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Support Substructures: Support-Induced
Part-Level Structural Representation

Shi-Sheng Huang, Hongbo Fu, Lin-Yu Wei, and Shi-Min Hu, Member IEEE

Abstract—In this work we explore a support-induced structural organization of object parts. We introduce the concept of support
substructures, which are special subsets of object parts with support and stability. A bottom-up approach is proposed to identify
such substructures in a support relation graph. We apply the derived high-level substructures to part-based shape reshuffling
between models, resulting in nontrivial functionally plausible model variations that are difficult to achieve with symmetry-induced
substructures by the state-of-the-art methods. We also show how to automatically or interactively turn a single input model to
new functionally plausible shapes by structure rearrangement and synthesis, enabled by support substructures. To the best of
our knowledge no single existing method has been designed for all these applications.

Index Terms—Support Substructure, Shape Synthesis, 3D Modeling, Stability
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1 INTRODUCTION

Understanding high-level structure of a 3D model
greatly benefits a variety of applications such as
structure-preserving editing [1] and upright orienta-
tion [2]. High-level structures are often closely related
to the functionality of an object and are thus difficult
to define and detect. Most existing works (e.g., [3], [4])
towards high-level shape understanding regard sym-
metry as the main semantic cue for shape analysis.
Such approaches are inapplicable to objects or scenes
exhibiting little or no symmetry (Figure 1).

Support and stability are two fundamental at-
tributes of objects in the physical world, especially
for man-made objects. This motivates us to explore a
support-induced high-level structural shape representa-
tion. In this work we focus on three types of support
relationship, namely, “support from below”, “support
from above”, and “support from side” (Figure 3).
A simplest supporting scenario might be a single
object part stably supported by another object part.
We extend this supporting scenario by allowing sup-
port in multiple hierarchy and/or hierarchical groups
of similar parts if any (Section 3.1), which already
explains a variety of support substructures (Figure 1
(b)).

Based on this observation we first form an input
set of object parts with the three support relations
as a partially ordered set, represented as a support
relation graph (Section 3.2). A bottom-up approach is
then presented to first identify a set of basic support
substructures and then combine them to form compli-
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cated substructures, possibly with support in multiple
hierarchy.

Our support substructures form a basis for deriv-
ing structural similarity, which has great potential
for various applications. For example, we show that
reshuffling two or more support substructures auto-
matically leads to nontrivial, interesting shape varia-
tions (Section 4.1) that are difficult to achieve with
the existing works. In addition, we apply support
substructures to structure rearrangement (Section 4.2)
and structure synthesis (Section 4.3), which automat-
ically create many new functionally plausible shape
variations from a single model alone. An interactive
structure synthesis tool is also presented to allow
explicit user control (Figure 1 (e)).

2 RELATED WORK

In recent years support and stability cues are getting
popular in the computer vision community for 3D
interpretation of a scene, thanks to the availability
of consumer-level depth cameras. For example, Jia et
al. [5] proposed to jointly optimize over segmenta-
tions, block fitting, support relations and object stabil-
ity for 3D reasoning. The work of Panda et al. [6] first
learns the semantics in terms of support relationship
among different objects and then use the inferred sup-
port relationship to predict a support order for robotic
manipulation in clutter. Silberman et al. [7] present an
automatic approach to infer support relationships of
an indoor scene from an RGB-D image. Unlike these
works, which mainly use support and stability to find
a good, physically valid interpretation of a scene, ours
takes a stable, self-supporting arrangement of object
parts as input and aims to derive semantic substruc-
tures for high-level shape editing and manipulation.

Support and/or stability have also been widely
used in the field of computer graphics, e.g., for mesh
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Figure 1. Given a pre-segmented object (a), we derive support substructures (b), which provide structural
organization of object parts. Such high-level substructures enable applications such as structure rearrangement
(c) and structure synthesis (d), automatically turning a single model or a small set of models to many new
nontrivial, functionally plausible variations. Interactive synthesis permits explicit user control over the design (e).

puppetry [8], upright shape orientation determina-
tion [2], furniture layout synthesis [9], furniture de-
sign [10], self-supporting surface design [11], [12],
[13], freeform architecture design [14], structural anal-
ysis for 3D printing [15], balanced shape design [16]
etc. Like ours, most of these works determine static
stability via geometric validation instead of physical
simulation or validation [10]. We believe that our
derived support substructures can potentially benefit
some of these applications, besides those demon-
strated in the paper. Our analysis of part-level rela-
tionship is conceptually related to [17], [18], which,
however, rely on neither support nor stability.

It is well known that symmetry provides a strong
cue for high-level understanding of shapes exhibit-
ing rich symmetry. This has motivated a series of
symmetry detection algorithms and symmetry-based
applications (see an insightful survey in [19]). Sym-
metry can be used to form a hierarchical organization
of object parts [20]. However, it is unclear how such
a general symmetry hierarchy could be exploited for
applications like ours. Very recently, Zheng et al. [3]
introduce a symmetric functional arrangement, called
SFARR, which always contains a triplet of shape parts,
with one part stably supported by or supporting
another two symmetric parts. With such a simple
representation a diverse set of plausible model vari-
ations can be synthesized from a small set of input
models. However their technique is inapplicable to
other rich substructures, e.g., with different numbers
of symmetric elements or no symmetry at all. In
addition how to apply their technique to our other
applications is also unclear. In contrast symmetry is
not inherent in our support-induced substructures,
though our representation does make use of the sym-
metry information if any and naturally supports not
only SFARR but also different types of symmetric or

non-symmetric arrangements. The very recent work
by [4] presents a topology-varying structural blend-
ing algorithm, where symmetry also plays a critical
role to produce continuous and plausible in-betweens
undergoing topology variations.

Semi-automatically or automatically synthesizing
new shape variations from existing models has been
of a great interest in recent years. The main goal is
to generate hundreds and thousands of models with
little or even no user intervention, which otherwise
would be a rather tedious process for commercial
modeling systems like Autodesk Maya. Below we
only review the most relevant works to ours. Bokeloh
et al. [21] present an inverse procedural modeling
system which examines partial symmetries of a single
3D example model to automatically produce new 3D
models that are similar to the input exemplar. Merrell
et al. [22] provide a general procedural modeling
method to synthesize complex 3D shapes, based on
various dimensional, geometric, and algebraic con-
straints. Quite recently, Wonka et al. [23] introduce
a meaningful split grammar for facade layout inter-
pretation, and then an inverse procedure modeling
approach for facade manipulation. Given a pair of
input shapes the part-based recombination approach
by Jain et al. [24] is able to automatically instantiate
new models that have similar symmetry and adja-
cency structure to the input shapes, but with different
appearance. Xie et al. [25] present a reshuffle-based
technique for generating a diverse set of non-trivial
scene variations from only a small set of input scenes,
instead of a sufficiently big training set of 3D scenes
used in [26]. Assuming the availability of labeled parts
or explicit part correspondence, several approaches
demonstrate that many more in-class variations can
be created given a larger database of input models with
the same class, either automatically [27], [28] or inter-
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Figure 2. We assume that the direction of a support
relation between a pair of building blocks is one-way,
like those in (a)–(c). See a counterexample in (d),
where the three leg parts support each other and it is
thus hard to tell which supports which. The graphs in
(c) and (d) illustrate the support relation graphs.

actively [29]. Similar to [3] our work aims for the
synthesis of both in-class and across-class variations,
without explicit part correspondence. We show shape
synthesis applications that take a single, two or more
models as input. None of the existing methods has
demonstrated to work for all our applications.

3 SUPPORT SUBSTRUCTURES

In this section we first introduce the definition of sup-
port substructures and then present an algorithm to
detect such substructures in an input pre-segmented
model. We will show three applications of the de-
tected substructures in Section 4.

3.1 Definitions and Assumptions

Support relations. Objects, especially man-made
ones, can often be decomposed into a set of building
blocks (Figure 2 (b) and (c)), which are connected by
certain support relations to make the objects stable.
In this work we explore three types of commonly
seen support relations, namely “support from below”,
“support from above”, and “support from side”, as
illustrated in Figure 3. As we will show shortly that
while these relations look simple they are surprisingly
sufficient to produce rich support substructures.

A support relation is essentially a binary relation,
defined between a pair of building blocks. We assume
that the direction of a support relation can be always
geometrically determined and is one-way. This as-
sumption is applicable to support relations existing in
many man-made objects (e.g., Figures 2 (b–c) and 3).
However, it is not always valid. For instance, we are
not interested in a pair of parts that support each
other. Figure 2 (d) shows such a counterexample.

Under this assumption a support relation, denoted
as ≤, brings a partial order to a set of building blocks of
an object, denoted as M . Specifically, for all elements
a, b, and c in M , ≤ satisfies: 1) reflexivity: a ≤ a, a
building block a supports itself naturally; 2) antisym-
metry: if a supports b and b supports a at the same
time, we have a = b; 3) transitivity: as illustrated in

Support from below

Support from side

Support from above e

a
b

c d

f

Figure 3. The support relations (“support from below”,
“support from above” and “support from side”) between
parts of a pre-segmented model (e) are represented as
a support relation graph (f). (a-d): a subset of detected
support structures, with supporting components shown
in green and supported ones in red.

Figure 2 (a), if a supports b (i.e., a ≤ b) and b supports
c (i.e., b ≤ c), we can conclude a supports c, i.e., a ≤ c.

Our three types of support relation over M lead to
a partially ordered set (M,≤), also called a poset in set
theory. Such a poset can be equivalently represented
as a support relation graph, which is essentially a
directed acyclic graph (DAG), with set elements as
nodes and binary relations as directed edges, pointing
from supporting elements to supported ones (Fig-
ure 3). A similar support relation graph has been
explored in [6], but used only for predicting support
order.

Support substructures. A support substructure is
formed by a subset of our poset or a subgraph of
our support relation graph. A desired definition of
support substructure should not only allow the ex-
traction of a rich set of substructures from an object
but also effectively help form functionally plausible
new variations for various applications.

Our definition of support substructure is an ex-
tension of a primitive support substructure. A primi-
tive support substructure contains an ordered pair of
primitive elements (a, b) with a stably supporting b,
i.e., a ≤ b. That is b can achieve static equilibrium
with the support from a, as illustrated in Figure 2 (a).
Let {a} � {b} (Figure 4 (a)), with � meaning a stable
support relation, denote such a primitive substructure,
which is consistently observed across objects (e.g.,
Figure 3 (c)).

It is very often that a group of elements with
very similar or even the same shape, denoted as As,
together stably support a primitive part b (e.g., four
chair legs supporting a seat in Figure 2 (b)). We thus
also consider As �T {b} (Figure 4 (b)) as a support
substructure if the type of support relation T between
b and a, ∀a ∈ As, is the same. See another example in
Figure 3 (b). Since similar elements are perceptually
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grouped together, no subset of As is allowed to form
a substructure with others.

Similarly our support substructure also extends
to {a} �T Bs (e.g., an airplane body supporting
two wings as shown in Figure 3 (d)), where a is a
primitive part, Bs is a group of similar parts, and a
stably supports any part in Bs with the same support
relation T (Figure 4 (c)). In short, our extension of
support substructures is applicable to a group of sim-
ilar elements connected to a single element with the
same support relation. This also extends to hierarchial
grouping of similar elements like the example shown
in Figure 3 (a), where we have two wings connected
to the body (as a single node) and two turbine engines
connected to each of the wings. Note that the SFARR
substructure [3] is only a special case of our support
substructures.

The primitive support substructure can also be ex-
tended to Ac �T {b} (Figure 4 (d)), where Ac denotes
the entire set of elements with the same support
relation to primitive element b and together stably
supporting b. Here individual elements of Ac are not
necessarily of similar shape (Figure 2 (c)). To keep
the stability of an existing substructure, a subset of
Ac is not allowed to form a new substructure with b.
However, it is possible that individual elements of Ac

form new substructures with other elements support-
ing them. In other words, individual elements of Ac,
as supported components, can form new substructure.

a

b
b

sA

sB

cA

b

a

(a) (b) (c) (d)

Figure 4. Four kinds of basic support substructures.

We call {a} � {b}, As �T {b}, {a} �T Bs, and
Ac �T {b} basic support substructures (Figure 4), since
both the supporting and supported components of
such a substructure involve only one layer of ele-
ments. Many objects exhibit support in hierarchy, i.e.,
one part supporting the other in single or multiple
hierarchy. In case of support in multiple hierarchy, a
part is supported by other parts at different hierar-
chies (Figure 2 (c)). We thus extend the definition of
support substructure by support in multiple hierarchy.
Specifically, let A1 �T1 B1 and A2 �T2 B2 denote
two support substructures, with A1 ∩ B2 �= ∅ and
B1 ∩ A2 = ∅. In other words, A1 and B2 share
certain object parts. Then a new support substructure
with an increased hierarchy level can be created by
combining the given two substructures, leading to
two possible combinations: either A1∪B2∪A2 �T1 B1

or A2 �T2
B2∪A1∪B1, as illustrated in Figure 5. Iter-

atively combining newly created substructures leads
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Figure 5. Illustration of support substructures combi-
nation. S: support from below; H: support from above;
A: support from side.

to substructures with support in (possibly multiple)
hierarchy.

Remark. It can be easily seen that if a group of
similar parts connected to a part is considered as
a unified element, any support substructure by our
definition essentially forms an upper semilattice, which
is a subset of our poset with a least upper bound for
any nonempty finite subsets.

3.2 Detection
We focus on man-made objects that have a known
upright orientation [2]. Whether an entire input model
is “supported from below” (e.g., by the ground) or
“supported from above” (e.g., hung from a ceiling) is
also given as input to our algorithm. Below we will
explain the algorithm in the context of an input model
placed on the ground. Adapting the algorithm to a
model supported from above is straightforward.

Pre-segmentation. We require the availability of se-
mantically meaningful segments for the input model.
In our implementation, we segment an input model
by using an SDF-based mesh partition method [30]
and manually adjust the automatically generated seg-
mentation results, if necessary. See such a segmented
model in Figure 8 (a).

Support relation graph. To identify support sub-
structures, we first build a support relation graph,
denoted as G (Figure 8 (b)) as follows. Each object
part leads to one node in the graph. All the nodes
whose corresponding parts touch the ground plane
are marked as ground-touching nodes, denoted as Vg

(e.g., the five nodes in dark green in Figure 8 (b)).
A pair of components a and b are determined to be
connected if their convex hulls intersect at several
points (more than 5 in our experiment) or the min-
imal distance between them is below a threshold δ
(Section 5). With Principal Component Analysis (PCA)
we approximate a plane P using the points where a
and b are in contact, as illustrated in Figure 6.

We first locally classify the type of support between
a and b (Figure 6). a and b have a “support from side”
relation if the normal of P is nearly perpendicular to
the upright orientation (deviation angle ≤ 10o). Oth-
erwise we temporarily assign a “support from below”
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Figure 6. An illustration to show how to determine the
“support from side” and “support from below” relations.
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Figure 7. An illustration to show how we iteratively
rectify “support from below” (arrows in red) as “support
from above” (arrows in green).

relation to a and b, and add a directed edge from the
one below the plane to the other. After all pairs of
connected parts are examined, we add a directed edge
between each pair of object parts, denoted as c and
d, with “support from side”. Specifically, a directed
edge from c to d (i.e., c ≤ d) is added if there is an
undirected path between c and some of the ground-
touching nodes.

Locally it is difficult to distinguish between “sup-
port from below” and “support from above”. Since
the input model is placed on the ground, “support
from below” was initially used, as illustrated in Fig-
ure 7 (a). Now we perform region growing starting
from the ground-touching nodes Vg to iteratively find
“support from above” (Figure 7 (b)). Specifically, we
first identify all the nodes Vc, to each of which there
is a directed path from a node in Vg . Let Vr denote
the rest of the nodes. We change the relation from
“support from below” to “support from above”, and
correspondingly reverse the direction for such edges
between Vc and Vr, and among Vr. Then in Vr we
label nodes which touch Vc as Vg (Figure 7 (c)) and
repeat the above steps until all the nodes are visited
(Figure 7 (d)).

Support substructure. As discussed previously, a
support substructure is essentially a subgraph of the
support relation graph G. For each group of similar
parts As connected to a single part, we first reduce
the graph G by contracting the nodes corresponding
to As and replacing them with a single node, followed
by necessary updates on the set of edge connectivity
(Figure 8 (c)). This reflects the requirement that no
subset of As is allowed to form a substructure with
others. This process is repeated until each level of
hierarchial grouping of similar parts leads to a single
node in the graph.

Like the previous works (e.g., [3], [5]), we determine
static stability via geometric validation. Specifically,
given a group of elements B with multiple supports
from another group of elements A, we say B is stably
supported by A if the projection of B’s center of mass
to the ground falls inside the convex hull of the
projection of the multi-supporting areas from A to the
ground. In G we also contract a pair of nodes a and b
if b is supported by a only but the support is unstable.

The static stability analysis often does not work for
“support from side”, where stable support is typically
achieved by other means like nail joints. Since stability
provides a strong cue for the extraction of meaningful
substructures by analyzing the geometry alone, we
first search for support substructures among the parts
connected by “support from below” and/or “support
from above”. To achieve this, we temporarily break
the edges with “support from side” in G, leading to
a set of weakly connected subgraphs {Gi} (Figure 8
(d)).

We take a bottom-up approach to search for all basic
support substructures in each subgraph Gi. First, we
determine the support order starting from the ground-
touching nodes, using a level order traversal approach
similar to [6]. The order prediction is performed on
a transitive reduction of a copy of Gi. Otherwise the
predicted order would be undesired in case of sup-
port by multiple hierarchy. Second, from the lowest
order, for each node a we search for a basic support
substructure that contains a. Specifically, let b be the
node directly supported by a. If b is supported by
multiple nodes including a, we check the stability of
b against the set of multiple nodes. If they are stable,
b and the set of multiple supporting nodes form a
support substructure. The above steps are repeated
until all the nodes are visited.

To get the basic support substructures purely
formed by “support from side”, we break the edges
in G with “support from below” and “support from
above”. We then use a similar bottom-up approach
but without stability validation to identify those sup-
port substructures in the resulting subgraphs.

Finally we combine the basic support substructures
(Section 3.1), which possibly involve different support
types, to form new substructures in multiple hierarchy
(Figure 8 (e)). The more rounds we combine, the
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Figure 8. Support substructure detection starts with
basic support substructures (1, 2, 3, 4). Substructures
with support in hierarchy are obtained by combining
basic substructures: after 1st round → 5 and 7; after
2nd round → 6 and 8. The combination order shows
the hierarchy attribution of support substructures.

more complicated substructures we get. In general,
the number of rounds for substructure combination
is application dependent. However, we found 1-2
rounds are already sufficient for our applications to
synthesize many nontrivial shape variations.

4 APPLICATIONS

In this section we introduce three applications, where
support substructures play a major role and make the
synthesized models structurally valid and function-
ally plausible. In the first application (Section 4.1), we
reshuffle compatible support substructures from two
or more different models to create new shape varia-
tions. In the second and third applications we show
how to synthesize new shapes given a single model by
re-arranging (Section 4.2) or duplicating (Section 4.3)
compatible support substructures. The common idea
behind these three applications is to perform the
modeling process with the support substructures as
building blocks. By decomposing each shape into a
set of support substructures, we get a structural or-
ganization of parts. Our carefully designed operating
rules for different applications respect the encoded
relationships between parts in the detected support
substructures and thus produce functionally plausible
modeling results. Let SSing � SSed denote a basic
or multi-hierarchy support substructure, where SSing

and SSed (Figure 9 (a)) are the supporting and sup-
ported components of the substructure, respectively.

4.1 Shape Reshuffling

This application is motivated by the recent work
of Zheng et al. [3], which creates new in-class or

SSed

SSing

(a) Contact Slots.

f       = 1f        = 2ffffffffffffff ff ff f f           ================== ==== 22222 222 222 SSingSS ed

SS ed

SSing

(b) Context Compatibility.

Figure 9. Illustration for contact slots (dots in orange)
and context compatibility.

across-class shape variations by reshuffling compat-
ible symmetry-induced substructures, called SFARR-s.
We will show that our support-induced substructure
representation is able to create many more variations,
which received higher scores by the user study par-
ticipants than those by SFARR.

Given n (n ≥ 2) input objects, which are possibly
from different model families, with pre-computed seg-
mentation but not necessarily having explicit part cor-
respondence, we first detect a set of support substruc-
tures Si = {s1i , s2i , ..., ski

i } for each object (Section 3.2).
Let S = {S1, S2, ..., Sn}. We then cluster all support
substructures in S by the type of support, leading to
3 clusters, corresponding to 3 support types. In each
cluster, we sort the support substructures by their
bounding box size.

For a pair of support substructures si and sj in each
cluster, we measure structure compatibility γ(si, sj)
based on the difference in terms of scale, contact, and
context. Specifically,

γ(si, sj) = λ · θ · β, (1)

where λ measures the scale compatibility between
the corresponding supporting and supported compo-
nents in si and sj at the bounding box level (see a
similar definition in [3]). Let θi denote the volume
of the convex hull formed by the contact slots (Fig-
ure 9 (a)) between SSing

si and SSed
si . We then have

θ = g(θi, θj) to compare the difference of component
contact between si and sj , where g(x, y) = 1 + |x −
y|/|x + y|. Finally β measures context compatibility,
i.e., the difference of the context of si and sj in
their original models. Specifically, let fTl

SSed denote
the number of support relations of type Tl between
SSed and the other object parts which are not in
the substructure of interest but connected to SSed.
For example, the supported component (in red) in
Figure 9 (b) has fTl

SSed = 2, with Tl = “support
from below”. Note we count 1 for each group of
similar parts (e.g., the two chair arms). By similarly
introducing fTl

SSing , we compute β as
∏6

k=1 g(D
k
i , D

k
j ),

where Di = (fT1

SSed
i

, fT2

SSed
i

, fT3

SSed
i

, fT1

SSing
i

, fT2

SSing
i

, fT3

SSing
i

)

is a 6D context compatibility descriptor.
Figure 10 (a) and (b) shows four variations by

performing reshuffling twice. It is shown that when
the structure compatibility γ is of small values, the
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Figure 10. Shape reshuffling once (a) and twice (b). Note that such reshuffling results are difficult to synthesize
with sFARR due to the lack of proper triplets of shape parts between models. (c) and (d) show two examples
rejected by our technique due to their high structure compatibility costs.

corresponding reshuffling results are generally of high
quality. In contrast, high structure compatibility costs
often lead to unpleasing results, as shown in Figure 10
(c) and (d). We thus perform reshuffling greedily,
starting from a pair of support substructures (from
different input objects) with the minimum value of
γ(si, sj). In this way, many functionally implausible
results can be effectively avoided.

User Study. We conducted a user study to evalu-
ate the quality of new shape variations achieved by
reshuffling. We applied our reshuffling technique to
the main inputs tested by [3]. There were in total 5
different sets of input models (see the thumbnails in
Figure 11 (left)), varying from 3 to 6 models. For each
set of input models, we automatically synthesized 100
models, each of which came with an increasing value
of γ(si, sj). Please refer to our supplemental materials
for the detailed reshuffling results. The 500 results
by our technique, together with the unique results
by SFARR (more details later), were presented in a
random order to in total 60 participants (all of them
were university students), who were asked to rate
every synthesized shape on a discrete scale from 1
(worst) to 5 (best). They were suggested to give a
score for each model based on their own answers
to the following questions: “are they coherent with
your understanding of man-made objects?” and “how
likely a similar object would appear in reality?”.

To check whether a reshuffling result with a lower
structure compatibility value would receive a higher
score by the participants, we calculated the average
score given the participants for the first k synthesized
models (with increasing values of γ(si, sj)), 1 ≤ k ≤
100, in each set of models. As seen from Figure 11
(left), the average score for each set overall decreased
with k, the number of synthesized models, indicating
an effective quality control by γ(si, sj). This figure
also suggested that the top 40 results were often
reasonably good (with average score ≥ 3.5) and the

top 80 results were still acceptable (with average score
≥ 3.0).

Comparison with SFARR. When a triplet of parts
with the special arrangements required by SFARR
appears in the object, it will also be detected by our
algorithm as a support substructure. SFARR is thus
only a special type of support substructure. Our sup-
port substructure representation is more general and
exists beyond symmetric arrangements. It supports
multiple hierarchy and does not restrict the number
of elements. Theoretically our technique is able to
reproduce all the results shown in [3]. However, due
to the adoption of different compatibility metrics, 39
out of their 106 results (Figures 1, 12 and 14 of [3])
were not in the set of the 500 results by our technique.
The quality of these 39 results was rated by our
participants during the user study.

Our technique produced many more reshuffling
results. It is more important to verify whether our
results are comparable to or even better than those
by SFARR. To this end, from the top 80 results in
each set we randomly sampled the same number of
results as the corresponding set in [3], and calculated
the average scores for the sampled results and the
results by SFARR, respectively. Each of their result sets
contained 11 to 35 models. For fairer comparisons, the
above process was repeated for 10 times for each set
of input models. It was found that our results were
rated consistently and significantly higher than those
by SFARR, as confirmed by t-tests (p-value < 0.05 in
all cases). This is possibly because the unique results
by SFARR were rated relatively poorly, as shown in
Figure 11 (f). For each set of input models, Figure 11
(a–e) shows a box-and-whisker plot of the scores of
the 10 sets of our randomly picked results and the
corresponding sets of results by SFARR.

Figure 12 shows around top-30 results by applying
our reshuffling technique to new sets of input models.
Many of the results (e.g., those highlighted in yellow)
would be difficult to produce by SFARR due to the



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2473845, IEEE Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.XX, NO.XX, XX XXXX 8

5

4.5

4

3.5

3

2.5

2

1.5

1
1 2 3 4 5 6 7 8 9 10

5

4.5

4

3.5

3

2.5

2

1.5

1

5

4.5

4

3.5

3

2.5

2

1.5

1

5

4.5

4

3.5

3

2.5

2

1.5

1

5

4.5

4

3.5

3

2.5

2

1.5

1

5

4.5

4

3.5

3

2.5

2

1.5

1

10 20 30 40

sFarr

11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

set1
set2
set3
set4
set5

5

set 1 set 2

set 3 set 4

set 5

set 1 set 2 set 3

set 4 set 5

a b c

d e f

Figure 11. Left: the average score rated by the participants overall decreased with the number of reshuffling
results, indicating the effectiveness of our structure compatibility metric. (a)–(e): box-and-whisker plots of the
scores of our results and SFARR’s results for each set of input models. In each plot, the first 10 boxes are for
10 sets of our randomly-picked results and the 11th for SFARR’s results. (f): the user-rated score of each of the
unique models by SFARR. please refer to the supplemental materials for the detailed results.

lack of necessary symmetry parts in the input objects.
However, we also admit that the flexibility of our rep-
resentation is at the cost of slightly more complicated
operations towards functionally plausible reshuffling
results.

4.2 Structure Rearrangement

Our support substructures give a structural decompo-
sition of an input object. Each support substructure is
structurally valid and thus can be used as a whole for
shape editing. Based on this observation, we introduce
a shape rearrangement application, which automat-
ically rearranges substructures to create nontrivial
variations from a single input model. This application
is more like an in-model reshuffling. For simplicity,
we perform rearrangement operations in 2D (ground
plane) only.

Again let S = {s1, s2, ..., sn} denote a set of support
substructures for an input model, which is often a
scene model for creating more variations. Again we
first cluster the substructures by support type, leading
to 3 clusters. We then align the support substruc-
tures in each cluster by registering their supporting
components SSing

i via Iterative Closest Point (ICP).
The substructures with small alignment errors are
grouped together. Denote the resulting groups as
G = {g1, g2, ..., gm}. To create interesting rearrange-
ment results we drive rearrangement mainly by a
principal group ĝ ∈ G, which has the biggest bounding
box size. For example the support substructures 2, 5,
and 7 in Figure 1 form such a principal group.

Every pair of substructures in ĝ have their sup-
porting components well aligned. We thus can switch
between two substructures in ĝ for structure rear-
rangement, without destroying the contact conditions
in the 2D plane. Specifically structure rearrangement
is achieved by a two-step approach, as illustrated in
Figure 13:

Switch Step Relocate Step

si

sj
si

sj

ski ski

sl i
sl j sl i

sl j

Figure 13. Illustration of two-step structure arrange-
ment.

(1) Iteratively switch between pairs of support sub-
structures in ĝ. We randomly select an unvisited pair
of support substructures si, sj ∈ ĝ and then replace
with each other. After si is replaced with sj , sj might
need rotated to avoid severe intersection with the
existing substructures originally adjacent to si. We
use mesh collision detection to check the availabil-
ity of severe intersections, specifically by checking
whether the ratio between the intersection part and
the original model is below a threshold ε (Section 5)
or not. The height of the existing substructures which
are originally connected with SSed

si is adjusted to get
well connected to sj . This process is repeated till no
unvisited pair is found or the number of iterations
exceeds a user-specified number (e.g., 20).

(2) Iteratively relocate support substructures from
non-principal groups. For each support substructure
ski

in a non-principal group gk, we examine whether
it is possible to relocate ski

to a new position. We
first find a support substructure sli from another non-
principal group ∈ gl( �= gk), which shares the largest
number of supporting components with ski

. We can
then relocate ski

to get connected to slj ∈ gl, since sli
and slj are well aligned and thus slj is very likely to
well support the relocated version of ski

. The new lo-
cation of ski is determined by first aligning ski with sli
using their shared components and then transforming
ski

by the optimal transformation between ski
and slj .

ski
might need rotated to avoid intersecting with the
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Figure 12. Four sets of shape reshuffling results by our technique. Note that each set contains around top-30
results, without cherry picking. The input models are those with colored parts. The results highlighted in red are
less visually appealing, and those highlighted in yellow are difficult to synthesize by SFARR.
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existing substructures. The relocation step is repeated
till we reach a user-specified number (e.g., 20).

Results. Different from the application of shape
reshuffling, which needs a relatively large set of
substructures to create many variations, structure
rearrangement is already able to create many new
functionally plausible shapes with a relatively small
number of support substructures. Hence for this ap-
plication we only combine basic substructures for one
round (Section 3.2). Figure 1 shows the rearrangement
results after three iterations. Please refer to Figure 14
and the supplemental materials for more rearrange-
ment results.

4.3 Structure Synthesis
The application of shape rearrangement essentially
changes only the locations of support substructures.
Now we show another application which turns a
single input model to new nontrivial variations by
duplicating substructures and connecting them to-
gether, in a spirit of procedural modeling. We follow
the notations introduced in Section 4.2. We will first
present the main idea using a 2D example and then
discuss its extension to 3D synthesis.

Structure Synthesis. As illustrated in Figure 15, it
is operated among the substructures in the principal
group ĝ. Each time a pair of support substructures
si, sj ∈ ĝ are randomly selected. If there exists a 2D
transformation Tij which can link si with sj , and the
transformed si does not seriously intersect with the
other support substructures, si is then copied and
transformed to link with sj . Tij(si) is added to G
(Figure 15 (right column)). This process is repeated
until there exist no such a pair of substructures or it
reaches the prescribed number of iterations. Below we
give the details on the definition of Tij .

1 3

2

4

5

3 4
45

3

in

45

5

grow 
direction

grow 
direction

grow 
direction

T34

1

3

2

4
5

3
4 3 4

din
dout

4

Figure 15. Illustration of Tij and the structure syn-
thesis process. Left column: the contact descriptor
is calculated for the principal group ĝ containing 5
support substructures. Middle column: local view of s3
and s4. Right column: a support substructure is newly
duplicated under the 2D transformation of T 34.

Definition of Tij . To define Tij we first introduce
a contact descriptor between si ∈ ĝ and any other

substructure sj ∈ S (Figure 15 (left column)). Specif-
ically the contact information between si and sj is
analyzed in three aspects: (1) a set of sharing parts
between the supporting components of si and sj , i.e.,
Aij = SSing

si ∩ SSing
sj ; (2) the inner direction dinij from

the centroid of Aij to the centroid of SSed
si , (3) the

outer direction doutij from the centroid of Aij to the
centroid of SSed

sj . This leads to a contact descriptor
Dij = {Aij , d

in
ij , d

out
ij } for si and sj . It is easy to see

that Aij = Aji, dinij = doutji . Note that the directions dinij
and doutij are both 2D vectors. Finally we get a contact
descriptor set Di = {Dik|Aik �= ∅} for each si ∈ ĝ.

To encourage forming more links between a pair
of substructures in the principal group and thus cre-
ating more variations, we try to add more potential
contact information from each of other substructures
in ĝ, denoted as sl, to si. Specifically, we compute
a 2D transformation T li : sl → si that best aligns
SSing

sl
to SSing

si . The contact descriptor Dl of sl is
transformed by T li as T li(Dl) = {T li(Dlk)} with
T li(Dlk) = (T li(Alk), T

li(dinlk ), T
li(doutlk )). si’s contact

descriptor set is then updated as Di = Di ∪ T li(Dl).
Now for each si ∈ ĝ we have Di = {Dik =

(Aik, d
in
ik , d

out
ik )}. Given si, sj ∈ ĝ, they can get linked

together iff there exists a 2D transformation T such
that (1) T (Aik) = Ajl, i.e., the sharing supporting
components get well aligned; (2) T (dinik ) = doutjl , the
inner direction din of si is aligned with the outer di-
rection dout of sl; (3) T (doutik ) = dinjl , the outer direction
dout of si is consistent with the inner direction din of
sl. We also use mesh collision detection to check the
availability of severe intersections. This simple rule
forms the basis for our structure synthesis procedure.

Results. Figure 16 shows several results created
by our structure synthesis enabled by support sub-
structures. Our work bears some resemblance to in-
verse procedural modeling, in particular the work
by Bokeloh et al. [21]. However unlike [21], which
requires the detection of partial symmetry regions,
our technique relies on support and stability. Both of
the techniques are able to produce unique results. See
one more example in Figure 1.

Interactive synthesis. We also present a simple in-
terface to permit explicit user control over the design.
The user is allowed to interactively specify a growing
direction (arrow in red in Figure 18 (a)) out of possible
growing directions (arrows in white in Figure 18 (b)).
The user may also specify how many times sub-
structure duplication should be performed. Figure 18
shows interactive structure synthesis in action and
Figure 1 (e) gives another interactive modeling result.
Please refer to the supplemental material to see more
automatically and interactively synthesis results.

Extension to 3D Synthesis. We experimented a sim-
ple way to perform structure synthesis in 3D, based
on the following observation: given two support sub-
structures s1 and s2, we can conclude that s2 can
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Figure 14. Gallery of automatic shape rearrangement results. The input models are in yellow.

Figure 16. Automatic structure synthesis enabled by support substructures. Please refer to Figure 14 for the
input models.
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stably support s1 if sed2 (the supported component of
s2) stably supports sing1 (the supporting component of
s1). This motivates us to perform synthesis along the
SUPPORT direction. Specifically, we first randomly
select two support substructures si and sj ∈ ĝ. We
then find a 2D rotation and 2D translation to align the
projected centers of si and sj . Finally we translate the
transformed si along the SUPPORT direction until the
slots of singi well touch sedj . This process is repeated
until there exist no such a pair of substructures or it
reaches the prescribed number of iterations. Figure 17
shows a synthesized result.

1
2

3

1
2

3

4

1 2

3

4

5

a b c

Figure 17. After detecting the support substructures
of the model, we select 3 support substructures (a).
Support substructure 2 is copied and transformed in
the SUPPORT direction (supported by support sub-
structure 1) to get support substructure 4(b). Support
substructure 3 is copied and transformed in the SUP-
PORT direction (supported by support substructure 4)
to get support substructure 5(b).

5 DISCUSSION

Parameters. In our experiments we always set δ =
0.05d, where d is the diagonal length of the input
model’s bounding box, and intersection error ε = 0.10.
The default values for the other parameters were
already given in the previous text. Figure 19 illustrates
that an improper value of ε would lead to artifacts for
structure rearrangement and synthesis. For example,
the part highlighted in red (Figure 19 (b)) blocks
the way to a sliding board. In Figure 19 (d), severe
intersection is not removed due to the improper value
of ε.

We also analyze the roles of the three support
types in the synthesized results. Specifically we collect
the frequency of the three support types used in
the results produced by our applications. We find
that “supporting-from-below” (normalized frequency:
47.05%) and “support-from-side” (normalized fre-
quency: 35.30%) are more popular than “supporting-
from-above” (normalized frequency: 17.65%). This is
mainly because most of our tested input models rep-
resent objects that are supposed to stably stand on
some flat surface (e.g., ground, floor, table, etc.).

Time Complexity. For a shape with n parts, the
total complexity for substructure detection is O(n2).
Although n is generally small, in practice the step
of connection detection between component pairs

a b

c d

Figure 19. Top: structure rearrangement with ε = 0.10
(a) and ε = 0.20 (b). Bottom: structure synthesis with
ε = 0.10 (c) and ε = 0.20 (d). The input model is in
Figure 13.

(Section 3.2) is relatively slow due to the convex-
hull-based intersection. The average time used for
substructure detection of each shape in all our ex-
periments is about 1− 2 minutes, measured on a PC
with an Intel Core 2 Duo 2.4 GHz CPU and 16G
RAM. Since all the substructures can be detected in
a preprocessing step, so the time complexity is still
acceptable. Given all the detected substructures, it
took on average several seconds to synthesize one
reshuffling result. Our structure rearrangement and
synthesis can be achieved at interactive rates, as seen
in the supplementary video.

Limitations. First, similar to other recent high-level
shape synthesis methods (e.g., [3], [4], [27], [28]) our
method relies on pre-segmentation of good quality.
Second, we assume that the direction of support rela-
tion graph can be geometrically determined, which
is not always possible for example for structurally
in-determined structures [11]. The properties (i.e., re-
flexivity, antisymmetry, transitivity) of our adopted
three types of support do not apply to all kinds of
support relationships. Like previous symmetry-based
synthesis methods [22], which are not applicable to
models with little symmetry, our rearrangement and
synthesis techniques are designed for shapes with
rich self-similar support substructures. Otherwise, it
is difficult to produce many interesting variations.
Lastly, support relationships themselves might not be
sufficient to capture semantic relationships between
parts. Therefore, like many other shape understanding
systems, our technique may produce interesting but
functionally not very plausible results, e.g., those in
Figure 20.



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2473845, IEEE Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.XX, NO.XX, XX XXXX 13

a
b c

d
e

Figure 18. Interactive structure synthesis in action. The input model is highlighted in green. The user may
interactively control the growing directions (arrows in red) and the number of times for substructure duplication.

a b c d

Figure 20. Interesting but functionally not very plausi-
ble reshuffling results.

6 CONCLUSION AND FUTURE WORK

This work presented the concept of support sub-
structures, a high-level structural representation of
object parts based on support and stability, and de-
fined them as special semilattices induced by the
support relations as partial order over a set of ob-
ject parts. Although our definition of support sub-
structure is simple, it enables various applications,
including shape reshuffling, structure rearrangement,
and structure synthesis, as demonstrated in the paper.
None of the previous works is able to handle all
these applications in a single framework. The current
structure rearrangement and synthesis are operated
in 2D only. Since our support substructures already
encode vertical hierarchies, it would be interesting to
extend these applications to the 3D domain.

In the future we are interested in refining or gen-
eralizing the definition of support substructure, aim-
ing at higher-level shape editing applications. It is
also interesting to study the linkage of the synthesis
of structures and perform a more careful stability
analysis, e.g., a systematic treatment of force flow
and structural stability with more realistic physical

assumptions, and non-trivial structural optimization
based on reassembling and varying parts etc.

ACKNOWLEDGEMENTS

This work was supported by the National Ba-
sic Research Project of China (Project Number
2011CB302203), the Natural Science Foundation of
China (Project Number 61120106007), Research Grant
of Beijing Higher Institution Engineering Research
Center, and Tsinghua University Initiative Scientific
Research Program. Hongbo Fu was partially sup-
ported by grants from the Research Grants Council
of HKSAR, China (Project No. 113513, 11204014 and
11300615).

REFERENCES
[1] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iWIRES:

An analyze-and-edit approach to shape manipulation,” in
ACM Trans. Graph., 2009, pp. 33:1–33:10. [Online]. Available:
http://doi.acm.org/10.1145/1576246.1531339

[2] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer,
“Upright orientation of man-made objects,” in ACM
Trans. Graph., 2008, pp. 42:1–42:7. [Online]. Available:
http://doi.acm.org/10.1145/1399504.1360641

[3] Y. Zheng, D. Cohen-Or, and N. J. Mitra, “Smart variations:
Functional substructures for part compatibility,” Computer
Graphics Forum, vol. 32, no. 2pt2, pp. 195–204, 2013.

[4] I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang,
“Topology-varying 3d shape creation via structural blending,”
ACM Trans. Graph., vol. 33, no. 4, 2014.

[5] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based rea-
soning with blocks, support, and stability,” in CVPR ’13, 2013.

[6] S. Panda, A. Hafez, and C. Jawahar, “Learning support order
for manipulation in clutter,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013,
pp. 809–815.

[7] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from RGBD images,” in
Computer Vision - ECCV 2012 - 12th European Conference on
Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings,
Part V, 2012, pp. 746–760.



1077-2626 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2015.2473845, IEEE Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.XX, NO.XX, XX XXXX 14

[8] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo,
“Mesh puppetry: cascading optimization of mesh deformation
with inverse kinematics,” ACM Trans. Graph., vol. 26, no. 3,
p. 81, 2007.

[9] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F.
Chan, and S. J. Osher, “Make it home: automatic
optimization of furniture arrangement,” ACM Trans. Graph.,
vol. 30, pp. 86:1–86:12, August 2011. [Online]. Available:
http://doi.acm.org/10.1145/2010324.1964981

[10] N. Umetani, T. Igarashi, and N. J. Mitra, “Guided exploration
of physically valid shapes for furniture design,” ACM Trans.
Graph., vol. 31, no. 4, p. Article No 86, 2012.

[11] E. Vouga, M. Hobinger, J. Wallner, and H. Pottmann, “Design
of self-supporting surfaces,” ACM Trans. Graph., vol. 31, no. 4,
pp. 87:1–87:11, 2012.

[12] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo, “All-hex meshing
using singularity-restricted field,” ACM Trans. Graph., vol. 31,
no. 6, pp. 177:1–177:11, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366196

[13] Y. Liu, H. Pan, J. Snyder, W. Wang, and B. Guo, “Computing
self-supporting surfaces by regular triangulation,” ACM Trans.
Graph., vol. 32, no. 4, pp. 92:1–92:10, Jul. 2013. [Online].
Available: http://doi.acm.org/10.1145/2461912.2461927

[14] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang,
N. Baldassini, and J. Wallner, “Freeform surfaces from single
curved panels,” ACM Trans. Graphics, vol. 27, no. 3, 2008, proc.
SIGGRAPH.

[15] O. Stava, J. Vanek, B. Benes, N. Carr, and R. Měch, “Stress
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