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View-Dependent Multiscale Fluid Simulation

Yue Gao, Chen-Feng Li, Bo Ren, and Shi-Min Hu

Abstract—Fluid motions are highly nonlinear and non-stationary, with turbulence occurring and developing at different length and time
scales. In real-life observations, the multiscale flow generates different visual impacts depending on the distance to the viewer. We
propose a new fluid simulation framework that adaptively allocates computational resources according to the human visual perception.
First, a 3D empirical model decomposition scheme is developed to obtain the velocity spectrum of the turbulent flow. Then, depending
on the distance to the viewer, the fluid domain is divided into a sequence of nested simulation partitions. Finally, the multiscale fluid
motions revealed in the velocity spectrum are distributed non-uniformly to these view-dependent partitions, and the mixed velocity
fields defined on different partitions are solved separately using different grid sizes and time steps. The fluid flow is solved at different
spatial-temporal resolutions, such that higher-frequency motions closer to the viewer are solved at higher resolutions and vice versa.
The new simulator better utilizes the computing power, producing visually plausible results with realistic fine-scale details in a more
efficient way. It is particularly suitable for large scenes with the viewer inside the fluid domain. Also, as high-frequency fluid motions are
distinguished from low-frequency motions in the simulation, the numerical dissipation is effectively reduced.

Index Terms—fluid simulation, Hilbert-Huang transform, fluid velocity spectrum, view-dependent partition.

1 INTRODUCTION

Fluid simulations based on the Navier-Stokes equations
have achieved great success in computer graphics. Many
compelling methods with impressive animations have
been reported in the past decade. However, fluid simu-
lation remains a challenging task where improving the
visual effect of fine-scale fluid motions and reducing
the demand of computational resources are the main
concerns. Unlike computational physics, the focus of
graphics applications is on the visual effect of the final
rendered images and animations. This implies a high
potential value for exploiting the unique viewing in-
formation to improve existing fluid simulators. In this
work, we propose a novel approach which incorporates
the viewing information into the fluid solver and adap-
tively simulates the fluid at multiple scales, such that the
computational resources are allocated to the key regions
and to the key scales that have important impacts on
the visual impression of turbulent fluids. This approach
is particularly suitable for large scenes with the viewer
immersed in the fluid domain. Such kind of scenes are
rare to be seen in previous publications, but are often
most desired by movie directors and game designers.
Generally, the techniques considering the viewer are
referred as the levels of details, which has become a
standard tool widely used in 3D geometry representation
and texture rendering. The basic idea is that when
the object is far from the viewer, a reduced geometry
representation or a reduced texture is applied. This
simplification is supported by the fact that, for human
visual perception, the higher frequency signals play a

e Y. Gao, B. Ren and S.M. Hu are with the Department of Computer Science,
Tsinghua University, Beijing 100084, China.

o C.F. Li is with the College of Engineering, Swansea University, Swansea
SA2 8PP, UK.

more important role when the viewer is nearby, while
the lower frequency signals are more important when
the viewer is at distance [1].

Inspired by view-dependent rendering techniques, we
first decompose the fluid velocity field into a series of
frequency components using a modified empirical mode
decomposition (EMD) method. Higher frequency com-
ponents represent smaller scale fluid motions (typically
local turbulent flow), while lower frequency components
represent motions at larger scales (typically large eddies
and global laminar flow). Also, the fluid domain is
divided into a series of nested partitions centered with
respect to the viewing frustum. Different grid sizes and
time steps are assigned to different partitions depending
on their distances to the viewer. The control of levels
of details is then applied to each frequency compo-
nent by distributing it non-uniformly to the simulation
partitions. Higher frequency components closer to the
viewer are allocated to partitions with finer grids and
smaller time steps, while lower frequency components
more far away from the viewer are allocated to partitions
with coarser grids and larger time steps. As a result,
the effective velocity field defined on each simulation
partition is a mixture of frequency components, and the
visible evolution of the mixed velocity can be sufficiently
captured by the space-time resolution associated with
the specific partition. To obtain the final solution, the
effective velocity fields are solved semi-independently
on different partitions, which provides richer visual de-
tails to the viewer in a more efficient way. Although the
nested simulation partitions differ in size and resolution,
they are all meshed with uniform rectangular grids,
which makes the solver robust and efficient.

This novel view-dependent multiscale simulation
framework distributes the computational resources ac-
cording to the human visual perception of the target
fluid motion, and is adaptive in both space and time
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Fig. 1. Four snapshots of a view-dependent multiscale fluid simulation with moving camera positions. (6 partitions,

grid sizes: 1/400 — 1/100, time steps: 1/120 s —1/30 s)

dimensions. The main technical innovations include:

» Using a novel approach of space-filling curves, the
EMD is efficiently extended to 3D and applied to
decompose the velocity field into a small number
of frequency components, which represent the fluid
motion at different length scales.

o A spectrum based simulation pipeline is proposed,
in which different frequency components evolve
at different space-time resolutions. By doing so, it
significantly reduces the numerical diffusion that
causes damping of high frequency turbulence in
previous methods, and preserves more fine-scale
turbulence details in the result.

o The fluid domain is adaptively partitioned accord-
ing to the camera position, and the fluid is simulated
at different space-time resolution depending on its
distance to the viewer. This approach considers both
rendering and simulation together, and efficiently
utilizes the computational resources in the places
that most affect the final rendered result.

2 PREvVIOUS WORKS

Jos Stam’s unconditionally stable solver [2] made the
grid-based fluid simulation popular in the graphics
community. Since then, many different techniques have
been developed to add details to the fluid. The basic
approach is to reduce the numerical dissipation (also
known as “numerical diffusion”). [3] used the vorticity
confinement technique to prevent the rapid dissipation
of vortices. [4] introduced artificial divergence sources to
simulate gas explosion. [5] introduced vortex particles
to add the vorticity more accurately. [6] introduced
FLIP to overcome advection dissipation. Other methods
including BFECC [7], QUICK [8], MacCormack [9] sug-
gested using higher-order space discretization schemes
and higher-order time integration schemes (e.g. Runge-
Kutta methods). These methods discretize the whole
fluid domain using uniform grids, thus they are all
limited by the Nyquist frequency.

For 3D fluid simulation, a small increase of the grid
resolution by a factor of k£ will cause a dramatic increase
to the computational cost by a factor of k* [10]. There-
fore, various techniques have been investigated in order

to increase the simulation resolution while controlling
the computational expense. [11], [12], [13], [14] proposed
different methods to generate divergence free fields from
random noise, and then used these artificial velocity
fields to represent the turbulent flow. [15], [16], [17],
[18], [19] simulated the fluid on a low-resolution grid
to obtain the macro-scale flow, which was then com-
bined with the artificial divergence-free velocity fields
to mimic the turbulent flow at the micro scale. Instead
of adding noise, [20] used the vortex particle method
[5] to directly generate a high-resolution turbulent flow,
and [13] synthesized the 3D velocity field from 2D
slices. These synthesis methods do not perform high-
resolution computation on the Navier-Stokes equations,
and instead attempt to produce plausible results using
artificial means. Thus, their results are nonphysical, but
can be combined with any grid-based method.
Although grid-based fluid solvers are often preferred
in the graphics community, other numerical schemes in-
cluding finite volume [21], [22] and finite element meth-
ods [23] have also been used in many specific graphics
applications. Some researchers have also exploited the
viewing information in fluid simulations. Until recently,
there have been mainly two types of approaches: (a)
octree and adaptive mesh refinement methods [24], [25],
which use non-uniform meshes to distinguish different
levels of details for the fluids; and (b) multi-grid methods
[8], [10], [26], which use multiple layers of meshes to
represent fluid motions at different length scales. The
idea of multi-grid simulations has also been adopted
in the framework of smoothed-particle hydrodynamics
to accelerate fluid simulation [27]. In a wider context,
it is also noted that [28] presented a view-dependent
multiscale simulation framework for fire simulations.

3 ALGORITHM OVERVIEW

Fluid phenomena are interesting and visually attractive
because of turbulent fluid motions. It is well known
in fluid dynamics that turbulence occurs and develops
at different length and time scales, with the extent of
scale difference indicated by the Reynolds number. In
order to capture fine-scale features of turbulent flows,
it is normally necessary to use fine simulation grids
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Fig. 2. The algorithm framework of view-dependent multiscale fluid simulation

and small time steps, or to use higher-order space dis-
cretization and time integration schemes. This creates a
huge computational burden to the fluid simulator, in
particular when simulating a large fluid domain. On
the other hand, objects in a large scene are observed at
different resolutions by human eyes depending on their
distances to the viewer. Fine local fluid motions have
a significant visual impact when the viewer is nearby,
and as the distance to the viewer increases, these fine-
scale features become less and less visible, while global
fluid motions at larger scales becoming more and more
dominant. Thus, for the purpose of achieving visually
appealing results, there is a clear potential of benefit
of utilizing the viewing information to improve the
performance of fluid simulators.

We propose a view-dependent multiscale simulation
framework as shown in Fig. 2. First, the fluid velocity
field is decomposed into a series of frequency com-
ponents u;, up, ---, U, representing the fluid motion
at different length scales ranging from small to large.
Next, according to the position of the viewer, m nested
simulation partitions (2; are constructed, with €, indicat-
ing the vicinity of the viewer and 2, representing the
whole fluid domain. These simulation partitions are all
meshed into uniform rectangular grids, and each parti-
tion €2, is set with a different grid size depending on the
length scale of the corresponding frequency component
u;. Then, each frequency component u; is sequentially
allocated to partitions €;, €11, ---, Q,, such that for
each partition, it only carries the component quantity
that has not been supported by the previous ones. Thus,
the effective velocity field u; defined on partition €,
is a mixture of velocity components u;, ---, u; that
share a similar visual significance determined by their
intrinsic length scales and distances to the viewer. To
solve this combined velocity field u] with uniform visual
significance, a separate fluid simulation is performed on
partition ; with individually assigned grid size and

time step. Finally, the total fluid motion in the whole
fluid domain is constructed by adding up the results
obtained on all simulation partitions. Depending on the
fluid evolution, the velocity spectrum is repeatedly com-
puted to ensure that the new fluid motion is efficiently
represented by the frequency components uy, - -, Up,.
The proposed view-dependent multiscale fluid simu-
lation framework can be viewed as a multi-grid method
combined with spectral decomposition. The idea of us-
ing spectral analysis in CFD applications is not entirely
new, and a remarkable example is the large eddy sim-
ulation [29] that introduces spatial-temporal filters to
reduce the range of length scales of the solution, hence
reducing the computational cost. The feasibility of this
new simulation framework relies on two assumptions:
(a) the fluid velocity field can be decomposed into a
small number of meaningful frequency components at
different length scales; and (b) the Navier-Stokes equa-
tions can be linearized to allow separately solving each
frequency component with varying grids and varying
time steps. The consideration and solution of these two
issues are addressed in Sections 4 and 5 respectively.

4 3D VELocITY FIELD DECOMPOSITION

The fluid velocity field can be viewed as a time-varying
signal defined in a 3D domain. From the viewpoint of
physics, it is clear that the 3D velocity signal consists of
intrinsic structures at different length scales. However,
as turbulence is highly nonlinear and non-stationary,
standard data analysis tools such as singular value
decomposition [30], Fourier and wavelet analysis etc.
typically produce many spurious frequency components
causing energy spreading, which makes the resulting
spectrum have little physical meaning. An exception
is the empirical mode decomposition (EMD) [31], also
known as Hilber-Huang transform, which was originally
developed for processing nonlinear and non-stationary
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time series. Over the past decade, the EMD method has
been extremely successful in engineering and success-
fully applied in various complicated data sets, including
sea waves and earthquake signals etc.

For the sake of completeness, the standard EMD pro-
cedure is briefly reviewed in Section 4.1, after which it
is extended into 3D cases in Section 4.2 for processing
the fluid velocity field.

4.1 EMD Basics

The standard EMD method is designed for the analysis
of one-dimensional signals, in particular time series. The
main idea of EMD is to decompose the signal into a
small number of intrinsic mode functions (IMF), which
are based on and derived from the data. An IMF is
any function with the same number of extrema and
zero crossings, and with zero mean of the upper and
lower envelops defined respectively by the local maxima
and minima. From this definition, the IMF is a general
oscillatory function, with possibly varying amplitude
and frequency along the time axis. Thus, for representing
signals, an IMF is much more powerful than the simple
harmonic function, which has constant amplitude and
frequency. Given a one-dimensional signal f, the EMD
algorithm sequentially extracts its IMFs via a “sifting”
procedure as follows:
1) Initialization ro = f, set index k =1
2) Compute the k-th IMEF, ¢,
a) Initialization hg = rp_1, set index j =1
b) Find all local maxima and local minima of
hj_l
¢) Build the upper envelope FE,.q. ;-1 by con-
necting all local maxima with a cubic spline,
and build the lower envelope E,,in ;-1 by
connecting all local minima with a cubic spline
d) Compute the mean of the upper and lower en-
VelOPeS, Emean,j—l = %(Emin,j—l + Emam,j—l)
e) hj = hjfl - Emean,jfl
f) If the IMF stopping criterion is satisfied, then
¢k = hj, else j =j+1 and go to step 2(b)
3) Tk =Th-1—Ck
4) If r, is monotonic, the decomposition stops, else
k=k+1 and go to step 2
The signal f is decomposed as

K
f= ch+TK, 1)
=1

where ¢;,i = 1,2, .., K are the IMFs with the frequency
ranging from high to low, and 7k is the residual.

For the IMF stopping criterion in step 2(f), different
criteria have been suggested in the literature based on
the definition of IMFs. In our applications, it is found
that there is no visible difference in the final result if
we simply fix the iteration number as 8 to 10. There is
no rigorous convergence proof for the above algorithm,
but practically it always converges very quickly [31]. The

physical justification of the above EMD procedure is very
solid and has been verified and validated in numerous
experiments by various real data sets (see e.g. [32]).

4.2 3D EMD of Velocity Fields

The main challenge of extending the EMD into higher di-
mensional signals arises in the construction of the upper
and lower envelopes (step 2(c) in the EMD algorithm).
Unlike the simple closed-form solution of the 1D cubic
spline interpolation, higher dimensional surface inter-
polation is complex and often involves time-consuming
computation. For the 2D case, [33] and [34] introduced
2D radial basis functions and transformed the interpo-
lation problem into a global optimization problem. It
requires to solve a m x m linear system, where m is the
total number of extrema. The associated computation is
affordable for 2D image applications with hundreds of
pixels along each axis, but is too slow for our 3D fluid
simulations that require the EMD to be repeatedly per-
formed in a large 3D space as turbulence develops. [35]
proposed a fast bidimentional EMD algorithm, which is
based on the Delaunay triangulation and cubic inter-
polation on triangles. In order to ensure the Delaunay
triangulation to cover the whole domain, this method
has to introduce a bunch of artificial extrema, and as a
result it is not suitable for our 3D fluid simulations that
require the highest level of automation and robustness.
[36] tested a tensor-product based 2D EMD approach
that applies separately 1D EMD on each row and column
of an image, after which averaging the envelopes from
different directions. Although it is much faster to do so,
our experiments led to a similar conclusion as [36]: the
result is generally worse in that each slice of data only
contain a small portion of samples and the connection
information contained in the original data has been
seriously lost. As the EMD will be repeatedly performed
in our fluid simulation framework, a more efficient and
more robust 3D algorithm is needed.

We propose to use space-filling curves to flatten 3D
data into 1D. First, a space filling curve is constructed
to fill the fluid domain, and moving along the curve
an index is assigned to each grid cell and saved in a
template. Then, the 3D velocity field is rearranged into a
1D signal array according to the index template. Finally,
the reshaped 1D signal is decomposed by using the 1D
EMD algorithm, and the decomposition result is mapped
back to the 3D space by using the same index template.
In this simple 3D EMD approach, the EMD operation is
essentially performed on the flattened 1D data set, and
therefore it converges in the same way as the standard
1D EMD method [31]. As the index template of space-
filling curve can be pre-computed, the CPU expense of
the 3D EMD is essentially the same as 1D EMD, which
is linearly proportional to the sampling density. Owing
to the analytic cubic spline interpolation, our space-
filling curve EMD technique is extremely fast. For 2D
cases, we have compared with the RBF method. It is
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Fig. 3. Decomposition comparison of a 2D fluid velocity field. The top row shows Fourier decomposition, and the
bottom row shows the EMD result. (a)-(d) are the 1st, 3rd, 4th, and 5th components from low frequency to high
frequency. The EMD and Fourier results are obtained with the same sampling resolution.

found that our approach is at least 20 times faster in all
test examples, and the new method also provides better
accuracy because it avoids the numerical error caused
by the least squares approximation required in the RBF
approach. In the context of fluid simulation, the CPU
cost of an individual 3D EMD is about half of a single
pressure solver executed on the same sampling grid.

Different space-filling curves have been tested, includ-
ing the Hilbert curve, the Z-order curve, the Koch curve
and the Gosper curve. In 2D cases, the Hilbert curve and
the Z-order curve are found to have boundary artifacts
caused by their regular quad fractal structures. By using
Koch or Gosper curves, the boundary artifacts can be
effectively removed. In 3D cases, all four curves give
good decomposition results without visible discontinu-
ities. The reason is that both the 3D velocity filed and the
3D space filling curves are sufficiently complex to avoid
the development of boundary artifacts. For the sake
of simplicity, we use the Koch curve for 2D examples
and the Hilbert curve for 3D examples in this paper.
It is noted that the Z-order curve has recently been in
SPH simulations to compute SPH neighborhoods rapidly
[37], which also demonstrates the benefit of using space-
filling curves to accelerate 3D data processing.

The 3D Hilbert curve is defined on a cube, and when
using the n-th approximation to the limiting curve, the
length of the curve is 2". However, the fluid domain is
not necessarily a cube. Therefore, we build the Hilbert
curve with the smallest n such that 2%/ is greater
than the maximum velocity resolution in -, y- and z-
directions. When moving along the Hilbert curve, the cell
index is increased and saved if and only if the current

EMD Decomposition
W Fourier Decomposition

1 5

2 3 4
Component

Fig. 4. Quadric Koch

Curve.

Fig. 5. Energy distribu-
tion of the lowest 5 fre-
quency components.

(a) (b) (©)
Fig. 6. Reconstruction comparison. (a) is the original
velocity field, (b) is the sum of the first 5 EMD components
and (c) is the sum of the first 5 Fourier components.

position is located in the fluid domain. A similar method
is applied to the Koch curve in 2D cases. In Fig. 4, the
gray line is the whole Koch curve and the bold black line
is the space filling curve we used. This strategy preserves
as much as possible the locality of the space filling curve.

To flatten 3D data into 1D for EMD operations is an
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approximate treatment, and so doing inevitably causes
some loss of local connectivity information presented in
the original 3D data. For use in fluid simulation, we
have tested the new space-fill curve EMD approach in
numerous examples, both in 2D and 3D. Fig. 3 is an
2D example of our EMD result compared with Fourier
decomposition. The velocity field is generated by using
a 2D grid solver and for fair comparison, the same
sampling resolution is used in the EMD and Fourier
decomposition. The comparison shows that the EMD
method retains better locality and has better efficiency in
terms of the number of terms required to represent the
original velocity field. The EMD frequency components
concentrate in the areas where turbulence occurs, while
the Fourier components have ring-shape vortices every-
where in the fluid domain, which is non-physical. Fig.
5 shows the energy distribution of the frequency com-
ponents obtained in the EMD method and the Fourier
decomposition. It is clear that fewer EMD components
are needed in order to recover the same amount of
energy for the fluid motion. A direct reconstruction
comparison is given in Fig. 6 (please zoom in to see
the difference), where Figs. 6(a-c) show respectively the
original fluid velocity field, the EMD and the Fourier
reconstructions using the same number of components.
It can be seen that by using just five IMFs, the EMD
method perfectly recovered the original velocity field
with no visible defects, while a large amount fine-scale
details are lost in the Fourier reconstruction.

For decomposing the fluid velocity field, an added
benefit of the EMD method is on dealing with objects
presented inside the fluid domain, where the fluid ve-
locity field can be discontinuous on the object boundary.
Most standard data analysis tools use functional basis
with fixed amplitudes and frequencies, and consequently
the signal discontinuity will cause many spurious fre-
quency components due to energy spreading. However,
the functional basis of the EMD method is adaptively
determined by the local features of the signal. The
IMFs have varying amplitudes and frequencies, so that
the energy spreading caused by signal discontinuity is
minimized. Indeed, this is one of the major advantages
of the EMD technique [31].

Using the EMD method, the velocity field u in the
simulation domain is represented as:

u= i u; (2)
i=1

where u;, ¢ = 1,2,---,m, are frequency components
representing fluid motions at different length scales,
ranging from small to large. In our implementation,
m is a user specified constant controlling how many
IMFs to be extracted from the velocity field. Thus, u;,
i=1,---,m—1, are IMF components, and u,, is a non-
IMF component. As u,, consists of all lower frequency
tail IMFs and the residual term, it carries the majority
of the kinetic energy of the fluid flow. Benefited from

the adaptive and data dependent nature of IMFs, the
nonlinear and non-stationary fluid velocity field can be
effectively represented with a small number of frequency
components. In our limited experiments, 5 to 8 frequency
components are sufficient to represent the velocity fields.
Note that the EMD is performed separately for -, y- and
z- directions, and then adding them together to obtain
the vector-valued decomposition (2).

5 VIEwW DEPENDENT MULTISCALE SIMULA-
TION

For incompressible ideal fluids, the Navier-Stokes equa-

tions are:
ou

pop tru-Vju=-Vp+f, 3)

V-u=0, 4)

where u is the velocity, p the pressure, p the fluid
density, and f the effective body force including gravity,
buoyancy and vorticity confinement etc.

The human visual perception of a large dynamic fluid

scene has two main features:

o Fluid motions are observed at different resolutions
by human eyes, depending on the distance from
the viewer to the location where the motion is
developing. The smaller the distance is, the higher
resolution will be received; and vice versa.

e The fluid motion consists of intrinsic structures, i.e.
frequency components, evolving at different length
and time scales. These multiscale frequency compo-
nents generate unequal visual impacts. When the
viewer is nearby, the fast-developing small scale
components are more significant in our observation;
and when the viewer is at distance, the slow-moving
large scale components become more dominant.

In order to achieve the best visual effects with the
minimum computational cost, the fluid solver needs to
take into account both of the above aspects. This is done
by integrating spectral analysis and domain partition
into a view driven simulation framework, whose details
are explained in the following subsections.

5.1

In the space dimension, the multiscale motion compo-
nents of a turbulent flow are revealed in Eqn. (2) by
using the EMD method. Substituting Eqn. (2) into the
N-S equations (3 - 4) and setting the fluid density to
unit yields:

Dynamics of Multiscale Flow

Z a;;i + Z(u -Vu; = =Vp+ 1, (5)
=1 =1
ZW:V -u; =0. (6)
i=1

When an explicit solver is adopted, the total fluid veloc-
ity u is computed using the results from the previous
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time steps, thus u can be considered as semi-decoupled
from u; in Eqn. (5).

Egns. (5 - 6) show that multiscale fluid motions are
coupled together to satisfy momentum and mass con-
servation. However, from the viewpoint of physics [38],
fluid motions u; differ not only in their length scales, but
they also develop at different pace in the time dimension,
with micro-scale motions developing fast and macro-
scale motions developing relatively slow. Thus, if the
observation is fixed to a small window T in the time axis,
the inter-frequency exchange of momentum and mass
can be ignored, and this leads to

aal;i—&—(u-V)ui:—Vpi i=1,2,---,m—1, (7
ou,,

5 + (u-Vu,, = —Vp,, + 1, (8)

V-u; =0 =1,2,---,m, 9)

where p;, i = 1,2,---,m are the unknown fluid pressure

corresponding to the motion components u;. Typical
body forces, such as gravity and buoyancy, change much
slower comparing to the rapid development of micro-
scale turbulent motions. This is particularly true for ideal
fluids [38], whose viscous force is zero and Reynolds
number is infinity. Therefore, in the momentum Eqgn.
(7), the influence from the slow changing body forces
to the fast developing micro-scale fluid motions is also
ignored, and the body force is only included in Eqn. (8)
for the mixed low-frequency component u,,. By allowing
all body forces to directly work on the u,, motion, the
dominant energy carrier obtained in the EMD (2), the
energy transfer process occurring at the macro-scale level
is emphasized. However, if fast changing body forces
are involved, they should be likewise decomposed and
applied to the corresponding velocity component.

5.2 View-Dependent Simulation of Multiscale Flow

Eqgns. (7 - 9) describe the dynamics of multiscale flow.
Our aim is to solve these equations according to the
camera settings such that all visible fluid motions at both
micro- and macro- scales are accurately captured with
the minimum computational cost.

First, the fluid domain is divided into m nested parti-
tions ;, i =1,2,--- msuch that Q1 C Qs C --- C Q,,,
where Q,, represents the whole fluid domain. These
nested partitions are all centered with respected to the
view frustum, so that partitions Q;, i = 1,2,---,m
provide a natural indication for the distance between the
viewer and the fluid point, ranging from small to large. It
is noted that by building the partitions {2; with respect to
the view frustum, the view direction and view angle are
also taken into account. As the viewer-to-fluid distance
increases, the visibility of the fluid motion drops, which
sequentially reduces the accuracy requirement of the
simulation. Therefore, these simulation partitions are
discretized using different grid sizes and time steps, and
with the increase of index 4, the space-time resolution of

(2; decreases. In particular, the grid size and time step
of each partition ; are set to allow an economical and
yet sufficiently accurate description of the motion u;.

Next, depending on the viewer-to-fluid distance, each
motion component u; is adaptively represented at dif-
ferent space-time resolutions. This is achieved by dis-
tributing the velocity quantities of u; to partitions ;,
| = 4,7+ 1,---,m such that the motion u; is discretized
on a composite grid Q;U{Q; 41— U - U{Q, — Q1 }
As shown in Fig. 2, after all frequency components u;
have been distributed to the simulation partitions, the
velocity field on each partition (2; becomes a composite
field u} as follows:

" { u;
u;, = 7
> j=1j
The effective velocity u} collects all visible fluid motions
measured at the space-time resolution of ;.
Then, reorganizing Eqns. (7 - 9) according to Eqn. (10)
yields:

for ;4

for Q; — Q4 (10)

ou*
;Z+(U-V)uf:—Vp§ i=1,2-m—1, (11)
% + (u : V)u:ﬂ = _vp’fn + f’ (12)

Voui=0 i=1,2,---,m, (13)

where pf, i =1,2,---,m are the unknown fluid pressure

corresponding to the composite velocity components u.
Although similar in formulation, it should be noted
that Eqns. (11 - 13) and Eqns. (7 - 9) describe totally
different physical phenomena. Eqns. (11 - 13) are defined
on partitions Q;, ¢ = 1,2,---,m respectively, and for
each partition €;, they describe the evolution of all fluid
motions that are visible at the space-time resolution
associated with Q;. Eqns. (7 - 9) are defined in the whole
fluid domain, and they describe the dynamics of the
fluid motion at each individual length scale, regardless
of its visibility to the viewer.

Finally, the fluid simulation is performed by solving
the Eqns. (11 - 13) on nested partitions ©;, i =1,2,---,m
respectively. The initial values of u} are computed with
Egn. (10), in which the frequency components u; are
obtained from the EMD (2). Starting from ¢ = 1 and
going through each simulation partition €;, the solu-
tion uj is obtained by using the standard advection-
projection scheme [2]. Specifically, the advection step
solves equation
3(;1; + (u-V)ul =0.
Note that the background velocity field for advection is
the total velocity u instead of the velocity component u.
Similarly, the projection step solves equations

(14)

our

CRN v L 1
5 Vp;, (15)
V-oul =0. (16)
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Note that for the last partition §2,,, the external body
force f is added into Eqn. (15). For the pressure solver,
we use the standard preconditioned conjugate gradient
method with the preconditioner obtained through the
incomplete Cholesky decomposition. The final solution
of the fluid is:

u=udusd---du, 17)

where @ denotes the superposition of velocity fields
u; defined in different partitions. As Eqns. (11 - 13)
hold only when the observation is fixed in a relatively
small time window T', the EMD operation (2) needs to
be repeatedly performed after certain time steps to re-
initialize the solution process (14 - 17). This EMD re-
initialization step is necessary to ensure an adequate and
timely capture of the cross-scale motion transfer of the
fluid.

Boundary conditions: For internal partitions 2;, i =
1,---,m — 1, the boundary conditions are set as u; =0
on 0%;. For the partition §2,,, the real boundary con-
dition of the whole fluid domain is used on 99,,.
These simplifications practically over restrict the energy
exchange between partitions. By doing so, we sacrifice
the accuracy in order to minimize the coupling between
partitions and improve the efficiency of obtaining visu-
ally plausible results. Our method also supports internal
boundaries. For static obstacles in the fluid domain,
each velocity component deals with the obstacle in the
same way as the traditional methods, e.g. using simple
obstacle discretization or some more precise models. As
the obstacle is static, the final velocity field automatically
satisfies the non-slip boundary condition. For dynamic
obstacles, a practical approach is to add the dynamic
boundary condition to the lowest frequency component,
while adding static boundary conditions to all the other
components.

5.3 Computational Issues

Our multiscale fluid simulation is driven by the viewer.
In standard rendering systems, such as the PBRT [39]
used in this work, the fluid domain is defined in the
object space, then transformed into the view space by
model and view matrices, and finally projected into the
image space according to camera parameters (projection
matrix and viewport). We integrate the inverse of this
pipeline into our simulator to control the levels of details
in the simulation.

The fluid domain is divided into simulation partitions
according to the distance to the viewer and the view
direction, and each partition is individually assigned
with a grid size and a time step. Thus, the partitions
move when the viewer moves, which then requires the
fluid velocity to be transferred between grids of different
sizes. For simplicity, we use linear interpolation for the
velocity transfer between coarse grids and fine grids.

In the current implementation, the grid sizes and time
steps are manually set by the user based on the size of

simulation domain, the camera setting and the character-
istics of IMFs. Separate velocity components communi-
cate with each other through the advection term (14) and
the EMD re-initialization. It is possible to automatically
determine the spatial-temporal resolution. Specifically,
the grid size can be associated to the dimension of the
simulation domain and the spatial frequencies of IMFs,
which can be obtained via Hilbert transforms. Once the
grid size is fixed, the corresponding time step can then
be determined in conjunction with the camera motion.
This important adaptivity aspect will be pursued in our
future work as detailed in Section 7.

A direct application of frequency decomposition is
modulating the velocity filed. In many cases, the ani-
mator wants to add turbulence into the fluid. One way
of doing so is to boost the high frequency components
when calculating the final velocity. However, this simple
approach makes the solver unstable because a positive
feedback loop could be formed and causes the solver
to crash. Hence, we first calculate the average energy of
each frequency component, and decrease the velocity of
the low frequency components according to the energy
increment of the high frequency components. Under this
energy conservation constraint, the modulating process
becomes robust. Another safe modulating approach is
to change the vorticity confinement coefficients for each
components. As demonstrated in [3], setting the vorticity
confinement larger will not only enhances the vortices
but also affects the behavior of the whole fluid. We
found that by boosting the vorticity confinements only in
the high frequency components, the result shows more
vortices in the fluid as well as maintains the basic fluid
motion.

Given a target fluid and the camera settings, the view-
dependent multiscale fluid simulation is performed as
follows:

1) Generate a Hilbert curve to cover the whole fluid
domain and build the 3D-to-1D index template
2) Compose an ordered work list consisting of four
types of jobs: partition, EMD, simulation and out-
put
3) Follow the work list to do
« For partition request: according to the current
camera settings, the whole fluid domain is
divided into simulation partitions 2; with fixed
grid sizes and time steps
o For EMD request: compute the velocity spec-
trum (2) with 3D EMD
« For simulation request: solve Eqns. (14 - 16) on
the specific simulation partition €;

« For output request: output the current velocity
field u

In step (2), time entries of the partition request are
determined according to the camera motion; time entries
of the EMD request are set with a fixed time interval
specified by the user; time entries of the simulation
request are calculated according to the fixed time step of
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Fig. 7. Companson of the standard solver and our new
method without view-control. (a) standard method, (b) our
new method, and (c) out method with editing

each simulation partition; and time entries of the output
request are set according to the animation requirement.
In the current implementation, the oldest time step is
always executed first in order to get the most up-to-date
information from the other fluid simulations. Also, in the
advection step, we simply use the latest total velocity
field as the background velocity. By doing so, we ignore
the numerical error caused by the simulations being
out of synchronization. The main computational cost of
our simulation framework is in the advection-projection
solutions, which are performed separately on different
partitions with different space-time resolutions. As high
resolution solutions are only performed for the closest
partitions to the viewer, usually very small domains, our
simulation runs much faster comparing to the standard
N-S solver using a uniform high resolution grid.

Comparing with octree and adaptive mesh refinement
methods, the proposed method differ mainly in two
aspects: 1) We distinguish the fluid flow not only by
its distance to the viewer (resolved by setting multiple
simulation partitions), but also by its intrinsic motions at
different length scales (resolved by EMD). Both spatial
and temporal resolutions are adaptive in our method,
while the octree and AMR approaches are often adap-
tive only in the space dimension. 2) Octree and ARM
methods use non-uniform grids, and we use multiple
partitions meshed into uniform grids. The use of uniform
grids and simple data structures significantly simplifies
the implementation and computational complexity. In a
wider sense, the new method can be viewed as a multi-
grid approach combined with spectral analysis. Unlike
other multi-grid methods using prefixed simulation res-
olutions independent to the evolution of fluid flows, the
space-time resolutions for different simulation partitions
are determined according to the spectral decomposition
result of the fluid velocity field. Therefore, the new
method is more adaptive, and can support moving cam-
era positions and developing fluid flows in a uniform
framework.

6 RESULT

Several experiments are presented in this section to
demonstrate the performance of the new fluid simulation
framework (see Table 1). All numerical simulations are

(d)

Fig. 8. Comparison of a Iow-frequency veIOC|ty field
solved on fine and coarse grids. The same low-frequency
flow is solved respectively on a fine grid and a coarse
grid, where (a), (b) and (c) are the fine-grid results from
the 1st, 8th and 16th frames, and (d), (e) and (f) are the
corresponding coarse-grid results.

Fig. 9. Comparison of the standard method and our new
method with view-control. (a) standard method, and (b)
and (c) our new method using different EMD intervals.

performed on a PC platform with an Intel Core2 2.4 GHz
CPU and 8 GB memory.

The first example compares the new method without
view-control and the standard grid-based N-S solver.
Fig. 7(a) is the result obtained from the standard solver
on a 128 x 256 x 128 grid. Fig. 7(b) is the result obtained

(a) (b)

Fig. 10. Comparison of the standard solver and our new
method with a static obstacle in the domain. (a) standard
method, (b) our new method using 4 partitions without
view control.
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Parameter Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig.9(a) Fig. 9(b) Fig. 9(c) Fig. 10(a) Fig. 10(b) Fig. 1
highest resolution 1/128 1/128 1/128 1/200 1/400 1/400 1/64 1/128 1/400
avg. time per frame 45.1s 33.6s 35.5s 243.6s 228.9s 266.3s 56.7s 69.2s 328.0s
speedup percentage N/A 25.5% 23.3% N/A 6% -9.3% N/A -22% N/A
component num. N/A 6 6 N/A 5 5 N/A 5 5
max down sample rate N/A 2 2 N/A 4 4 N/A 4 4
view control N/A No No N/A Yes Yes N/A Yes Yes
EMD interval N/A 10 10 N/A 10 15 N/A 20 5
editing N/A No Yes N/A No No N/A No No
TABLE 1

Simulation parameters and performance.

using the new method with six simulation partitions all
covering the whole fluid domain. The first five partitions
are meshed as 128 x 256 x 128, and the last partition is
meshed as 64 x 128 x 64. All six partitions use the same
time step in their simulations, and the EMD is performed
every 10 frames to update the velocity spectrum. Com-
paring Figs. 7(a-b), it is observed that the new method
produces the correct result with more fine-scale features.
This is because the new method separates different
frequency components and solves them on different
partitions, and by doing so, the numerical dissipation
is effectively reduced. For each time step, the average
CPU time cost is 45.1 seconds in the standard N-S solver,
and 33.6 for our new method. Without view control, the
new method is about 25% faster than the standard grid
solver. This is because (a) the sixth partition is solved on
the coarse grid; and (b) the first five partitions do not
have any body force and as a result, their simulations
converge very fast, typically within 5 iterations. How-
ever, the standard N-S solver uses the fine grid and in
each time step it takes 50 - 80 iterations to converge to the
error threshold 1075. Fig. 7(c) shows a frequency editing
result, where the first three components are amplified by
a factor 5, the next two components by 2, and the last
component accordingly attenuated. It can be seen that
more fine-scale turbulence details are achieved while the
global motion of the plume (dominated by the lower
frequency components) is accurately retained, which is
important for practical editing.

Our new method assumes that the low frequency
components of a velocity field can be simulated on
coarse grids to save computational cost. This is verified
in Fig. 8, where a plume is developed in a veloc-
ity field that only contains low frequency components.
Figs. 8(a-c) are the results obtained using a fine grid
(128 x 256 x 128), and Figs. 8(d-f) are solved on a coarse
grid (64 x 128 x 64). The two groups of results are very
similar up to frame 8 and they become more different
as the simulation continues. This observation confirms
that the low frequency components of a velocity field
do generate high frequency motions as time goes, but
these newly generated high frequency components are
neglectable in the beginning period, during which the
fluid motion can be well captured by using a coarse
grid. Therefore, we choose different grid resolutions to
economically simulate different frequency components,

and periodically recompute the velocity spectrum to
adjust the frequency-component allocation and ensure
that every frequency component is always simulated
using the right grid resolution.

The third example examines the effect of view-
dependent partitioning. The viewpoint is fixed inside the
fluid domain. Fig. 9(a) shows the result obtained using
the standard N-S solver on a 200x200x400 grid (grid size
1/200). It can be seen that all four plumes are captured
at the same resolution, and the nearest plume to the
viewer is lack of fine-scale details, which makes the scene
look unnatural. Fig. 9(b) shows the result obtained using
the new method. It can be seen that different levels
of details are obtained in the scene, with more fine-
scale features captured for plumes closer to the viewer.
Five simulation partitions with different dimensions and
different grid sizes are used in the simulation. The first
four partitions only cover approximately half depth of
the scene and the fifth partition covers the whole fluid
domain. The grid sizes are 1/400, 1/400, 1/200, 1/200
and 1/100, respectively. As small grid sizes are only used
on small partitions while larger partitions using larger
grid sizes, the total memory used in the new method is
similar to the standard solver. Fig. 9(c) shows the result
of the new method using another set of parameters.
In contrast to (b), the forth partition covers the whole
domain, and the EMD interval increases to 15. Fig.
9(c) has some stair-like artifacts at the bottom of each
plume. These artifacts are partially caused by the larger
interval between adjacent EMD operations. Specifically,
at a fixed frequency, the smoke source is added into the
simulation as a cylindrical smoke density field together
with some buoyancy forces. As the buoyancy force is
only added to the lowest frequency component in our
simulation framework (see Eqn.(8)), the smoke source
is directly linked to the lowest frequency component.
When the EMD interval increases, it takes longer to
mix the velocity fields at different frequencies. Thus,
the newly added smoke mainly moves with the lowest
frequency component at the initial stage, and produces
some stair-like artifacts. This kind of artifacts can also be
observed in the standard solver when a strong smoke
source is used in the simulation. In general, this type
of artifacts can be effectively removed by adjusting
the strength of the smoke source. For each time step,
the average CPU time cost for the standard solver is
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243.6 seconds, and 228.9 and 266.3 seconds for the new
method. As shown in Table 1, by using different time
steps in different partitions, the new method doubled
the simulation resolution with essentially no speed hit.

The fourth example shows a static obstacle in the
simulation domain. Fig. 10(a) is the result of the standard
solver on a 64 x 64 x 256 grid (grid size 1/64). The
relatively low resolution makes the result look flat. Fig.
10(b) is the result of our method using five partitions
of which the last two partitions cover the whole fluid
domain. The grid sizes from high frequency to low
frequency are 1/128, 1/128, 1/128, 1/64, 1/32. In Fig.
10(b), the non-potential flow structures observed at the
upwind of the cylinders are caused by the interaction of
the closely placed cylinders and the non-slip boundary
effect. These high frequency structures are not resolved
by the standard solver (Fig. 10(a)) due to numerical
dissipation on the coarser mesh (grid size 1/64), while
they are emphasized in the proposed solver (Fig. 10(b))
because the high frequency motion is solved separately
on a finer mesh (grid size 1/128). The average CPU
time costs of the standard method and our new method
are 56.7 seconds and 69.2 seconds respectively. Again,
it can be seen that with a similar computational cost,
the new method doubled the simulation resolution pro-
ducing more fine-scale details consistent with real-life
observations.

The last example demonstrates the new method in
a simulation with a moving viewpoint. Fig. 1 shows
the simulation result, which is computed on six moving
partitions. The maximum grid size is 1/100, and the min-
imum is 1/400. The maximum time step is 1/30 s, which
is used on the largest partition, and the minimum time
step is 1/120 s, which is used on the smallest partition.
The space-time resolution of each partition is fixed, but
its position and dimension change automatically as the
viewpoint moves. It can be seen that the new method
is robust and efficient, and it provides natural-looking
results with multiple levels of details that are consistent
with human visual perception.

7 CONCLUSION AND LIMITATION

We propose a view-dependent multiscale fluid simu-
lation framework that exploits both the viewing infor-
mation in human visual perception and the multiscale
velocity spectrum of a turbulent flow. In the new simu-
lation framework, the fluid is solved at different space-
time resolutions according to its visual impact. Specifi-
cally, high-resolution simulations are performed for the
fluid regions closer to the viewer and for the frequency
components more visible to human eyes, and vice versa.
The new simulator better utilizes the computing power
such that (a) for the same simulation task, it is faster than
the traditional grid-based N-S solver; and (b) with the
same computational resources (CPU time and memory
storage), it can simulate a larger fluid scene or produce
richer fine-scale details. Also, as the multiscale fluid

motions are distinguished in our simulation, the numer-
ical dissipation is effectively reduced. In particular, by
modulating the simulation in the frequency space of the
fluid motion, the new simulator provides the animator
a simple way to edit and enhance the visual effects of
fluids.

The current implementation does not allow moving
internal obstacles. However, the extension to cope with
moving internal objects is relatively straight forward,
and care must be taken when the object moves across the
boundary of simulation partitions. The main limitation
of the proposed new framework is in three folds:

o For a fluid scene observed at multiple viewpoints,
the simulation partitions become irregularly shaped,
depending on the relative positions of different
viewpoints. The complicated geometry of simula-
tion partitions make the grid-based solver more
complex in implementation, and a finite-volume
solver might then become a better option.

o The proposed view-dependent simulation frame-
work requires the camera to move continuously
without jump. Discontinuous camera positions will
cause the algorithm lose its advantage of capturing
fine-scale details. This is because fine-scale motions
are only simulated in the neighborhood of the previ-
ous camera focus instead of the whole fluid domain.
Similarly, the performance can potentially drop with
rapidly moving cameras because a larger buffer area
will be needed for high resolution partitions.

e Our current implementation is purely sequential.
As the simulations running on different partitions
are relatively independent, the algorithm can be
readily parallelized. Furthermore, as each partition
is meshed into uniform grids, its simulation can also
be accelerated with GPU implementation.

These three important aspects will be pursued in our
future work.

REFERENCES

[1] A. Oliva, A. Torralba, and P. G. Schyns, “Hybrid images,” ACM
Trans. Graph., vol. 25, pp. 527-532, July 2006. [Online]. Available:
http://doi.acm.org/10.1145/1141911.1141919

[2] J. Stam, “Stable fluids,” in Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, ser.
SIGGRAPH '99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 121-128. [Online]. Available:
http://dx.doi.org/10.1145/311535.311548

[3] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of
smoke,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH '01. New
York, NY, USA: ACM, 2001, pp. 15-22. [Online]. Available:
http://doi.acm.org/10.1145/383259.383260

[4] B. E. Feldman, J. E O'Brien, and O. Arikan,
“Animating suspended particle explosions,” ACM Trans.
Graph., vol. 22, pp. 708-715, July 2003. [Online]. Available:
http:/ /doi.acm.org/10.1145/882262.882336

[5] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle
method for smoke, water and explosions,” ACM Trans.
Graph., vol. 24, pp. 910-914, July 2005. [Online]. Available:
http://doi.acm.org/10.1145/1073204.1073282

[6] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM
Trans. Graph., vol. 24, pp. 965-972, July 2005. [Online]. Available:
http://doi.acm.org/10.1145/1073204.1073298



TECHNICAL REPORT 110830

(7]

(8]

(%]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

T. F. Dupont and Y. Liu, “Back and forth error compensation and
correction methods for removing errors induced by uneven gra-
dients of the level set function,” Journal of Computational Physics,
vol. 190, pp. 311-324, 2003.

J. Molemaker, J. M. Cohen, S. Patel, and ]. Noh, “Low
viscosity flow simulations for animation,” in Proceedings of
the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA '08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 9-18. [Online]. Available:
http:/ /portal.acm.org/ citation.cfm?id=1632592.1632595

A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An uncon-
ditionally stable maccormack method,” J. Sci. Comput., vol. 35, no.
2-3, pp. 350-371, 2008.

M. Lentine, W. Zheng, and R. Fedkiw, “A novel algorithm
for incompressible flow using only a coarse grid projection,”
ACM Trans. Graph., vol. 29, pp. 114:1-114:9, July 2010. [Online].
Available: http://doi.acm.org/10.1145/1778765.1778851

J. Stam and E. Fiume, “Turbulent wind fields for gaseous
phenomena,” in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH
'93.  New York, NY, USA: ACM, 1993, pp. 369-376. [Online].
Available: http://doi.acm.org/10.1145/166117.166163

A. Lamorlette and N. Foster, “Structural modeling of
flames for a production environment,” ACM Trans. Graph.,
vol. 21, pp. 729-735, July 2002. [Online]. Available:
http://doi.acm.org/10.1145/566654.566644

N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw,
“Smoke simulation for large scale phenomena,” ACM Trans.
Graph., vol. 22, pp. 703-707, July 2003. [Online]. Available:
http://doi.acm.org/10.1145/882262.882335

R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for
procedural fluid flow,” ACM Trans. Graph., vol. 26, July 2007.
[Online]. Available: http://doi.acm.org/10.1145/1276377.1276435
T. Kim, N. Thiirey, D. James, and M. Gross, “Wavelet
turbulence for fluid simulation,” ACM Trans. Graph.,
vol. 27, pp. 50:1-50:6, August 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360649

R. Narain, J. Sewall, M. Carlson, and M. C. Lin, “Fast animation
of turbulence using energy transport and procedural synthesis,”
ACM Trans. Graph., vol. 27, pp. 166:1-166:8, December 2008.
[Online]. Available: http://doi.acm.org/10.1145/1409060.1409119
H. Schechter and R. Bridson, “Evolving sub-grid turbulence
for smoke animation,” in Proceedings of the 2008 ACM
SIGGRAPH/Eurographics  Symposium on Computer Animation,
ser. SCA '08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 1-7. [Online]. Available:
http:/ /portal.acm.org/citation.cfm?id=1632592.1632594

T. Pfaff, N. Thuerey, A. Selle, and M. Gross, “Synthetic
turbulence using artificial boundary layers,” ACM Trans. Graph.,
vol. 28, pp. 121:1-121:10, December 2009. [Online]. Available:
http://doi.acm.org/10.1145/1618452.1618467

T. Pfaff, N. Thuerey, J. Cohen, S. Tariq, and M. Gross, “Scalable
fluid simulation using anisotropic turbulence particles,” ACM
Trans. Graph., vol. 29, pp. 174:1-174:8, December 2010. [Online].
Available: http://doi.acm.org/10.1145/1882261.1866196

J.-C. Yoon, H. R. Kam, J.-M. Hong, S.-J. Kang, and C.-H. Kim,
“Procedural synthesis using vortex particle method for fluid
simulation,” Comput. Graph. Forum, vol. 28, no. 7, pp. 1853-1859,
2009.

P. Mullen, K. Crane, D. Pavlov, Y. Tong, and M. Desbrun,
“Energy-preserving integrators for fluid animation,” ACM Trans.
Graph., vol. 28, pp. 38:1-38:8, July 2009. [Online]. Available:
http://doi.acm.org/10.1145/1531326.1531344

S. Elcott, Y. Tong, E. Kanso, P. Schroder, and M. Desbrun,
“Stable, circulation-preserving, simplicial fluids,” ACM
Trans. Graph., vol. 26, January 2007. [Online]. Available:
http://doi.acm.org/10.1145/1189762.1189766

B. E. Feldman, ]J. E O'Brien, and B. M. Klingner,
“Animating gases with hybrid meshes,” ACM Trans. Graph.,
vol. 24, pp. 904909, July 2005. [Online]. Available:
http://doi.acm.org/10.1145/1073204.1073281

F. Losasso, F. Gibou, and R. Fedkiw, “Simulating water
and smoke with an octree data structure,” ACM Trans.
Graph., vol. 23, pp. 457-462, August 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015745

J. Kim, I. Ihm, and D. Cha, “View-dependent adaptive animation
of liquids,” ETRI Journal, vol. 28, pp. 697-708, December 2006.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

M. B. Nielsen, B. B. Christensen, N. B. Zafar, D. Roble,
and K. Museth, “Guiding of smoke animations through
variational coupling of simulations at different resolutions,”
in Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’09. New
York, NY, USA: ACM, 2009, pp. 217-226. [Online]. Available:
http://doi.acm.org/10.1145/1599470.1599499

S. Barbara and M. Gross, “Two-scale particle simulation,” ACM
Trans. on Graphics (Proc. SIGGRAPH), vol. 30, no. 4, pp. 72:1-72:8,
2011.

C. Horvath and W. Geiger, “Directable, high-resolution
simulation of fire on the gpu” ACM Trans. Graph.,
vol. 28, pp. 41:1-41:8, July 2009. [Online]. Available:

http://doi.acm.org/10.1145/1531326.1531347

M. Lesieur, O. Mtais, and P. Comte, Large-Eddy Simulations of
Turbulence. Cambridge University Press, 2005.

M. Wicke, M. Stanton, and A. Treuille, “Modular bases for fluid
dynamics,” ACM Trans. Graph., vol. 28, pp. 39:1-39:8, July 2009.
[Online]. Available: http://doi.acm.org/10.1145/1531326.1531345
N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen,
C. Tung, and H. Liu, “The empirical mode decomposition and
the Hilbert spectrum for nonlinear and non-stationary time series
analysis,” PROCEEDINGS OF THE ROYAL SOCIETY OF LON-
DON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEER-
ING SCIENCES, vol. 454, no. 1971, pp. 903-995, MAR 8 1998.

N. Huang and S. Shen, The Hilbert-Huang Transform and Its Appli-
cations. World Scientific Publishing Company, 2005.

J. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Im-
age analysis by bidimensional empirical mode decomposition,”
IMAGE AND VISION COMPUTING, vol. 21, no. 12, pp. 1019-
1026, NOV 1 2003.

K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale
image decomposition based on local extrema,” ACM Trans.
Graph., vol. 28, pp. 147:1-147:9, December 2009. [Online].
Available: http://doi.acm.org/10.1145/1618452.1618493

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm
for bidimensional EMD,” IEEE SIGNAL PROCESSING LETTERS,
vol. 12, no. 10, pp. 701-704, OCT 2005.

Z. Liu and S. Peng, “Boundary Processing of bidimensional EMD
using texture synthesis,” IEEE Signal Processing Letters, vol. 12,
no. 1, pp. 33-6, January 2005.

P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola,
“Interactive sph simulation and rendering on the gpu,” in
Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA "10. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2010, pp. 55-64. [Online].
Available: http://dl.acm.org/citation.cfm?id=1921427.1921437

L. D. Landau and E. Lifshitz, Fluid Mechanics, Second Edition:
Volume 6 (Course of Theoretical Physics). Butterworth-Heinemann,
1987.

M. Pharr and G. Humphreys, Physically Based Rendering : From
Theory to Implementation. Morgan Kaufmann, August 2004.



	Technical report cover.pdf
	view-dependent_multiscale_fluid_simulation

