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Abstract The event camera is a kind of visual sensor that
mimics aspects of the human visual system by only recording
eventswhen the light intensity on a pixel changes. This allows
for an event camera to possess high temporal resolution and
makes it able to capture fast motion. However, an event cam-
era lacks information for all pixels within a scene, especially
color information. In this paper, we aim to recover a typical
scene in which the foreground undergoes high-speed motion
which can be approximated by a planarmotion, and the back-
ground is static.We demonstrate how to use the event camera
to generate high-speed videos of 2D motion augmented with
foreground and background images taken from a conven-
tional camera.Wematch an object obtained for a static image
to frames formed by the event stream, from the event camera,
based on curve saliency, and we build a parametric model of
affine motion to create image sequences. In this work, we are
able to restore scenes of very fast motion such as falling or
rotating objects and string vibration.
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1 Introduction

A conventional camera captures motion as a sequence of
images. Recording high-speed motion at a high frame rate
requires expensive high-speed cameras with a very short
exposure time. High-speed motion recording is also expen-
sive in computation and storage as the recorded image
sequence contains enormous redundant information such as a
static background.However, in thehumanvisual system there
is no concept of a frame. New information is only received
when part of a scene changes [16]. Such changes are encoded
as neural spikes, which are sufficient for us to sense motion
in the world.

An event camera mimics the biological retina. The idea
was first proposed by Mahowald and Mead (1991) and prac-
tical products for research use are now available [6]. An event
camera only captures variation of light intensity instead of
image sequences. The data output by an event camera is in the
form of an event stream, and an event is generated only when
the relative light intensity change on a pixel is above a thresh-
old. As it does not record a whole image, the event camera
yields a very high temporal resolution of a fewmicroseconds.

Current event camera research focuses on reconstructing
grayscale images from event streams [4,12,19], while [7]
restore grayscale images and videos from event streams in
high-speed and high-dynamic-range scenes. We find that the
reconstructed images, though high in temporal quality, still
contain many visual artifacts and are bereft of color informa-
tion. A few works [17,21] have focussed on tracking tasks
in high-speed scenes alone and utilized a hybrid system that
combines a conventional camera and an event camera. How-
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Fig. 1 a A severely blurred image taken by a conventional low-frame-
rate camera. b A frame generated by an event camera, where nonzero
pixels represent events. c Our hybrid system that combines a conven-
tional camera and an event camera. d An additional static foreground
image. e A frame in our synthesized video with a frame rate of around
2k fps, which reveals fast motion and color

ever, they do not really make full use of images from the
conventional camera.

In our work, we partially overcome the above drawbacks
by retaining both motion and visual image color content. We
propose a pipeline to generate high-speed videos with an
event stream from an event camera and several images from
a conventional camera. We note that events form sharp edges
and salient curves of objects inmotion becausemoving edges
undergo the most intense light changes (Fig. 1b). Therefore,
we can match images from two sensors by aligning edges.
Motivated by this observation, we focus on recovering a typ-
ical scene. We assume that the scene has a static background
so as not to trigger excessive events and the foreground object
undergoes high-speed 2D affine motion. This means that a
static foreground image (Fig. 1d) and one or several back-
ground images (Fig. 1a) are sufficient to compensate for the
loss of color and texture in the event stream. It should be noted
that on limitation of these assumptions is that 3D motion,
such as a rolling textured ball, is not able to be captured.
To our knowledge, the proposed approach is the first to fuse
event data and images to generate video frames for high-
speed motion.

In our framework, the recorded event stream is sampled
into frames to ensure enough boundary information in each
frame. We acquire static foreground and background images
from the same view with a conventional camera. Using these
source images, we extract salient curves including edges
in the foreground and complete the background. An affine

motion model is obtained by aligning the foreground and
event frameswith an incremental refinement approach, based
on the proposed measure of curve saliency. With this affine
model, we are able to transform colored foreground and
background to the event frames and composite video frames
(Fig. 1e).

The synthesized videos achieve high temporal resolution
(thousands of frames per second) which are able to restore
some fast motion, such as falling of objects and string vibra-
tion. In the work, we use the dynamic vision sensor (DVS)
[14], a version of the event camera that has a spatial resolu-
tion of 128 × 128 pixels. We justify the necessity of static
foreground images rather than blurred images taken from
low-frame-rate consumer level cameras by implementing a
video enhancing method based on deblurring techniques.We
also compare our matching method with [17], which tracks
objects using a point-based approach.

2 Related work

Though inspired by human vision, the practical issue how
to make best use of the event camera remains a challenge.
Kimet al. [12] reconstructed super-resolution images froman
event camera under pure rotational motion. They estimated
the camera rotation and image gradient in parallel, and recon-
structed images by posing the problems as the solution to a
Poisson equation. Bardow et al. [4] further developed event-
based optical flow and Reinbacher et al. [19] reconstructed
intensity images using manifold regularization. While their
work shows that intensity information of a scene is still
retained with an event camera recording, color and deli-
cate texture information cannot be recovered. Their work
requires that the event camera moves continuously to allow
for background capture within the scene. Also, the recon-
structed videos still have many artifacts such as noise points
and blurred regions on the boundaries because of inaccurate
estimation.

Hybrid systems with a conventional camera and an event
camera have also been devised to take the advantages of both
sensors. Saner et al. [21] made such a system and performed
registration between two sensors. However, they only pre-
sented the high-speed tracking of point trajectories and did
not really fuse the images and the event stream.Our approach
has also focused on such a hybrid system.

Ben and Nayar [8] first used a hybrid system in which a
low-resolution camera tracks the motion path with high tem-
poral resolution. They used the motion trajectory to estimate
themotion blur kernel and achieved in deblurring images. Tai
et al. [22] later used such a system to correct deblurred videos
by both estimating the blur kernel and using back-projection
of low-resolution images. Gupta et al. [10] and Ancuti et
al. [2] enhanced the spatial and/or temporal resolution of
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Fig. 2 Our hybrid camera system high-speed video generation pipeline

a low-quality video with some high-resolution still images.
Unfortunately, those techniques cannot handle our problem
as our low-temporal-resolution image sequence lacks explicit
texture information. We compare of method to [8] in Sect. 8.

The domains of image and shape registration provided
approaches for our method that matches objects in two sen-
sors. Irani and Anandan [11] presented image alignment of
different sensors based on correlation. Baker and Matthews
[3] presented a good evaluation of image alignment meth-
ods derived from the well-known Lucas–Kanade algorithm.
We adopt the inverse compositional method for our matching
approach which is based on curve saliency. Also our work
bears similarity to event-based pattern tracking approaches.
Ni et al. [17] introduced a fast shape tracking algorithm using
an event camera. They adopted an event-based iterative clos-
est points (ICP) registration method, which yields smaller
error and is more robust in the presence of fast object motion.
However, in very complex scenes, their approach is highly
sensitive to noise and algorithm tuning parameters. Wemake
a comparison to this method in Sect. 8.

3 Overview—Our hybrid camera system
high-speed video generation framework

In our framework, we assemble a hybrid system combining
a conventional camera and an event camera. A beam splitter
provides the same scene for both sensors, with their optical
axes and respective views aligned (Fig. 1c). As a result, they
practically capture the same scene. Our objective is to match
the events to the gradient information in order to transfer the
high-speed motion to colored scenes (Fig. 2).

The system inputs the event stream E recording the high-
speed motion of the foreground, and source images for
obtaining foreground pixels F ′ and background pixels B ′.
The source images include (1) a static foreground image F
and (2) a single background image of simple texture B or sev-
eral video frames {Bi }. We use GrabCut [20] to extract the
foreground object pixels F ′ from F , and refine the boundary
with an alpha mask α using alpha matting [13]. We obtain
the complete background pixels B ′ either by completing the

occluded region of B using PatchMatch [5], or using interac-
tive mosaicing [1] with multiple frames {Bi }. In some cases,
F ′ and B ′ can be acquired from one source image of the
scene.

The recorded event stream E is first discretized into frames
{Ii } with fixed number of events N , which ensures enough
motion information in each frame. As events are very sparse,
frames need refinement. For each frame Ii , wewarp adjacent
frames and aggregate them. Thus, we form a curve saliency
map Si for the time point, the value on each pixel in our
curve saliency map representing the possibility that a curve
of strong contrast exists. We then use a hierarchical segmen-
tation technique [18] to extract pixels of boundaries and high
saliency curves in color/texture in F ′, which we denote as T .

As previously stated, we assume a 2D affine transforma-
tion between images in two sensors. We align two images
with an incremental refinement method based on curve
saliency maps Si , T , which we have described above, for
both event camera frames and source images, and we obtain
warp chain {Wi }, each from T to Si . We refine the matching
by applying a low-pass filtering on parameters in the trans-
formation matrix. We interpolate warps {Wi } for time points
with constant intervals and obtain {W ′

i }. Finally we use alpha
blending to synthesize the warped foreground pixels W ′

i F
′

and background B ′ to generate each frame in high-speed
videos.

4 Event stream and image preprocessing

4.1 Frame generation

Event stream discretization An event camera records motion
in event streams. Each event is in the form of e(x, y, p, t),
where x, y are pixel addresses of the event, p is the polarity
of light intensity change and t is the timestamp measured to
within an accuracy of microseconds. An event is generated
when the relative intensity change exceeds a threshold θ .

∣
∣
∣
∣
log

I (x, y, t)

I (x, y, tp)

∣
∣
∣
∣
≥ θ (1)
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Fig. 3 Event streamof a vibrating string.Upper: sliced infixednumber
of events, N = 500. Lower: sliced in fixed time interval, Δt = 0.5 ms.
The moment that the string has zero velocity is adaptively skipped if
sliced with fixed number of events. The real scene is the example guitar
string, shown in Fig. 7

tp denotes the timestampof a previous event.We assumehigh
contrast between foreground (object in motion) and back-
ground; thus, when a static event camera captures scenes,
only edges and high-contrast texture of moving objects and
regions of light changes will fire events. As events accumu-
late over a short interval, a frame (in the sense of a normal
camera) forms.

We first transform the event stream into a more traditional
video frame representation. One approach is to generate
images (video frames) with events over a fixed time period.
However, in this way some frames may remain blank when
the scene is static as they contain no events. An asynchronous
event camera enables us to generate frames with a fixed num-
ber of events [21]. This adaptive method ensures that every
frame has enough events and boundary information for later
matching process (Fig. 3).

To achieve this, we record {ti }, the middle timestamp of
time window formed by a fixed number of events N . We
later interpolate motion to create a constant frame rate video.
Usually N can be set empirically by judging the boundary
completeness of the foreground in an event frame (Fig. 7).
Our approach is relatively robust to the choice of N as we
later consider consecutive frames. For each example video,
our choice of N is listed in Sect. 6. In each sliced frame Ii ,
the value of a pixel is set as the number of events of during
the time window, which is analogous to intensity integration.

Frame refinement The generated frames {Ii }may still con-
tain fragmented curves that lack strong constraints for the
later matching process (Fig. 4). Also, the event stream typ-
ically contains considerable noise, which from a raw frame
cannot be readily distinguished from ‘active’ pixels. We,
therefore, introduce a measure called curve saliency, which
gives large weight to pixels that indicate high possibility of
real curves.We, also, propose a method to construct a map of
curve saliency for each frame by aggregating warped adja-
cent frames.

For each frame Ii , we set a neighborhood Ω consisting
of its adjacent frames. Successive frames have overlapping

Fig. 4 In raw frames Ii , the active pixels are sparse.We construct curve
saliency maps Si to combine information of multiple frames

Fig. 5 a alpha mask α using matting. b curve saliency map T using
hierarchical segmentation. The source image of foreground is shown
Fig. 1d.

events and thus are temporally correlated. We warp those
frames and aggregate them on the center frame (Fig. 4). The
value of a pixel in the curve saliency map Si is simply the
sum of values on all warped frames.

Si (p) =
∑

j∈Ω(i)

I j (Wjip) (2)

where p = (x, y)T . Wji is the affine transformation from
the j th frame to the center i th frame. This process can be
intuitively interpreted to be the integration of multiple con-
secutive frames that fills missing parts on the raw frame.

We warp frames based on the Lucas–Kanade alignment
algorithm [3] with a common Sum of Squares of Distances
(SSD) error function. When warping frame I j ( j > i), for
example, the warping matrix Wj,i is initialized with Wj−1,i ,
the previous warping result of the most adjacent frame. In
practice, we set the neighborhood size to 5–10 pixels.

4.2 Source image processing

A conventional camera captures images from the same per-
spective as the event camera. In nearly all cases, objects
in motion are seriously blurred when taken simultaneously.
Therefore, we have to independently capture static images of
the objects.
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Fig. 6 Each component in the parametric motion model is smoothed
to achieve temporal consistency. Rotation and translation along x-axis
are displayed, in the case of the falling key

Foreground extraction We extract the foreground pixels F ′
and alpha mask α with smoothed edges from the source
image F with regard to the object in motion (Fig. 5). We
follow a similar approach in [9]. We first use GrabCut [20]
to roughly segment the foreground by indicating foreground
region and background with strokes. Strokes have to be care-
fully labeled if the foreground in F is accompanied by a
textured background (e.g., source image of the guitar string
and spinning fan cases is shown in Fig. 7) instead of an
independent monochromatic one (Fig. 1d). We extend the
segmentation edge to generate a trimap specifying the uncer-
tain region and use alpha matting proposed in [13] to obtain
more precise foreground pixels F ′ and a mask with smooth
edges α. In order to get a representation corresponding to the
saliency map in event camera frames, we use hierarchical
segmentation [18] to extract curves of high saliency includ-
ing boundaries in F ′ and obtain saliencymap T . In contrast to
alternative gradient-based approaches, hierarchical segmen-
tation avoids extracting curves in the cluttered image regions.
The value of a pixel defines the curve saliency in this map.

Background completion For simple uncluttered and pre-
dictable backgrounds (such as caseguitar string in Fig. 7),we
fill in the missing part of source image B using PatchMatch
[5] to get a full B ′. For more complex backgrounds (Fig. 1a),
we utilize image mosaicing [1], to interactively composite a
background B ′ from the source image sequence {Bi }. The
main idea here is that occluded part of the background can
be replaced with the region in another non-occluded aligned
image.

5 Foreground alignment

5.1 Matching method

Ourgoal is tofind thewarp chain {Wi } from the curve saliency
map of template T to {Si }. The transformation can be repre-
sented as

W =
⎛

⎝

1 + p1 1 + p2 p5
1 + p3 1 + p4 p6

0 0 1

⎞

⎠ (3)

let p = (p1, p2, p3, p4, p5, p6)T and we minimize the error
between normalized S, T .

E( p) =
∑

(x,y)

(T (W (x, y; p)) − S(x, y))2 (4)

To solve it, we use the inverse compositional algorithm based
on the Lucas–Kanade method [3], which iteratively refines
the warp until its error converges. In order to achieve a
improved result, we adopt a multi-scale search.

T and Si are first scaled to a similar size. It is possible that
the curve saliencymapobtainedbyhierarchical segmentation
yields regions that are too thin, which results in a flat region
of minima of the error function. To avoid this, we expand a
nonzero region of T by applying a Gaussian blur in advance
to ensure S and T have approximately same width of curves.
We manually give an initial p0 for S1 and solve for Eq. (4),
and afterward,Wi , the warp from T to Si , is initialized using
a previous result Wi−1.

We do not always apply a full affine transformation to
the scenes. In some cases, the event stream only recovers
motion along a specific dimension. In other cases, we have
prior knowledge about the motion. In both cases, we reduce
p to a suitable form of motion.

5.2 Trajectory smoothing

The warp chain {Wi } that depicts motion should be tempo-
rally consistent. However, the generated {Wi } contains jitter
on each element along time axis. This is mainly due to (1) not
accounting for temporal inconsistency in the error function
and (2) the bandwidth of T and Si being identical, mean-
ing there is scope for the warp to stretch. To overcome the
above, we perform a low-pass filtering on {Wi } and eliminate
the high-frequency component (Fig. 6). We do not wish to
intentionally smooth the path butmerely reduce the unwanted
high-frequency jitter. We use convolution-based smoothing
method [15]. In order to choose a suitable filter kernel size, p
is first transformed into (Mx , My, tx , ty, θ, s)T with scaling,
translation, rotation and shear and then transformed back to
matrix form W after filtering.

5.3 Motion interpolation and synthesis

Sincewe generate the sequence of event camera frames based
on the fixed number of events, we have to transform it back
into an image sequence with constant time intervals for dis-
play.

Given the timestamp of each frame {ti }, we interpolate
smoothed {Wi } using linear interpolation and obtain {W ′

i }
with constant intervals. The new time interval between
frames Δt (1/Δt being the video frame rate) is set approx-
imately to be the minimum of Δti . We mainly want
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Fig. 7 Examples: from top to bottom falling key, guitar string and spinning fan. Events (white pixels) are plotted on the final synthesized frames
to highlight the matching results

to recover slow motion during moments that have been
skipped by discretization with fixed number of events.
Note that we are not able to recover the motion which
is at a higher frequency than the current event sampling
rate. We composite each frame I ′

i in the high-speed video
using alpha matting-based composition I ′

i = W ′
i (αF

′)
+ (W ′

i (1 − α))B ′.

6 Results

We restore scenes of some very fast motion and generate
high-speed videos using our method. They are shown in the
supplementary videos. In order to better illustrate the results,
we decrease the display speed. Event streams are displayed
with fewer events per frame and at a standard frame rate
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Table 1 Choice of parameters used in the examples

Number of events
per frame N

Temporal resolution
Δt /ms

Falling key 500 0.5

Guitar string 400 0.2

Spinning fan 800 1

(30 fps). Choices of N and temporal resolution Δt of each
video are listed in Table 1.

Restoration of affine motion A key is falling freely in the air,
and we assume a full affine motion. The synthesized video
has a temporal resolution of 0.5 ms and a frame rate of 2k
fps. While a camera at a normal frame rate (30 fps) captures
sceneswith severe blur, the event camera frames clearly show
the trajectory. As the key is blurred, we take an independent
image of the static foreground. We complete the background
using mosaicing. We replace the occluded part with the cor-
responding region of another aligned background image. The
synthesized video is approximately 67 times faster than the
normal (30 fps) video rate.We construct curve saliencymaps
for event camera frames, and we get connected boundaries
of the foreground.

Restoration of translational motion We set a guitar string
tuned to vibrate at around 50 Hz. When capturing at 30
fps using a normal camera, the image is blurred and the
exact location of the string is difficult to find. We are able
to restore the accurate location of the string and generate a
high-speed video. Due to the simple texture of the string and
its background, we only use one high-quality image that is
not blurred. We directly extract foreground from the source
image and complete the background using PatchMatch. As
weonly care about themotion of vibration,we choose a trans-
lational motion model and disregard irrelevant parameters.
The equivalent frame rate is 5 k fps which is approximately
167 times faster than the standard video rate. Noise points are
significantly reduced in the constructed curve saliency maps
by integrating consecutive frames. Plotting the displacement
along the time axis, we can also recover amplitude attenua-
tion of the vibration.

Restoration of rotational motionA fan is spinning at approx-
imately 320 rpm. When recording at 30 fps using a normal
camera, the contour of blades is almost invisible. We take
images of the fan when it is still and another series of images
in which the blade is at different location. We use interactive
mosaicing to generate a complete background.We also disre-
gard irrelevant parameters and focus mainly on rotation. The
contour of the fan blade rises above from unrelated events in
curve saliency maps. We attain a high-speed video of 1k fps,
about 33 times faster than the standard video rate. We can
also calculate the rotational speed of the fan from the warp
chain.

7 Extension: revealing intensity changes

Although our method primarily restores fast motion, the
frame sequence generated from an event stream can also
reveal intensity variation if the scene is static.

When dealing with light intensity variation, we discretize
the event stream with fixed time intervals. Polarity infor-
mation is used here. First, regions undergoing fast intensity
changes can be matched to the source image with a similar
boundary matching. Then, according to Eq. (1), polarity can
be integrated in the sense of log intensity.

log Ii (x, y) = log Ii−1(x, y) + (nON − nOFF )θ (5)

where Ii (x, y) denotes the intensity value on (x, y) in i th
frame. nON , nOFF are number of ON and OFF events in
the time window of i th frame. As we do not really know
the exact value of θ , we only restore scenes of qualitative
intensity changes, similar to the colormagnification [23]. Log
intensity is then transformed into relative intensity change,
and changes along time axis are added to the source image.
We manipulate intensity changes in YIQ space.

In real cases, events are very sparse at high temporal res-
olution (e.g., 0.1 ms), so the event stream frames should be
downsampled sufficiently to reveal the pattern of variation.
Moreover, we should have some prior knowledge about the
change to ensure a reasonable scene restoration.

Restoration of periodic intensity changes An LED driven
by pulse width modulation (PWM) is periodically changing
brightness. Video captured in 30 fps shows the constant max-
imum value in a point on the LED. With an event camera we
are able to restore the changing scene (Fig. 8). We first match
the region of LED by aligning edges. We set an extended
alpha mask to introduce the effect of light halo. Events in
the region of interest are downsampled to a single point to
reveal pattern of changes. As we have prior knowledge that
intensity is constant from beginning to end, we filter out low-
frequency disturbance in the frequency domain due to noise.
The recovered video shows periodic intensity changes. The
event stream is sliced into frames each 0.1 ms. We reveal
a frequency of periodic change of 494 Hz, compared to the
ground truth 490 Hz. The video obtained about 333 times
faster than the normal video rate.

8 Discussion

8.1 Comparisons with other techniques

Comparison with enhancement by motion deblurring The
work of Tai et al. [22] with less motion blur can be generated
with a high-frame-rate low-resolution camera and a low-
frame-rate high-resolution camera. Since they simultaneous
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Fig. 8 Example: blinking LED. The event stream has a very high tem-
poral resolution of 0.1 ms, but the events are very sparse. We spatially
downscale the region of interest sufficiently to reveal intensity variation,
which is clear in the spatiotemporal slice

Fig. 9 A simultaneous capture of a toy car under translational motion
and the deblurred foreground. While some parts have been correctly
recovered, it suffers from ringing artifacts

record both cameras they do not need additional images of
static scenes to be taken. The first camera functions similarly
to the event camera in our hybrid system, so we investigated
whether the motion information brought by the event camera
can be used to perform motion deblurring.

We follow the idea in [8]which discusses the deblurring of
moving objects with the assistance of a low-resolution cam-
era tracking motion. In the scene of a running toy car, we
have a parametric model with one-dimensional translation.
We simultaneously record image sequence from the conven-
tional camera and the event camera and we try to deblur the
foreground. We estimate the blur kernel using our consecu-
tive curve saliency maps instead of optical flow.

The result (Fig. 9) shows that some blurred parts of the
toy car are recovered, but the result still posses some signif-
icant ringing artifacts. Also, the edges still merge with the
background. This can be explained since (1) we estimate a
rough global kernel instead of a spatial-variant kernel, and
(2) the motion estimation using consecutive curve saliency
maps (128× 128) does not reach a sufficient resolution. The
deblurred image increases the difficulty for the following seg-
mentation and matting process, and affects the visual effects
of the synthesized image sequence. Consequently, an image
of the static scene, though requiring some additional effort,
is greatly beneficial for generating good results.

Fig. 10 Matching results for guitar string using our method and point-
based approach [17]

Comparison with point-based matching There are usually
two types of image alignment. One is performed directly on
whole images, and the other is based on key points such as
feature points. In our method, we actually transform a set of
sparse points into an image of edge map thus adopt direct
alignment. Ni et al. [17] performed a point-based matching
in their tracking application. They first obtain a set of points
representing the boundary of the object and thenuse approach
of iterative closest point (ICP) to find point correspondence.
We compare the matching results on translation component
in the example guitar string.

To illustrate the difference, we did not apply trajectory
smoothing any of these results. We find that the point-
based approach is more sensitive to noise and parameters,
especially the largest acceptable distance r between corre-
sponding points in the event stream and the model. It has
to be set carefully, which means that noise level has to be
correctly estimated. In Fig.10, small and large estimation
of r yields bad results. The noise level varies in different
cases so the suggested value does not well apply in all cases.
Our method well handles noise by assigning large weights
to events on real edges and performing image-based align-
ment. As a result, we avoid tedious parameter tuning of other
methods.

8.2 User study

So far, there are no available public datasets that record high-
speedmotion in event streams along with video ground truth.
In order to evaluate our synthesis results, we build a dataset
to conduct a user study. Ten subjects, including 5 males and
5 females, aged 18–28, participated in this user study. They
have noprior knowledge about event cameras. They are asked
to simultaneously watch the event stream and synthesized
video in the four example cases described in this paper. Then
they gave scores to the video they watched according to the
following criteria: motion rationality of synthesized videos,
video quality and scene comprehensibility (to what extent
the synthesized video assists scene comprehension compared
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Table 2 Average scores in the evaluation of our work

Motion
rationality

Video quality Scene
comprehensibility

Falling key 2.3 3.8 3.7

Guitar string 4.0 4.2 4.1

Spinning fan 2.8 3.6 3.8

Blinking LED 3.7 3.5 4.4

with mere event stream). Each score ranges from 1 (poorest)
to 5 (best). The average scores are listed in Table 2.

The overall video quality of our generated results is
acceptable, as is indicated in the above results. The crite-
rion of scene comprehensibility has high scores in all cases,
meaning that subjects find the scenes generated by our syn-
thesized videos much easier to understand. Subjects reported
high scores in the cases guitar string and blinking LED,
meaning that they have been well recovered and look natural.
However, the motion rationality of the falling key and spin-
ning fan examples received a relatively low score. Subjects
reported that the key in 2D motion looks a little unnatural
and the restored motion of the fan contains jitter. Our eval-
uation shows that a full motion such as homographic or 3D
transformation and motion smoothness regularity should be
considered for future work to make recovered motion more
natural.

8.3 Limitations

While we demonstrate many promising results, our method
has several limitations. First, we can only recover large and
smooth motion for objects with simple shapes. The matching
is performed in the original spatial resolution of the event
camera andwedid not apply super-resolution estimation such
as in [12] so we only recover large motion. We filter on the
parameters with the assumption of smooth motion; in this
way, we also filter out jitter that possibly comes along with
the large motion.

Secondly, the event discretization in our method may con-
tribute errors. We adaptively skip those moments, but they
are later interpolated as very slow motion. However, it is tol-
erable when we set N , events per frame to a suitable value.

Thirdly, we cannot deal with objects that have deforma-
tion or undergo 3D rigid motion. We only assume an affine
model for the motion. Intensity reconstruction approaches
well handle these cases, although they can only recover part
of the scene. Additionally, our matching accuracy can further
be improved by adding geometric constraints in the error
function. An example of failed matching result appears in
the last frame of the falling key when part of the foreground
contour falls out of view (Fig. 7).

Last, we cannot determine the true light intensity change
but only the overall pattern. Note that we only recover the
periodic pattern of light changes in example blinking LED,
which is similar to [23] that magnifies color changes.

9 Conclusion

We have proposed a framework that uses the high-temporal-
resolution event stream of an event camera and foreground
and background images to generate high-speed videos. We
have introduced a measure of curve saliency for match-
ing images from the two sensors, and we construct curve
saliency maps with warping and hierarchical segmentation.
Our results show that by using our method, the event camera
has potential applications in high-speed motion restoration,
visualization and measurement.
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