
Fast Wavefront Propagation (FWP)
for Computing Exact Geodesic

Distances on Meshes
Chunxu Xu, Tuanfeng Y. Wang, Yong-Jin Liu,Member, IEEE,

Ligang Liu,Member, IEEE, and Ying He,Member, IEEE

Abstract—Computing geodesic distances on triangle meshes is a fundamental problem in computational geometry and computer

graphics. To date, two notable classes of algorithms, the Mitchell-Mount-Papadimitriou (MMP) algorithm and the Chen-Han (CH)

algorithm, have been proposed. Although these algorithms can compute exact geodesic distances if numerical computation is exact,

they are computationally expensive, which diminishes their usefulness for large-scale models and/or time-critical applications. In this

paper, we propose the fast wavefront propagation (FWP) framework for improving the performance of both the MMP and CH

algorithms. Unlike the original algorithms that propagate only a single window (a data structure locally encodes geodesic information) at

each iteration, our method organizes windows with a bucket data structure so that it can process a large number of windows

simultaneously without compromising wavefront quality. Thanks to its macro nature, the FWP method is less sensitive to mesh

triangulation than the MMP and CH algorithms. We evaluate our FWP-based MMP and CH algorithms on a wide range of large-scale

real-world models. Computational results show that our method can improve the speed by a factor of 3-10.

Index Terms—Discrete geodesic, fast wavefront propagation, algorithm complexities

Ç

1 INTRODUCTION

HOW to compute shortest paths on polyhedral surfaces
is a fundamental problem in computational geometry

and computer graphics, which has been studied for almost
three decades [1]. To date, there are two notable classes
of algorithms, namely, the Mitchell-Mount-Papadimitriou
(MMP) algorithm [2] and the Chen-Han (CH) algorithm [3],
which can compute exact geodesic distances on triangle
meshes if numerical computation is exact. Although they
are based on different domain subdivision strategies, these
two algorithms adopt a similar data structure called win-
dow, which locally encodes the geodesic information.

It is known that both the MMP and CH algorithms pro-
duce Oðn2Þ windows on an n-face triangle mesh and
the upper bound is tight [4]. Therefore, any window-based

discrete geodesic algorithm cannot run faster thanOðn2Þ the-
oretically, which is known as the quadratic time barrier.
Interestingly, as shown in this paper, the correctness of the
MMP and CH algorithm is independent of the order of the
windows being processed. However, propagating windows

in an arbitrary order results in an extremely poor perfor-
mance. The MMP algorithm keeps windows in a priority
queue, where the window closest to the source is taken at
each iteration. Since each window operation (i.e., choosing a
window from the priority queue and propagating it) takes

Oðlog nÞ time, the MMP algorithm has an Oðn2 log nÞ time
complexity. The CH algorithm, in contrast, maintains win-
dows in a hierarchical structure and processes them in a

breadth-first-search order, resulting in an Oðn2Þ time com-
plexity. However, computational results in [5], [6] show that
theMMP algorithm runsmuch faster than the CH algorithm.

Xin and Wang [7] observed that the slow performance of
the CHalgorithm ismainly due to the large amount of useless
windows processed. They proposed a simple yet effective
window filter to detect the useless windows, accompanied
by a priority queue for window organization. The improved
CH algorithm, called ICH, has a speed comparable to the
MMP algorithm, however, its theoretical time complexity
becomes Oðn2 log nÞ due to the priority queue. To date,

developing an Oðn2Þ exact discrete geodesic algorithm with
good practical performance is still a great challenge.

This paper tackles this challenge by proposing a fast wave-
front propagation (FWP) framework, which bridges the gap
between theoretical time complexity and practical perfor-
mance of discrete geodesic algorithms. Unlike the MMP and
ICH algorithms that propagate only a single window (the
one closest to the source) at each iteration, ourmethod organ-
izes windows in a bucket data structure so that it is able to
process a large number of windows simultaneously without
compromising wavefront quality. Although a window may
enter and leave the bucket multiple times, our method guar-
antees that the window complexity is still Oðn2Þ. Since the
practical overhead required for each iteration is very small,

� C. Xu and Y.-J. Liu are with the TNList, Department of Computer Science
and Technology, Tsinghua University, Beijing, China.
E-mail: xu-cx12@mails.tsinghua.edu.cn, liuyongjin@tsinghua.edu.cn.

� T.Y. Wang and L. Liu are with the School of Mathematical Sciences,
University of Science and Technology of China, Hefei, Anhui, China.
E-mail: wytf123123@gmail.com, lgliu@ustc.edu.cn.

� Y. He is with the School of Computer Engineering, Nanyang Technological
University, Singapore, 50 Nanyang Avenue, Singapore 639798.
E-mail: yhe@ntu.edu.sg.

Manuscript received 16 Sept. 2014; revised 12 Feb. 2015; accepted 13 Feb.
2015. Date of publication 25 Feb. 2015; date of current version 29 May 2015.
Recommended for acceptance by A. Sheffer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2015.2407404

822 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

1077-2626� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

our FWP-based MMP and CH algorithms run faster than the
original algorithms. Computational results on real-world
models show that our method improves the performance by
a factor of 3-10. See Fig. 1 for an example. Intuitively speak-
ing, the performance improvement by our method is due to
its efficient data organization on a macro scale (i.e., focusing
on wavefronts consisting of many windows), whereas the
existing algorithms are on a micro scale (i.e., focusing on an
individual window). Thanks to its macro nature, the FWP-
based methods are also less sensitive to mesh resolution than
theMMPandCHalgorithms, i.e., increasing themesh anisot-
ropy may significantly slow down the existing algorithms,
but it affects the FWP-basedmethods slightly.

In this paper our contributions are twofold:
First, from a theoretical perspective, the FWP framework

unifies the two classes of algorithms from the macro scale:
the FWP-CH and FWP-MMP algorithms propagate the
wavefronts at a similar pace and they converge in roughly
the same number of iterations, although their window prop-
agation schemes are very different. The FWP framework has
provable time and space complexity: the FWP-CH and
FWP-MMP algorithms have Oðn2Þ and Oðn2 log nÞ time
complexity, respectively.

Second, from a practical perspective, the FWP technique
is easy to implement and it can speedup the MMP and CH
algorithms significantly. It is worth noting that the FWP-
MMP algorithm can improve the performance of the MMP
algorithm by an order of magnitude on large-scale real-
world models, making it comparable to the state-of-the-art
GPU-based parallel Chen-Han algorithm [8]. As a macro
algorithm, the FWP-CH and FWP-MMP algorithms are also
less sensitive to mesh triangulation than the existing micro
algorithms. We also demonstrate that the FWP-based algo-
rithm can be applied to the pre-computation methods, such
as saddle vertex graph (SVG) [9] and Geodesic Triangle
Unfolding (GTU) [10].

2 RELATED WORK

Classic techniques for computing discrete geodesics on trian-
gle meshes include the computational geometry approaches
and the partial differential equation (PDE) approaches. The
former includes the above-mentioned MMP/CH algorithms

and their many variants [5], [6], [7], [8], [11], [12]. The latter
consists of the popular fast marching method (FMM) [13],
[14] and the gradient-based approaches [15], [16]. See [1] for
a comprehensive survey of classic techniques.

Each type of technique has its own merits and limitations.
The undiscretized methods such as MMP and CH in compu-
tational geometry approaches can obtain the exact geodesics
on arbitrary triangle meshes if numerical operations are
exact. As a comparison, the PDE approaches provide only
the approximate solutions (e.g., the first-order approximation
by the FMM), which may be poor on meshes with highly
irregular tessellation. On the other hand, the PDE approaches
are usually faster than the computational geometry app-
roaches. But they assume that the trianglemeshes are discrete
samples of underlying smooth surfaces and proving the
convergence of the discrete geodesic distance to its smooth
counterpart is of important theoretical value; e.g., uniform
convergence of geodesics is proved in [17] under the assump-
tion of convergence of surfaces inHausdorff distance.

Recently precomputation techniques have been pro-
posed, which aim at balancing quality and performance for
computing various types of discrete geodesics. Xin et al.
[10] proposed the Geodesic Triangle Unfolding method,
which flattens the curved geodesic triangle onto R2 and
then uses euclidean distance to approximate geodesic dis-
tance. The heat method, proposed by Crane et al. [16], is an
elegant gradient based approach, which recovers the geode-
sic distance from the normalized gradient of the heat flow.
By pre-factoring the Laplacian matrix, both the heat flow
and the distance computation can be done in near-linear
time. The heat method is easy to implement. It is also flexi-
ble to support a wide range of geometric domains, includ-
ing grids, triangle meshes and point clouds. Such a feature
is not available in the computational geometry approaches
that work only for triangle meshes. However, similar to the
FMM, it provides only a first order approximation.

Observing that the discrete geodesic problem has a sur-
prisingly strong local structure due to the existence of the
saddle vertices, Ying et al. [9] proposed another precompu-
tation technique called the saddle vertex graph, a sparse
graph which encodes the geodesic information on triangle
meshes. With the SVG, computing the polyhedral distance
is equivalent to finding the shortest path on the graph. Note

Fig. 1. Choose the source vertex at the nose of the 4M-face Dragon model. The existing undiscretized geodesic algorithms (e.g., MMP and ICH) have
poor performance since they propagate the wavefronts very slowly. Our fast wavefront propagation technique can significantly improve their speed.
Each colored curve is a discrete wavefront and the 2-tuple associated with each wavefront is the iteration number and the corresponding time, which
was measured on a PC with an Intel Core i7-2600 CPU (3.40 GHz). We draw only a few representative wavefronts to avoid clutter. The small inset in
the middle illustrates the computed geodesic distances using iso-distance contours.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 823

that the pre-computation of both the GTU and SVG meth-
ods heavily depends on the MMP or ICH algorithm. As the
proposed FWP technique improves their performance sig-
nificantly, we show that it can be adopted in the GTU and
SVG methods to reduce their precomputation time.

3 PRELIMINARY

Let M ¼ ðV;E; F Þ be a triangle mesh, where V , E and F are
the sets of vertices, edges and faces, respectively. Given a
source point s 2 V , Mitchell et al. [2] showed that a geodesic
path from s to vertex vj passes through a sequence of mesh
faces. A window is an interval I defined on a mesh edge
such that the geodesic paths from s to any point in I share
the same face sequence. See Fig. 2a. Mitchell et al. also
showed that a geodesic path cannot pass through any
spherical vertex (a vertex at which the sum of surrounding
angles is less than 2p) unless it is the destination, since per-
turbing the path a bit off the spherical vertex reduces its
length. However, a geodesic path may pass through one or
more saddle vertices (a vertex at which the sum of surround-
ing angles is greater than 2p). The saddle vertex nearest to
the destination is called a pseudo source. Awindow associated
with a half-edge e is a 6-tuple ðs; A;B; s0; s1; eÞ [5] where

� s is the distance from the pseudo source p to the
source s;

� A and B are the left and right endpoints of the
interval;

� s0 and s1 are the distances from I’s endpoints to p.
With this window data structure, we can easily position

the source or pseudo source in the unfolded face/edge
sequences and compute the geodesic distance for any point
inside the interval. See Fig. 2b. Note that the MMP
algorithm stores oriented windows so that each side of a
non-boundary edge contains windows, whereas the CH
algorithm does not require edge orientation.

The MMP and CH algorithms maintain a vector
ðd1; . . . ; dnÞ, n ¼ jV j, for the polyhedral distances defined on
mesh vertices, and a set of windows W. Initially, we have
ds ¼ 0 and di ¼ 1 for i 6¼ s. Set W contains the windows
covering the edges opposite to the source vertex s. The algo-
rithms then iteratively propagate windows across the faces
and update the polyhedral distances when a window covers
a vertex or part of an edge, until the set W is empty. Upon
termination, label di is the geodesic distance from the source

s to vertex vi. The computational framework of the MMP
and CH algorithms is as follows:

whileW is not empty do
extract a window w ¼ ðs; A;B; s0; s1; eÞ fromW;
if e is not a boundary edge then
propagate w across e to produce child windows bw;
update the distance of vertex/edge covered by bw;
add bw toW;

end if
end while

Both the MMP and CH algorithms have Oðn2Þ window
complexity. They are distinguished by the data structure for
organizing the windows and the order of window process-
ing. The MMP algorithm maintains a priority queue for the
windows and takes the window closest to the source in each

iteration. As a result, the MMP algorithm has an Oðn2 log nÞ
time complexity. The CH algorithm records the parent-child
relationship of windows in a hierarchical tree structure and
processes the windows in a breadth-first-search order,
which is implemented by a first-in-first-out (FIFO) queue.

Therefore, the CH algorithm has an Oðn2Þ time complexity.
The ICH algorithm adopts a simple-yet-effective window
filter, which can reduce many useless windows. Further-
more, it uses the priority queue to organize the windows
according to their distance back to the source. The ICH algo-

rithm, with a time complexity Oðn2 log nÞ, significantly out-
performs the CH algorithm in terms of speed.

4 FAST WAVEFRONT PROPAGATION

A wavefront in a continuous setting is the locus of points
having the same distance to the source. The MMP/CH/ICH
algorithms maintain a discrete wavefront, which can be for-
mally defined as follows:

Definition 1. The ith wavefront, denoted by Wi, is the union of
windows inW at the ith iteration.

A wavefront depends on the model, the location of the
source point, as well as the time, and it may be uncon-
nected. As Fig. 3 shows, each color corresponds to one
wavefront. At the beginning, the wavefront is connected
and has a circular shape. Later, it evolves to several con-
nected components. Finally, each connected component
shrinks to a maximal point (where the geodesic distance
reaches the local maximum) and then vanishes. For a win-
dow w, we define its label as the shortest distance from the
source to w’s associated mesh edge. The size of Wi, denoted
by jWij, is determined by the number of windows it has.
The standard deviation of all window labels in Wi, stdðWiÞ,
is a good measure of wavefront quality. Intuitively

Fig. 2. (a) A window w is an interval (drawn in red) on a mesh edge such
that the geodesic paths from the source to any point in w have the same
face sequence (colored in pink). Propagating a window across an edge
produces one or more child windows. w1 has one child and w2 has two
children. Both w1 and w2 are directly visible from the source s, but w3 is
not. Instead, w3 is visible from the pseudo source p. (b) Parameterizing
a window to R2 locally encodes the geodesic distance from the source s
to any point on the window.

Fig. 3. Illustration of typical wavefront propagation on the Hand model.

824 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

speaking, the smaller the variance, the higher quality the
wavefront has. Wavefront quality depends on the order of
windows being processed. As shown in Fig. 4, propagating
windows in the smallest-label-first order leads to a high-
quality wavefront (i.e., smooth and with small variance),
whereas using the first-in-first-out order produces a low-
quality wavefront (i.e., very rough and with large variance).

The MMP and ICH algorithms always take the window
with the minimal label at each iteration, resulting in a high-
quality wavefront. However, the overhead required for each
iteration is expensive. Computational results show thatmore
than 60 percent of the time is used for maintaining a priority
queue in the MMP and ICH algorithms. See Fig. 5. On the
other hand, the CH algorithm organizes the windows in an
FIFO queue, leading to a constant time overhead. However,
as its wavefront is of poor quality, the CH algorithm produ-
cesmany useless windows and converges very slowly.

Our idea is to balance the wavefront quality and the
overhead for updating wavefronts. Unlike the MMP/ICH
algorithms that propagate only the window with the small-
est label in each iteration, our method propagates at least K
smallest-label windows at the same time. We propose a
bucket data structure to organize windows so that it takes
only Oð1Þ time to process each window. In addition, K is
adaptive to the wavefront size, and it has a constant upper

bound, leading to an Oðn2Þ worst-case window complexity.
We call our method fast wavefront propagation, which distin-
guishes itself from the existing slow-propagating algorithms
such as MMP and ICH.

4.1 Algorithm

Let s 2 V be the source vertex and p 2 M a point (not
necessarily a mesh vertex) on M. Denote by dðpÞ the geo-
desic distance between s and p. Obviously, dð�Þ is a con-
tinuous function. We partition the polyhedral distance
into equal-length intervals, ½0; lÞ, ½l; 2lÞ, ½2l; 3lÞ, etc. Each
interval is called a bucket, which is used to organize win-
dows. Observe that the maximum range of geodesic dis-

tances in most real-world models1 is Oð ffiffiffi
n

p
hÞ, where h is

the average edge length. There are Oðn2Þ windows and
each bucket contains roughly OðnÞ windows, so we set

the bucket size l ¼ h=
ffiffiffi
n

p
.

Algorithm 1. Fast Wavefront Propagation Algorithm

Input: a meshM ¼ ðV;E; F Þ and a source point s;
Output: the undiscretized geodesic distance for each vertex;
1: for each edge e facing s do
2: generate a window w for ewith w.birth ¼ �1;
3: insert_window(w);
4: end for
5: K ¼ P1 ¼ csmall ¼ iter ¼ 0, clarge ¼wavefront_size;
6: whilewavefront_size 6¼ 0 do
7: K + ¼ ðclarge � csmallÞ;
8: K ¼ minðmaxðK; 1Þ, wavefront_size,Kmax);
9: // find the first non-empty bucket
10: while buckets[P1].is_empty() do
11: P1 ++;
12: end while
13: // find Pend so that at leastK smallest-label
14: windows will be propagated
15: Pend ¼ P1, wc ¼ 0;
16: while wc < K do
17: wc +¼ buckets[Pend].Q.size();
18: Pend ++;
19: end while
20: P2 ¼ P1;
21: while P2 � Pend do
22: //propagate the windows born in early iterations
23: while buckets[P2].top().birth < iter do
24: w ¼ extract_window(P2);
25: propagate w across its adjacent triangle;
26: for each child window bw do
27: if bw.dist() � Pend � l then
28: // bw is in a bucket after Pend

29: clarge ++;
30: else
31: csmall ++;
32: end if
33: bw.birth ¼ iter;
34: insert_window(bw);
35: end for
36: end while
37: P2 ++;
38: end while
39: iter ++;
40: end while

Fig. 5. Maintaining a priority queue (pq) takes roughly 70% of the runtime
of the MMP algorithm. The ICH algorithm has a similar percentage.

Fig. 4. The MMP algorithm maintains a priority queue for the windows,
leading to a high-quality wavefront with standard deviation std ¼
0:00219. Replacing the priority queue by an FIFO queue results in a very
poor and slow-moving wavefront with std ¼ 0:02431. The model has
been scaled to a unit cube.

1. In a few extreme pathological cases, the maximum geodesic range
can reach OðnhÞ. However, our bucket strategy still works well in prac-
tice with l ¼ h=

ffiffiffi
n

p
.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 825

We assign each window w a birth time, that is, the itera-
tion when w was created. We put w into the ith bucket
½ði� 1Þl; ilÞ, denoted by Bi, if w’s label is in this range. Win-
dows in a bucket are organized by an FIFO queue. The ini-
tial wavefront consists of windows on the edges opposite to
the source s. These windows are put into the corresponding
buckets according to their labels. The FWP algorithm then
iteratively propagates the wavefront. In the ith iteration, the
FWP algorithm selects at least K smallest-label windows on
the wavefront and propagates them across their adjacent tri-
angles. The number K is adapted to the size and quality of
the wavefront, and K can be determined automatically. See
Section 4.2.

Three pointers P1, P2 and Pend are used. The pointer
P1 points to the first non-empty bucket and the pointer
P2 is used to track the to-be-processed bucket. For each
window w in buckets½P2� who were born in some itera-
tion earlier than i, we propagate w across its adjacent
triangle, and obtain one or more child windows. Since a

child window always has a larger distance than its
parent, it cannot be placed in a bucket before its parent.
Note that some new windows (who are born in the
current iteration) may be added to the bottom of the
queue in buckets½P2�. If so, we skip these windows
(colored in red in Fig. 6), and move P2 to the next non-
empty bucket.

The current iteration is over when it processes at least K
smallest-label windows who were born early (i.e., reaching
the bucket pointed to by Pend that is determined at the
beginning of current iteration). The FWP algorithm termi-
nates when all of the buckets are empty. Fig. 6 illustrates a
typical iteration of the FWP algorithm. See Algorithm 1 for
the pseudocode.

The proposed FWP algorithm is a general framework for
organizing and propagating windows so that it can be
applied to both the MMP and ICH algorithms. In the follow-
ing, we refer to the FWP-based MMP and ICH algorithms as
FWP-MMP and FWP-CH, respectively.

Fig. 6. A typical iteration of the FWP algorithm. (a) Initialize by creating a window for each edge facing the source vertex and putting it into
some bucket according to its label. (b) At the beginning of each iteration, determine the value of K and find the first non-empty bucket,
labeled as P1. In this example, K ¼ 16. The pointer P2 is used to track the to-be-processed bucket. At this moment, P2 ¼ P1. Find the bucket
buckets½Pend� so that at least 16 windows will be propagated in this iteration. (c) The first window in buckets½P2� generates two child windows,
both of which are placed before Pend. Therefore, increase csmall by 2. Here csmall (resp. clarge) is the number of windows in the next iteration
whose distances are less (resp. greater) than the distance of the window pointed by Pend. The existing windows (born in early iterations) are
colored in green and the new windows (born in the current iteration) are in red. (d) In an intermediate step of the current iteration, another
green window is propagated. The two child windows are placed after Pend, so increase clarge by 2. Move on to the next bucket when all of
the green windows in buckets½P2� have been processed. (e) The current iteration is over when all of the buckets before Pend are done.
Observe that clarge < csmall, meaning that the majority of the child windows are not far. As a result, the wavefront quality is not good. So we
decrease K and propagate fewer windows in the next iteration.

826 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

4.2 Adaptive Adjustment ofK

SettingK ¼ 1 is too conservative, since only windows in the
first non-empty bucket propagate in each iteration and the
overhead required for each iteration is expensive, akin to
the MMP/ICH algorithms. On the other hand, an extremely
large K means that all the windows on the wavefront are
propagated at once, that is, without taking their distances
into account. As a result, the wavefronts are of low quality
and the FWP algorithm becomes the highly inefficient
FIFO-based algorithm. Thus, an extremely large K is too
aggressive. We do expect a proper K for both high-speed
wavefront propagation and the wavefronts of high quality.
Since the time-dependent wavefronts may change dramati-
cally throughout the iterative procedure, the K value
should be adaptive to the wavefront’s size and quality, and
are updated at each iteration.

Consider the ith wavefront Wi. Denote by Ki the win-
dows propagated in ith iteration. Since Ki is the number of
windows in buckets whose pointers range from P1 to Pend,
Ki is always equal to or larger than K. Let t denote the Kith
smallest label of the windows in Wi. Then we partition Wi

into two sets, W 1
i and W 2

i , where W 1
i consists of the win-

dows with distances less than t and W 2
i ¼ Wi nW 1

i contains
the remaining windows. Note that the FWP algorithm prop-

agates only the windows in W 1
i and the generated child

windows are denoted by Ci. Let clarge (resp. csmall) be the
number of windows in Ci whose distance is larger (resp.
smaller) than t. We have the following two observations:

� If csmall < clarge, the majority of the child windows
have distances more than t, meaning that the propa-
gated Ki windows in the ith iteration have a high
possibility to survive in the next iteration and conse-
quently the quality of the current wavefront Wi is
good. Thus, we can increase K and propagate more
windows in the next iteration. To better understand
this, one could consider the extreme case where
K ¼ 1 and csmall ¼ 0: the wavefront is very smooth
and such aK is obviously too conservative.

� Otherwise, the wavefront’s quality is not good, so we
should decrease K and propagate fewer windows in
the iþ 1th iteration.

Inspired by these observations, we adaptively adjust K
by setting Kiþ1 ¼ Ki þ ðclarge � csmallÞ. This simple strategy
works remarkably well in practice. See Section 6 for detailed
discussions.

4.3 Correctness & Complexity

The correctness of the FWP method relies on the following
proposition.

Proposition 1. Both the MMP and CH algorithms generate cor-
rect solutions regardless of the order in which the windows are
processed in the queue.

Proof. First, note that (1) the useless windows will be
deleted when they are covered by other windows arrived
later that provide shorter distances to the source and (2)
for any windows that provide shortest distances to the
source, their parent windows also provide shortest dis-
tances to the source. So all the windows in the correct

solution will appear in the queue regardless of the win-
dow propagation order.

Second, we show that the algorithm will terminate in
a finite number of steps regardless of the window prop-
agation order. We assign an integer-valued level to each
candidate window (including both useful and useless
windows) in the queue. The windows facing the source
are at level 1. When a level-i window is propagated, its
child windows have level iþ 1. Note that on an n-face
mesh, a window’s level cannot exceed n. Assume that
an algorithm randomly picks a window w and propa-
gates it. Since the level of w and all its descendants
should be not larger than n, w has a finite number of
descendants. Thus the total number of windows gener-
ated by this algorithm is finite. tu
Note that Surazhsky et al. mentioned the above property

(c.f. Section 3.4 [5]) but did not give a proof.
Our FWP method works well for real-world mesh mod-

els, as indicated in the following property with a moderate
realistic assumption.

Proposition 2. Assume that the degree of each vertex in M is
bounded by a constant D. Both the FWP-MMP and FWP-CH

algorithms produceOðn2Þwindows, and they haveOðn2 log nÞ
andOðn2Þ time complexity, respectively, where n is the number
of vertices inM.

Proof. Upon the termination of the MMP or CH algorithm to
the mesh M, we obtain a set of windows stored in each
edge and vertex. We call these windows final, since they
encode the shortest geodesic distance. In contrast, the
windows, which were created during window propaga-
tion and deleted later, are useless windows and not final.

In our FWP-based algorithm, Kið� 1Þ windows of
smallest labels are propagated at the ith iteration. First
note that the window of smallest label must be final
since no other windows in the queue can replace it later.
Then in the propagated Ki windows, they contain at
least one final window. As long as a window becomes
final, its status remains unchanged throughout the
remaining iterations. Second, both the MMP and CH

algorithms have no more than Oðn2Þ final windows.
Since at least one final window is extracted from the
wavefront in each iteration, the FWP-based algorithm

converges inOðn2Þ iterations at most.
Note also that Ki is bounded by a constant Kmax

(Line 8 in Algorithm 1). Therefore, at most mKmax child
windows are generated and inserted into the buckets,
where m is the maximum number of children a parent
window can have. Thus, we have m � D due to the
assumption that the degree is no more than D. Finally,
the total number of windows inserted into the buckets

are OðDKmaxn
2Þ ¼ Oðn2Þ.

The FWP-MMP algorithm has an Oðlog nÞ overhead at
each iteration, since there are, at most, OðnÞ windows at
each edge, and these windows are sorted in the same
manner as the original MMP algorithm. Therefore, the

FWP-MMP algorithm has an Oðn2 log nÞ time complex-
ity. For the FWP-CH algorithm, the overhead per itera-

tion is Oð1Þ, resulting in an Oðn2Þ time complexity. tu

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 827

5 EXPERIMENTAL RESULTS

Both the MMP and ICH algorithms as well as the FWP
methods are undiscretized algorithms, that is, they can
obtain the exact geodesics if numerical operations are exact.
However, floating-point computation is often used in imple-
mentation of these algorithms due to its high efficiency.
There are two sources of numerical error. First, floating
point computation has truncated error, which is machine
dependent and cannot be avoided in the algorithm. Second,
propagating a small window is not cost-effective, since
a small window covers only a narrow region on the mesh.
In practice, both the MMP and ICH algorithms discard a
window if its size is smaller than a user-specified threshold
" (e.g., [18]).

We observe that the truncated error with floating-point
precision has little affect on these algorithms, given the
robust techniques [18], [19], [20] for handling geometric
degenerate cases. However, the threshold " for determining
tiny windows has a large impact on the performance. Take
the 144K-face Bunny model (scaled to a unit cube) as an

example. A strict threshold " ¼ 10�6 results in 6:9M win-
dows for the MMP algorithm and 6:2M windows for the

ICH algorithm. A loose threshold " ¼ 10�5, however, can
reduce the windows by 26 and 10 percent for the MMP algo-
rithm and the ICH algorithm, respectively. As the perfor-
mance closely depends on window complexity, we adopt

the same threshold " ¼ 10�6 throughout our experiments to
ensure a fair comparison between the two classes.

We thoroughly evaluated the performance of the original
ICH and MMP algorithms, as well as our FWP-based
improvements, on a wide range of models. Due to page
limit, some test models are illustrated in Fig. S3 in supple-
mental material, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2015.2407404. Timings were measured
on a PC with an Intel Core i7-2600 CPU 3.40 GHz and 8 GB
memory. To obtain stable results, we randomly chose 100
points for each model and then reported the mean value.
For the constant Kmax (line 8 in Algorithm 1) that deter-
mines the upper bound of adaptive K in the FWP method,
we empirically set Kmax ¼ 20;000 for various real-world
models.

We observed the following characteristics via our
experiments:

1) Robustness. The FWP method is less sensitive to mesh
tessellation than the existing algorithms. This robust feature
is due to the fact that our method propagates K windows
per iteration, which can be considered as taking K samples
simultaneously on the wavefront. With a largeK, wavefront
propagation is intrinsic to the geometry, therefore, the per-
formance is not sensitive to mesh triangulation. We use

gðfÞ ¼ P �H
2
ffiffi
3

p
S
to measure the quality of triangle f , where P , H

and S are respectively the half-perimeter, the longest edge

length and area of f . Then we define g ¼
P

f2F gðfÞ
jF j to mea-

sure the anisotropy of the input mesh M. An isotropic mesh
has g ¼ 1 and an anisotropic mesh has g > 1. In general, the
larger the value of g, the higher the anisotropy the mesh
has. As Fig. 7 shows, by fixing the mesh’s resolution, the
speeds of the MMP and ICH algorithms become slower
when the mesh becomes more anisotropic, whereas the
speed of our FWP-based methods are very stable.

2) High performance. The FWP technique can significantly
boost the speed of the MMP and ICH algorithms on all test
models. As shown in Fig. 8, the FWP-based algorithm
is particularly favored for large-scale real-world models.

Fig. 7. By fixing the resolution, we create a sequence of meshes with
various anisotropy using the method in [21]. Each curve corresponds to
the timing of applying some algorithm to a sequence. We observe that
both the MMP and ICH algorithms are highly sensitive to mesh triangula-
tion, that is, increasing the mesh anisotropy greatly slows down their
speeds. In contrast, our method is more robust to tessellation than the
MMP and ICH algorithms.

Fig. 8. The FWP technique can significantly speed up the MMP and
CH algorithms. The vertical axis is the performance improvement (i.e.,
the ratio of the time of the original algorithm to the FWP algorithm)
and the horizontal axis is the mesh resolution. We observe that the
higher the resolution (measured by number of faces) and anisotropy
(measured by g) of the mesh, the higher the speedup.

828 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

The higher the resolution and anisotropy of the mesh, the
better performance improvement it brings. For meshes with
fairly regular triangulation, the FWP-CH algorithm can
double the speed of the ICH algorithm, furthermore, the
FWP-MMP algorithm is three times faster than the
MMP algorithm. For large-scale models with anisotropic
triangulations, the FWP-MMP algorithm can improve
the performance of the MMP algorithm by an order of
magnitude, and the FWP-CH algorithm is also five times
faster than the ICH algorithm. Computational results show
that the FWP-MMP algorithm is the most efficient exact
discrete geodesic algorithm. See supplementary material,
available online, for more results.

3) Unified framework. From a micro scale, the ICH and
MMP algorithms adopt different window propagation
schemes, producing different numbers of windows and
requiring different numbers of iterations for convergence.
Our FWP framework unifies the two classes of algorithms
from the macro scale: As Table 1 shows, the FWP-CH and
FWP-MMP algorithms propagate the wavefronts at a simi-
lar pace and take roughly the same number of iterations to
converge. We believe that other window-based algorithms
(if any) can also fit into the FWP framework.

4) Improving the SVG technique. Saddle vertex graph [9]
is a sparse undirected graph that encodes the geodesic
information of a give mesh. With SVG, the geodesic dis-
tance can be computed efficiently by Dijkstra’s shortest
path algorithm. However, constructing SVG is expensive,
since one has to compute all direct geodesic paths.2 In [9],
the geodesic paths were computed using the ICH algo-
rithm, which is time consuming. For example, computing
the exact SVG for the 144K-face Bunny model takes half
an hour on a single CPU core. Although SVG construction
can be significantly improved by parallel computing, the
GPU implementation is non-trivial. In this paper, we show
that our CPU-based FWP method can be easily adapted to
compute SVG. Experimental results show that our method
can shorten the pre-computation time by a factor of 3 to
10. See Fig. 9.

6 DISCUSSIONS

In this section we discuss three features as follows that
make the FWP method significantly improve the speed of
MMP/CH/ICH algorithms.

1) Adaptive K. The geometry of a wavefront is dependent
on the model, the source point, and the time, all of which
may vary significantly during the iterative procedure. So the
number of windows propagated in each iteration should
be adapted to the wavefront size in order to perform well.
Fig. 10 shows the relationship betweenK and the wavefront
size for the Happy Buddha and Fertility models. We observe
that the K-curve’s shape is similar to the wavefront size
curve. As Fig. 11 shows, the adaptiveK strategy outperforms
the fixedK strategy significantly.

2)Wavefront quality. Unlike the MMP/ICH algorithm that
propagates a single window per iteration, the FWP method
processes a large number of windows simultaneously at
each iteration. Thanks to our adaptive K strategy, the FWP

TABLE 1
Mesh Complexity (Face Number jF j) and the Ratios of the
Number of Iterations the Algorithms Need to Converge
for the Pairs {MMP, ICH} and {FWP-MMP, FWP-ICH}

Model jF j Ratio of iteration numbers

MMP=ICH FWP-MMP=FWP-ICH

Fertility 60,000 0.836 468=460 ¼ 1:017
Horse 96,965 0.714 775=772 ¼ 1:004
Bunny 144,036 0.680 865=911 ¼ 0:950
Golfball 245,760 0.509 1;478=1;553 ¼ 0:952
Sphere 327,680 0.342 1;286=1;348 ¼ 0:954
Armadillo 345,944 0.676 1;931=1;998 ¼ 0:966
Lucy 525,814 0.685 2;286=2;299 ¼ 0:994
Gargoyle 700,000 0.695 2;395=2;446 ¼ 0:979
Blade 1,765,388 0.634 4;086=3;844 ¼ 1:063
Dragon 4,000,000 0.788 13;748=12;387 ¼ 1:110

Fig. 9. The FWP method can improve SVG construction by a factor of
3 to 10. The parameter KSVG controls the accuracy of the computed
geodesic distance. The higher KSVG, the smaller the error, and the
longer the time for constructing the SVG. Timing was measured on a
single CPU core.

Fig. 10. K, the number of smallest-label windows used in each iteration,
is adapted to wavefront size. The ICH algorithm has a similar perfor-
mance as the MMP algorithm.

2. A geodesic path is direct if it does not pass through any saddle
vertices.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 829

method can both move the wavefronts efficiently and
ensure they are of high quality. Fig. 12 shows an example.

3) Bucket size. The selection of bucket size in the FWP
method is heuristic. Fig. 13 shows how the performance
changes with the bucket size, from which we observe that
the FWP method is fairly stable and reaches the highest per-
formance when the bucket size falls into 1	 to 2	 h=

ffiffiffi
n

p
.

On the other side, the curves shown in Fig. 13 are U-shaped
that means both too small and too large bucket size will
lead to relatively bad performance.

7 COMPARISON

We compares the FWP method with other representative
geodesic algorithms, including MMP [2], ICH [7], PCH [8],
FMM [13], [14], [22], the heat method [16] and the label cor-
recting (LC) method [23]. We classify these algorithms in
two groups, i.e., macro and micro. A micro algorithm pro-
cesses a single element (e.g., a window in MMP/ICH or a
triangle in FMM) per iteration, whereas a macro algorithm
processes multiple elements simultaneously. Table 2 sum-
marizes the features in these algorithms.

7.1 FWP versus the Fast Marching Method

The Fast Marching Method [13] is a popular technique for
solving the boundary value problem of the Eikonal equa-
tion, rT ¼ F ðx; yÞ, where F > 0 is the front moving speed
and T is the travel time. Solving the Eikonal equation with
F
 1 and T ðsÞ ¼ 0 produces the polyhedral distance field
at the source s. The FMM adopts a Dijkstra sweep and uses
the fact that information only flows outward from the seed-
ing area. The FMM is flexible and can be applied to both
regular grids [13] and triangle meshes [14] with an
Oðn log nÞ time complexity, where the factor log n is due to
the administration of a priority queue.

To improve the speed of the FMM on regular grids, Yatziv
et al. [22] suggested using a so-called untidy priority queue
within the FMM. Their novel idea is to use the bucket sort
technique together with a quantization that does not distin-
guish between the values of T within a small range. There-
fore, each entry of the priority queue may contain multiple
elements. Yatziv et al. showed that the number of elements
in each entry is Oð1Þ, and finding the element with the mini-
mal label also takes Oð1Þ time. As a result, their algorithm
has a linear run-time on regular grids. Although an error is
introduced, it is of the same order as the local truncation
error of the discretization, since the change of T values in a
Dijkstra iteration is bounded on regular grids.

It is worth noting that the linear OðnÞ time complexity of
Yatziv et al’s method does not hold on triangle meshes,
since it is not possible to bound the change of T values on
triangle meshes, whose triangulation may be arbitrary. In
fact, on triangle meshes, the range of the change of T values
depends on the triangulation, instead of the number of ver-
tices n. Consider a very skinny triangle t whose longest side
is of the same order of the model’s diagonal. Then the size

Fig. 11. Fixing K has worse performance than the dynamic K strategy.
We measure the performance of the FWP method with various fixed K
values, ranging from 1 to 40 percent of Kmax. Each marker corresponds
to the timing with a fixed K value and the optimal timing is highlighted in
red. Clearly, theK values leading to the optimal performance vary signif-
icantly among the test models. The dashed lines below are the timing of
the FWP method with adaptiveK strategy.

Fig. 12. Wavefront quality on the Dragon model. The priority queue
based MMP and ICH algorithms produce high quality wavefronts, how-
ever, the wavefronts are moving slowly due to the expensive overhead.
The FIFO queue based MMP and ICH algorithms have constant time
overhead at each iteration, however, their performance is very poor due
to the low quality wavefronts. Our FWP-MMP and FWP-CH algorithm
are able to propagate the wavefronts much faster without compromising
their quality. The horizontal axis is the normalized timing and the vertical
axis is the standard deviation of the wavefront. The smaller the standard
deviation, the smoother the wavefront, thus, the higher the quality it has.
The close-up views show that the wavefronts of our method have similar
quality to the wavefronts of the MMP and ICH algorithms. The PCH algo-
rithm is also macro, however, its wavefront quality is worse than ours.

Fig. 13. Performance changes with the bucket size. The x-axis shows
different bucket sizes (by a multiple of h=

ffiffiffi
n

p
) and the y-axis gives the

normalized time (divided by the longest running time of each model).

830 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

of an entry (i.e., quantization step size) in the untidy priority
queue must be big enough to contain the longest side of t,
meaning that this entry contains OðnÞ triangles. Since find-
ing the element with the minimal label takes Oðn log nÞ
time, the time complexity becomes Oðn2 log nÞ, which is
much worse than the original FMM.

Our experimental results also confirm that the perfor-
mance of Yatziv et al.’s FMM is highly dependent on the
mesh triangulation. Moreover, the accuracy of Yatziv et al’s
method drops significantly on anisotropic meshes. See
Fig. 14b. In terms of data structure, note that the entry size
in Yatziv et al.’s FMM is triangulation dependent, while
the bucket size in the FWP method is fixed. Furthermore,
the overhead per window operation in Yatziv et al.’s FMM
is Oðn log nÞ and in our method is Oð1Þ.

7.2 FWP versus the Heat Method

The heat method [16] computes the geodesic distance by
solving a Poisson equation from the normalized gradient of
the heat flow. Based on standard numerical packages, it is

easy to implement and highly flexible to support a wide
range of geometric domains, including grids, triangle
meshes and point clouds. Since the Laplacian matrix can be
pre-factored, solving the Poisson equation takes only near-
linear time. Below we compare the heat method and the
FWPmethod in terms of accuracy and performance.

Accuracy. The accuracy of the heat method closely
depends on the heat diffusion time t. Theoretically, the time
approaching zero leads to the accurate solution of geodesic
distance. However, a tiny time t results in serious numerical
issue. Crane et al. [16] observed that the error-t plot is U-

shaped and suggested t ¼ h2 for common models, where h
is the average edge length. Similar to the fast marching
method, the heat method computes a first-order approxima-
tion of geodesic distance. Thus, its results closely depend on
the triangulation quality. Although the suggested parame-

ter t ¼ h2 works fairly well on well-tessellated meshes, we
observe that it leads to large error on anisotropic meshes.
Fig. 15 shows the results on the unit sphere with 200 longi-
tude circles and 500 latitude circles, which has 199,600 trian-

gles and an anisotropy measure g ¼ 2:28. Setting t ¼ h2

produces a mean relative error 6:36 percent, comparing to
the ground truth geodesic distance computed by closed-
form formula. Although taking a longer diffusion time
smoothes the distances and reduces the mean error, the
maximal error increases accordingly. Our method, in con-
trast, computes an accurate result with mean relative error
0:00063 percent and maximal error 0:0044 percent. Fig. 15
also shows the results on a 20;000-face torus model with
g ¼ 2:36. The heat method obtains the best mean relative
error 2.3 percent and the best maximum relative error
14.97 percent at � ¼ 1, while our method computes a more
accurate result with mean relative error 0:00976 percent and
maximal error 0:1061 percent. In fact, as observed in [16]
and [9], the discrete geodesic distances computed by the
MMP and CH algorithms converge to the smooth geodesic
distances at a quadratic speed, while the FMM and the heat
method have only linear convergence rate.

Performance. As a pre-computation method, the heat
method has two steps: pre-computation (factoring the Lap-
lacian matrix) and solving (recovering the distances by solv-
ing a Poisson equation). Our FWP method is a direct
approach, which is much slower than the heat method.
However, as mentioned in Section 5, the FWP method

TABLE 2
Comparison of Dijkstra-Like Geodesic Algorithms

Method Domain Data Structure Overhead Space Complexity Time Complexity Type

CH

CH [3] triangle meshes FIFO queue Oð1Þ Oðn2Þ Oðn2Þ micro
ICH [7] triangle meshes priority queue Oðlog nÞ Oðn2Þ Oðn2 log nÞ micro
PCH [8] triangle meshes FIFO queue Oð1Þ unbounded unbounded macro
LC-CH triangle meshes FIFO queue Oð1Þ Vðn3Þ Vðn3Þ micro
FWP-CH triangle meshes bucket & FIFO queue Oð1Þ Oðn2Þ Oðn2Þ macro

MMP
MMP [2] triangle meshes priority queue Oðlog nÞ Oðn2Þ Oðn2 log nÞ micro
LC-MMP triangle meshes FIFO queue Oð1Þ Vðn3Þ Vðn3Þ micro
FWP-MMP triangle meshes bucket & FIFO queue Oðlog nÞ Oðn2Þ Oðn2 log nÞ macro

FMM

FMM [14]
regular grids priority queue Oðlog nÞ OðnÞ Oðn log nÞ micro

triangle meshes priority queue Oðlog nÞ OðnÞ Oðn log nÞ micro
Yatziv’s regular grids untidy priority queue Oð1Þ OðnÞ OðnÞ micro
FMM [22] triangle meshes untidy priority queue Oðn log nÞ OðnÞ Oðn2 log nÞ micro

Fig. 14. (a) Yatziv et al.’s FMM, as a micro algorithm, its performance is
sensitive to mesh triangulation. (b) Its average numerical error increases
significantly on anisotropic meshes. (c) shows the FWP result and and
(d) shows the FMM result with an average error 5:53 percent.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 831

complements the SVG method, since it reduces its pre-com-
putation time. It is noted that the SVG method has similar
solving performance as the heat method and its accuracy is
much higher. See Table 3.

7.3 FWP versus the Parallel CH Algorithm

The PCH algorithm [8] is a GPU-based parallel improve-
ment of the classic CH algorithm. Both the PCH and FWP

algorithms propagate a large number of windows at each
iteration and thus both are macro. However, they differ in
two ways. First, the numberK of windows to be propagated
in each iteration in FWP is time-dependent and adaptive to
the wavefronts. As Fig. 12 shows, the wavefront quality of
the FWP method is better than the PCH algorithm. Second,
although the PCH algorithm performs well with real-world
models, it is not possible to bind its space as well as time
complexities, which could be theoretically exponential. Our
method, however, is theoretically sound and produces at

most Oðn2Þ windows, leading to provable time complexity
of the FWP-MMP and FWP-CH algorithms. Computational
results show that our CPU-based FWP-MMP algorithm has
a speed comparable to PCH [8] (Table 3).

7.4 FWP versus the Label Correcting Method

The MMP and ICH algorithms propagate windows in a con-
tinuous-Dijkstra fashion. Dijkstra’s algorithm takes the node
with the smallest label in a candidate list C and is known as
a label setting method, since the node removed from the list

TABLE 3
Performance Statistics on Meshes with Fairly Good Tessellation

Model jF j
Heat method

SVG ðK ¼ 50Þ
ICH FWP-MMP PCH

Pre-computation
Solving Mean

ErrorPre-computation Solving Mean Error FWP-MMP ICH

Armadillo 346 K 1.75 s 0.11 s 0.90% 17.52 s 54.4 s 0.08 s 0.14% 9.39 s 3.43 s 1.39s
Bunny 144 K 0.72 s 0.04 s 0.83% 7.82 s 23.63 s 0.02 s 0.12% 5.43 s 2.0 s 1.15s
Fertility 60 K 0.22 s 0.01 s 1.81% 2.95 s 10.14 s 0.01 s 0.14% 1.74 s 0.79 s 0.41s
Horse 97 K 0.35 s 0.04 s 0.72% 7.32 s 15.91 s 0.02 s 0.12% 3.41 s 1.38 s 0.88s
Sphere 327 K 4.92 s 0.15 s 0.19% 18.85 s 51.29 s 0.06 s 0.10% 75.02 s 16.56 s 11.02s

The PCH algorithm was tested on an Nvidia GTX580 card with 512 CUDA cores and all the other methods were implemented in single threaded Cþþ and tested
on a PC with an Intel Core i7-2600 CPU (3.40 GHz). Both the heat method and the SVG method compute the approximate geodesic distances, whereas the others
are exact. For the heat method, we set the the diffusion time t ¼ h2, where h is the average edge length. We construct a small-scale saddle vertex graph with
K ¼ 50 and report the mean relative error. The FWP-MMP based SVG construction is two to three times faster than the ICH method.

Fig. 15. The heat method controls the accuracy by the diffusion time
t ¼ �h2, where � is the step value and h is average edge length. Given
the 199; 600-face unit sphere model with the anisotropy measure
g ¼ 2:28, the default setting � ¼ 1 produces a mean relative error 6.3
percent. Increasing the step value � is helpful to reduce the mean error.
For example, the mean error drops to 0.18 percent when � ¼ 80, how-
ever, the maximum relative error increases significantly. Given the
20; 000-face torus model with g ¼ 2:36, the default setting � ¼ 1 produces
the best mean relative error 2.3 percent and the best maximum relative
error 14.97 percent. Increasing or decreasing the step value � cannot
help to reduce the errors.

Fig. 16. The FWP method is consistently faster than the LC-based
method. The vertical axes show the ratio of the timing of the LC method
to our method.

832 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

is permanently labeled and never enters the list again. A label
correcting method maintains a queue for the candidate list
C so that the selection of the to-be-processed node takes
only Oð1Þ time, at the expense of multiple entrances of nodes
in C. Among many label correcting schemes, Bertsekas [23]
observed that the SLF-LLL-THR algorithm performs extre-
mely well in practice, significantly outperforming the original
Dijkstra’s algorithmon real-world sparse graphs.

We implemented the SLF-LLL-THR strategy in the MMP
and ICH algorithms and we refer to the LC based methods
as the LC-MMP and LC-CH algorithms. We compare the
FWP-based algorithms with the LC-based algorithms and
we observe that the FWP method runs consistently faster
than the LC methods on all test models, the higher the mesh
resolution and anisotropy, the better the performance
improvement of the FWP method to the LC method. See
Fig. 16. Moreover, as a macro algorithm, the FWP method is
more robust to mesh triangulation (using an anisotropic
measure g) than the micro LC algorithms.

Theoretically, the LC-based Dijkstra’s algorithm [23]
does not have a time bound due to the heuristics used for
determining the threshold. For the LC-based discrete geode-
sic algorithms, in supplementary material, available online,
we construct a triangulation pattern so that the LC method
produces at least Vðn3Þ windows, leading to a Vðn3Þ time
complexity. In sharp contrast, our bucket data structure and

adaptive K strategy guarantees an Oðn2Þ window complex-

ity accompanied with an Oðn2 log nÞ time complexity for

the FWP-MMP algorithm and an Oðn2Þ time complexity for
the FWP-CH algorithm.

8 CONCLUSION

This paper presented a fast wavefront propagation frame-
work, which has the following advantages. First, as a macro
algorithm, the FWP method is less sensitive to mesh tessel-
lation than the existing micro (MMP/CH/ICH) algorithms.
It is also a generic computational framework that enables
the MMP and ICH algorithms to propagate the wavefronts
in a similar fashion. Second, the FWP method is theoreti-
cally sound and has provable time and space complexity.
The FWP-CH and FWP-MMP algorithms have Oðn2Þ and

Oðn2 log nÞ time complexity, respectively. It is worth noting
that the FWP-CH algorithm is the first window-oriented

algorithm that reaches the Oðn2Þ lower bound while per-
forming well in practice. Third, computational results show
that the FWP-MMP algorithm can improve the speed of the
MMP algorithm by a factor of 10 and the FWP-CH algo-
rithm is also five times faster than the ICH algorithm.
Through extensive evaluation presented in supplemental
material, available online, we confirm that the FWP-MMP
algorithm is the most efficient serial and exact algorithm for
computing geodesic distances on triangle meshes. In the
future, we will investigate the GPU-based parallelization of
the FWP framework.

ACKNOWLEDGMENTS

The authors thank Keenan Crane for his code of the heat
method. The models are courtesy of Aim@Shape and Stan-
ford University. This work was supported by the Natural

Science Foundation of China (61322206, 61432003, 61272228),
the National Basic Research Program of China
(2011CB302202), TNList Cross-discipline Foundation andBei-
jing Higher Institution Engineering Research Center of Visual
Media Intelligent Processing and Security, and Singapore
Ministry of Education Grants (MOE2013-T2-2-011 and RG40/
12). Yong-Jin Liu and YingHe are the corresponding authors.

REFERENCES

[1] P. Bose, A. Maheshwari, C. Shu, and S. Wuhrer, “A survey of geo-
desic paths on 3D surfaces,” Comput. Geom., vol. 44, no. 9, pp. 486–
498, 2011.

[2] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The dis-
crete geodesic problem,” SIAM J. Comput., vol. 16, no. 4, pp. 647–
668, 1987.

[3] J. Chen and Y. Han, “Shortest paths on a polyhedron,” in Proc. 6th
Annu. Symp. Comput. Geom., 1990, pp. 360–369.

[4] Y.-J. Liu, D. Fan, C. Xu, and Y. He, “On discrete geodesics: Tight
bound and triangle anisotropy,” Submitted Publication, 2015.

[5] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H.
Hoppe, “Fast exact and approximate geodesics on meshes,” ACM
Trans. Graph., vol. 24, no. 3, ACM, 2005, pp. 553–560.

[6] Y.-J. Liu, “Exact geodesic metric in 2-manifold triangle meshes
using edge-based data structures,” Comput.-Aided Des., vol. 45,
no. 3, pp. 695–704, 2013.

[7] S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm
on the discrete geodesic problem,” ACM Trans. Graph., vol. 28,
no. 4, p. 104, 2009.

[8] X. Ying, S.-Q. Xin, and Y. He, “Parallel Chen-Han (PCH) algo-
rithm for discrete geodesics,” ACM Trans. Graph., vol. 33, no. 1,
pp. 9:1–9:11, 2014.

[9] X. Ying, X. Wang, and Y. He, “Saddle vertex graph (SVG): A novel
solution to the discrete geodesic problem,” ACM Trans. Graph.,
vol. 32, no. 6, pp. 170:1–170:12, 2013.

[10] S.-Q. Xin, X. Ying, and Y. He, “Constant-time all-pairs geodesic
distance query on triangle meshes,” in Proc. ACM SIGGRAPH
Symp. Interactive 3D Graph. Games, 2012, pp. 31–38.

[11] S.-Q. Xin, X. Ying, and Y. He, “Efficiently computing geodesic off-
sets on triangle meshes by the extended Xin-Wang algorithm,”
Comput.-Aided Des., vol. 43, no. 11, pp. 1468–1476, 2011.

[12] S.-Q. Xin, Y. He, and C.-W. Fu, “Efficiently computing exact geo-
desic loops within finite steps,” IEEE Trans. Vis. Comput. Graph.,
vol. 18, no. 6, pp. 879–889, Jun. 2012.

[13] J. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proc. Nat. Acad. Sci. USA, vol. 93, pp. 1591–
1595, 1996.

[14] R. Kimmel and J. Sethian, “Computing geodesic paths on man-
ifolds,” Proc. Nat. Acad. Sci. USA, vol. 95, pp. 8431–8435, 1998.

[15] S.-Q. Xin, D. T. Quynh, X. Ying, and Y. He, “A global algorithm to
compute defect-tolerant geodesic distance,” in Proc. SIGGRAPH
Asia 2012 Tech. Briefs, 2012, p. 23.

[16] K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat:
A new approach to computing distance based on heat flow,”
ACM Trans. Graph., vol. 32, no. 5, p. 152, 2013.

[17] K. Hildebrandt, K. Polthier, and M. Wardetzky, “On the conver-
gence of metric and geometric properties of polyhedral surfaces,”
Geometriae Dedicata, vol. 123, no. 1, pp. 89–112, 2006.

[18] Y.-J. Liu, Q.-Y. Zhou, and S.-M. Hu, “Handling degenerate cases
in exact geodesic computation on triangle meshes,” Visual Com-
put., vol. 23, no. 9–11, pp. 661–668, 2007.

[19] H. Edelsbrunner and E. P. M€ucke, “Simulation of simplicity: A
technique to cope with degenerate cases in geometric algorithms,”
ACM Trans. Graph., vol. 9, no. 1, pp. 66–104, Jan. 1990.

[20] C. K. Yap, “A geometric consistency theorem for a symbolic per-
turbation scheme,” in Proc. 4th Annu. Symp. Comput. Geom., 1988,
pp. 134–142.

[21] Z. Zhong, X. Guo, W. Wang, B. L�evy, F. Sun, Y. Liu, and W. Mao,
“Particle-based anisotropic surface meshing,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 99:1–99:14, 2013.

[22] L. Yatziv, A. Bartesaghi, and G. Sapiro, “OðNÞ implementation of
the fast marching algorithm,” J. Comput. Phys., vol. 212, no. 2,
pp. 393–399, 2006.

[23] D. P. Bertsekas, Network Optimization: Continuous and Discrete
Models. Belmont, MA, USA: Athena Scientific Belmont, 1998.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 833

Chunxu Xu received the BEng degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, China, in 2012. He is
currently working toward the PhD degree in com-
puter science at Tsinghua University. His research
interests include computational geometry, com-
puter graphics, and computer-aided design.

Tuanfeng Y. Wang received the BS degree
in information and computing science in 2014
from the University of Science and Technology of
China. In 2013, he was a research intern at the
Visual Computing Group, Microsoft Research
Asia, supported by National College Students
Innovation Program (201210358023). His current
research interests include geometric modelling
and processing, interactive computer graphics,
and shape analysis.

Yong-Jin Liu received the BEng degree from
Tianjin University, China, in 1998, and the PhD
degree from the Hong Kong University of Science
and Technology, Hong Kong, China, in 2004. He
is currently an associate professor with the
TNList, Department of Computer Science and
Technology, Tsinghua University, China. His
research interests include computational geome-
try, computer graphics and Computer-Aided
Design. For more information, visit http://cg.cs.
tsinghua.edu.cn/people/�Yongjin/yongjin.htm.

He is a member of the IEEE.

Ligang Liu received the BSc and PhD degrees in
1996 and 2001, respectively, from Zhejiang Uni-
versity, China. He is a professor in the School of
Mathematical Sciences, University of Science
and Technology of China. Between 2001 and
2004, he was at Microsoft Research Asia. Then,
he was at Zhejiang University during 2004 and
2012. He paid an academic visit to Harvard Uni-
versity during 2009 and 2011. His research inter-
ests include computer graphics and image
processing. His research works could be found at

his research website: http://staff.ustc.edu.cn/�lgliu. He is a member of
the IEEE.

Ying He received the BS and MS degrees in
electrical engineering from Tsinghua University
and the PhD degree in computer science from
Stony Brook University. He is an associate pro-
fessor in the School of Computer Engineering,
Nanyang Technological University, Singapore.
He is interested in the problems that require
geometric computing and analysis. For more
information, visit http://www.ntu.edu.sg/home/
yhe. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

834 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 7, JULY 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

