14

[40] Y. Wang, R. Ji, and S.-F. Chang, “Label propagation from imagenet
to 3D point clouds,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 3135–3142.

[41] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3D
scene labeling,” in IEEE International Conference on Robotics and
Automation, 2014, pp. 3050–3057.

[42] R. Hu, O. van Kaick, B. Wu, H. Huang, A. Shamir, and H. Zhang,
“Learning how objects function via co-analysis of interactions,”
ACM Transactions on Graphics, vol. 35, no. 4, p. 47, 2016.

[43] B. Zheng, Y. Zhao, J. Yu, K. Ikeuchi, and S.-C. Zhu, “Scene under-
standing by reasoning stability and safety,” International Journal of
Computer Vision, vol. 112, no. 2, pp. 221–238, 2015.

[44] C. Wu, I. Lenz, and A. Saxena, “Hierarchical semantic labeling for
task-relevant RGB-D perception.” in Robotics: Science and systems,
2014.

[45] G. T. Toussaint, “Solving geometric problems with the rotating
calipers,” in Proc. IEEE Melecon, vol. 83, 1983, p. A10.

[46] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of
careful seeding,” in ACM-SIAM Symposium on Discrete Algorithms,
2007, pp. 1027–1035.

[47] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the nyström method,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 2, pp. 214–225, 2004.

[48] M. Schmidt and K. Alahari, “Generalized fast approximate en-
ergy minimization via graph cuts: Alpha-expansion beta-shrink
moves,” arXiv:1108.5710, 2011.

[49] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-
K. Yeung, “SceneNN: A scene meshes dataset with annotations,”
in International Conference on 3D Vision, 2016, pp. 92–101.

[50] A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and M. Vincze,
“Segmentation of unknown objects in indoor environments,” in
International Conference on Intelligent Robots, 2012, pp. 4791–4796.

[51] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, no. 9, pp. 1263–
1284, 2008.

[52] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser,
and M. Nießner, “ScanNet: Richly-annotated 3D reconstructions of
indoor scenes,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, 2017, p. 10.

Shi-Min Hu is currently a professor in the de-
partment of Computer Science and Technology,
Tsinghua University, Beijing, China. He received
the PhD degree from Zhejiang University in
1996. His research interests include digital ge-
ometry processing, video processing, rendering,
computer animation, and computer-aided geo-
metric design. He has published more than 100
papers in journals and refereed conferences. He
is Editor-in-Chief of Computational Visual Me-
dia, and on editorial boards of several journals,

including IEEE Transactions on Visualization and Computer Graphics,
Computer Aided Design and Computer & Graphics. He is a senior
member of IEEE and ACM.

Jun-Xiong Cai received his B.S. degree in soft-
ware engineering from Jilin University, China
in 2015. He is currently a Ph.D. candidate in
computer science in Tsinghua University. His
research interests include computer graphics,
geometry processing, deep learning and robot
programming.

Yu-Kun Lai received his bachelor’s and Ph.D.
degrees in computer science from Tsinghua Uni-
versity, China in 2003 and 2008, respectively. He
is currently a Reader in the School of Computer
Science & Informatics, Cardiff University, UK.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial board of
The Visual Computer. He is a member of IEEE.

