

Efficient Synthesis of

Gradient Solid Textures
 Guo-Xin Zhang1 , Yu-Kun Lai2 and Shi-Min Hu1

Technical Report TR-110818,

Tsinghua University, Beijing, China

1 Department of Computer Science and Technology, Tsinghua University, China. Email:

zgx.net@gmail.com; shimin@tsinghua.edu.cn
2 School of Computer Science and Informatics, Cardiff University, UK. Email:

Yukun.Lai@cs.cardiff.ac.uk

1

Efficient Synthesis of Gradient Solid Textures
Guo-Xin Zhang†, Yu-Kun Lai‡ and Shi-Min Hu†

Abstract—Solid textures require large storage and are computationally expensive to synthesize. In this paper, we propose a novel
solid representation called gradient solids to compactly represent solid textures, including a tricubic interpolation scheme of colors
and gradients for smooth variation and a region-based approach for representing sharp boundaries. We further propose a novel
approach based on this to directly synthesize gradient solid textures from exemplars. Compared to existing methods, our approach
avoids the expensive step of synthesizing the complete solid textures at voxel level and produces optimized solid textures using our
representation. This avoids significant amount of unnecessary computation and storage involved in the voxel-level synthesis while
producing solid textures with comparable quality to the state of the art. The algorithm is much faster than existing approaches for solid
texture synthesis and makes it feasible to synthesize high-resolution solid textures in full. Our compact representation also supports
efficient novel applications such as instant editing propagation on full solids.

Index Terms—solid textures, synthesis, vector representation, gradient

F

1 INTRODUCTION

T Extures are essentially important for current rendering
techniques as they bring in richness without involving

overly complicated geometry. Most previous work on texture
synthesis focuses on synthesizing 2D textures, which require
texture mapping with almost unavoidable distortions when
they are applied to 3D objects. Solid textures represent color
(or other attributes) over 3D space, providing an alternative ap-
proach to 2D textures that avoids complicated texture mapping
and allows real solid objects to be represented with consistent
textures both on the surface and in the interiors alike.

Due to the extra dimension, solid textures represented as
attributes sampled at regular 3D voxel grids are extremely
expensive to synthesize and store. To provide sufficient res-
olution in practice, a typical solution is to synthesize only
a small cube (e.g. 1283), and tile the cube to cover the 3D
space. However, tiling may cause visual repetition (see Fig. 8).
While repetitions could be alleviated with some rotations,
they cannot be eliminated completely when the volumes are
sliced with certain planes. Further it is possible only when
the solid textures have no interaction with the underlying
objects, and thus cannot respect any model features or user
design intentions. To address this, previous approaches [1], [2]
synthesize solid textures on demand; however, handling high-
resolution solid textures is still expensive in both computation
and storage.

Inspired by image vectorization, for pixels (or voxels) with
dominantly smooth color variations (within each homogeneous
region), vectorized graphics provide significant advantages
such as being compact, resolution independent and easy-to-
edit. The possibility and effectiveness of vectorizing solid tex-
tures have been recently studied in [3]. This work is essentially
a 3D generalization of image vectorization, which requires

† Department of Computer Science and Technology, Tsinghua University,
China. Email: zgx.net@gmail.com; shimin@tsinghua.edu.cn
‡ School of Computer Science and Informatics, Cardiff University, UK. Email:
Yukun.Lai@cs.cardiff.ac.uk

voxel-level (raster) solid textures as input and inherits similar
advantages over traditional raster solid textures. It remains
computationally costly and involves large intermediate storage
for raster solid textures to synthesize high resolution solid
textures with a nonhomogeneous spatial distribution (e.g. [2]).

In this paper, instead of first synthesizing the full voxel solid
textures before vectorizing them [3], we propose a novel
approach to directly synthesize vectorized solid textures from
exemplars. Inspired by gradient meshes in image vectoriza-
tion [4], we propose a novel gradient solid representation that
uses a tricubic interpolation scheme for smooth color varia-
tions within a region, and a region-based approach to represent
sharp boundaries with separated colors. This representation is
compact, more regular than Radial Basis Functions (RBFs) [3]
and thus particularly suitable for real-time rendering and
efficient solid texture synthesis. Our approach can be used to
vectorize input solids, which is over 100 times faster than [3]
and leads to reduced approximation errors in most practical
cases.

We further treat solid texture synthesis as an optimization
process of control points of gradient solids to produce synthe-
sized solids with similar sectional images as given exemplars.
Compared with traditional solid texture synthesis, we have
far less control points than voxels, leading to a much more
efficient algorithm. While we solve both bitmap solid synthesis
and solid vectorization together and produce solid textures
with comparable quality as the state of the art, it is over 10
times faster than existing synthesis methods.

The main contributions of this paper are:

• A new gradient solid representation with regular structure
that is compact, resolution-independent and capable of
representing smooth solids and solids with separable
regions.

• A novel optimization-based algorithm for direct synthesis
of high quality solid textures vectorizing high resolution
solids which is efficient both in computation and storage.

2

Fig. 1. High-resolution gradient solid texture synthesis and editing. From left to right: the input exemplar, the
synthesized gradient solid texture following a given directional field, a closeup, internal slices and instant editing (user
interaction and the output).

• Our representation also facilitates novel applications such
as instant solid editing, as demonstrated in the paper.

To the best of our knowledge, this is the first algorithm that
synthesizes vector solid textures directly from exemplars, al-
lowing high resolution, potentially spatially nonhomogeneous
solid textures to be synthesized in full. Various techniques
have also been developed to effectively improve the quality
or reduce the computational cost.

2 RELATED WORK

O Ur work is closely related to example based texture
synthesis and vector images/textures.

Solid Texture Synthesis Texture synthesis has been an
active research direction in computer graphics for many years.
Please refer to [5] for a comprehensive survey of example-
based 2D texture synthesis and [6] for a recent survey of solid
texture synthesis from 2D exemplars.

Early work on solid texture synthesis focuses on procedural
approaches [7], [8]. Since rules are used to generate solid
textures, very little storage is needed. Procedural solid textures
can be generated in real-time [9]. However, only restricted
classes of textures can be effectively synthesized and it is in-
convenient to tune the parameters. Exemplar-based approaches
do not suffer from these problems, and thus received more
attention. 2D exemplar images are popular due to their wide
availability. Wei [10] extends non-parametric 2D texture syn-
thesis algorithms to synthesize solid textures. An improved
algorithm is proposed in [11] to generate solid textures based
on texture optimization [12] and histogram matching [13].
Further extended work [14] considers k-coherent search and
combined position and index histograms to improve the result-
s. To synthesize high resolution solid textures, Dong et al. [1]
propose an efficient synthesis-on-demand algorithm based on
deterministic synthesis of certain windows from the whole
space [15] necessary for rendering, based on the fact that only
2D slices are needed at a time for normal displays. This work
is extended in [2] that introduces user-provided tensor fields
as guidance for solid texture synthesis. This approach allows
synthesizing solid textures with nonhomogeneous spatial dis-
tributions, thus cannot be achieved by tiling small fixed cubes.

Alternative approaches for solid texture synthesis exist. Jag-
now et al. [16], [17] propose an algorithm based on stereolog-
ical analysis which provides more precise modeling of solid
textures. However, their approach only works for restricted
types of solid textures with well separable pieces. Lapped
textures have been extended to synthesize 3D volumetric
textures [18]. 3D volumetric exemplars instead of 2D image
exemplars are needed as input. Solid texture synthesis has also
been used for other applications. Ma et al. [19] use similar
techniques for motion synthesis.

Unlike previous methods, our approach directly synthesizes
gradient solid textures from 2D exemplars. This provides the
benefits from both procedural and exemplar-based approaches:
the representation is more compact and high resolution solid
textures can be synthesized in full efficiently. The algorithm
is flexible to synthesize various solid textures using 2D exem-
plars and follow given tensor fields if specified by the user.
The whole solid textures need only to be synthesized once
which reduces overall computation.

Vector Images and Vector Solid Textures Different from
raster images, vector graphics use geometric primitives along
with attributes such as colors and their gradients to represent
the images. Due to the advantages of vector graphics, plenty
of work recently focuses on generating vector representation-
s from raster images. Recent work proposes automatic or
semi-automatic approaches to high-quality image vectorization
using quadrilateral gradient meshes [4], [20] or curvilinear
triangle meshes for better feature alignment [21]. Diffusion
curves [22] model vector images as a collection of color
diffusion around curves. Some works consider combining
raster images with extra geometric primitives [23], [24], [25]
to obtain benefits such as improved editing and resizing.

Vector graphics have recently been generalized to solid tex-
tures [3], [26]. Compared to raster solids, vector solids have
the advantages of compact storage and efficient rendering.
Wang et al. [3] propose an automatic approach to vectorize
given solid textures using a RBF-based representation. How-
ever, this approach relies on raster solids as input, thus an
expensive raster solid texture synthesis algorithm [11] needs
to be performed first if only 2D exemplars are given as
input. Diffusion surfaces [26], a generalization from diffusion
curves [22], was used to represent vector solids; their focus

3

Initialization

Finding Matched
Patches from Exemplars

Generated
Solid Textures

Representation
Update

Iterative
Tensor Field

(Optional)

Representation
Refinement

2D Texture
(Input)

Fig. 2. Algorithm pipeline of gradient solid texture synthesis.

however is user design of solids rather than automatic gener-
ation.

Vector representation is loosely related to volume compression
techniques (e.g. [27], [28]) as both consider more compact
representations than raster solids. The focus of vector repre-
sentation however aims at creating compact and resolution-
independent representation suitable for graphics applications
that produce visually similar and pleasing results even when
magnified while the purpose of volume compression tech-
niques is to reconstruct large volumes as close as possible
to the original even under significant compression. Research
work on volume compression tends to use blocks and block-
based coding which leads to less smooth reconstruction.

We propose a novel algorithm that synthesizes gradient solids
directly from 2D exemplars, bypassing intermediate bitmap
solid synthesis and subsequent bitmap-to-vector conversion,
leading to an efficient algorithm in both computation and
storage that produces high quality solid textures. The represen-
tation although with a somewhat different aim may be useful
for certain volume compression applications.

3 GRADIENT SOLID REPRESENTATION

W E give details of the gradient solid representation,
allowing efficient representation of smooth regions and

regions with boundaries.

3.1 Representing Smooth Regions

We first consider representing regions with smoothly varying
colors. We use a n × n × n grid of control points with axes
u, v, w to represent the solid textures. At each control point
(i, j, k), we store a feature vector f including r, g, b color
components and additional feature channels such as the signed
distance [29]. In addition, the gradients of f , i.e. df

du ,
df
dv ,

df
dw

are also stored allowing flexible control of variations in 3D
space. 3D tricubic interpolation with gradients [30], [31] is
used to obtain the feature vector f̃ for any voxel inside the
grid. Assume that p = 1, 2, . . . , 8 represents the 8 control
points in the cube that covers the voxel and assume second
or higher order derivatives of f to be zero, f̃ at parameter
(u, v, w) (0 ≤ u, v, w ≤ 1) can be evaluated as

f̃(u, v, w) =

3∑
i,j,k=0

aijku
ivjwk. (1)

All the 64 coefficient vectors aijk are weighted sums of
32-dimensional vectors V = (· · · f (p), df

(p)

du , df
(p)

dv , df
(p)

dw · · ·).
Using the integer weights given in [31], C1 continuity over
the whole volume is guaranteed.

The geometric positions of control points in our representation
are fixed. Assuming the displacement between adjacent control
points is d, the geometric position of the control point (i, j, k)
is (id, jd, kd). The displacement determines the number of
voxels located within each cube of the control grid. Larger
d leads to more compression while smaller d implies better
capture of details. In all of our experiments we use d = 4
which means that the number of control points is roughly 1

64 =
1.56% of voxels.

This simple representation has several significant advantages.
For any fixed point with known parameter (u, v, w), since
uivjwk can be pre-computed, the expensive evaluation of
Eqn. 1 can be reduced to a weighted sum of elements in V . In
practice, we pre-compute these coefficients for a regular grid
with 333 samples in each cube, with interval at 1

8 voxel for
accuracy. A fixed look-up table irrelevant to the input is pre-
computed and stored, with 333 × 32 entries (about 4.4MB),
and the interpolated feature at any space position can be
computed as a linear combination of V with these prebuilt
weights.

The interpolation is achieved in rendering via GPU accelera-
tion, as detailed in Sec. 5.3. This allows efficient evaluation,
particularly important as solid textures are computationally
intensive. The look-up table does not need to be stored and
is calculated on the fly. It is of fixed size even for very
large volumes (equivalent to e.g. 5123 or 10243) and in
such cases becomes negligible. Compared with the RBF-
based representation [3], we have regular structures suitable
for texture synthesis. As demonstrated in Figs. 10 and 11,
our local interpolation representation has much better color
reproduction. There is no need to store the positions of
control points, which further saves storage. The regularity also
helps efficient direct solid texture synthesis and supports other
applications such as instant editing propagation, as detailed
later.

3.2 Representing Region Boundaries

If the given texture only contains gradual change of colors,
the representation described in Sec. 3.1 is sufficient (e.g.
Fig. 10). If the texture contains sharp boundaries that need to
be preserved, a feature mask image is often used in texture
synthesis as an additional component (other than color) to

4

better preserve structures. Similar to previous work both in 2D
and 3D textures [29], [3], we assume regions can be separated
using a binary mask. To represent the boundary in the solid
textures, we also use a signed distance field stored at the same
regular n × n × n grid. We store both the signed distance d̄
and its gradients dd̄

du , dd̄
dv and dd̄

dw and use the same tricubic
interpolation as in Sec. 3.1 to calculate the interpolated signed
distance d̃ at each voxel. The sign of d̃ indicates which side of
the regions in the binary mask this voxel belongs to. Different
from [3], gradients are stored in addition to the distance, and
thus we process the distance field consistently with colors and
represent region boundaries with flexibility. For each control
point that is adjacent to at least one cube with both positive and
negative distances, two feature vectors fP (positive distance)
and fN (negative distance) and their gradients are stored. Any
voxel with positive (or negative) distance will be evaluated
using the same interpolation in Sec. 3.1 but with fP (or fN)
and their gradients instead. This guarantees C1 smoothness
within each region while also allowing sharp boundaries to be
produced between regions. Our gradient solid representation
is easy to evaluate but also sufficient to represent various solid
textures, as demonstrated in Sec. 5.

4 GRADIENT SOLID TEXTURE SYNTHESIS

O Ur algorithm synthesizes gradient solid textures directly
from 2D exemplars, which may include optional binary

masks (if sharp boundaries exist between regions). In addition,
a smooth tensor field may be given to specify the local
coordinate systems the exemplar images align with [2]. We use
an optimization based approach to synthesize gradient solid
textures, with local patches aligned to the field if given. The
algorithm pipeline is summarized in Fig. 2, which involves
several key steps: initialization, iterative optimization con-
sisting of similarity patch search and gradient representation
update, and the final gradient solid refinement. We will also
discuss techniques to ensure efficiency in both computation
and storage. If the binary mask is given, we pre-compute a
signed distance field for the image with the absolute value
at each pixel being the distance to the region boundary and
different signs (positive or negative) for different regions. This
signed distance is considered as an extra component in the
feature vector f [29].

4.1 Initialization

We simply start from a randomized initialization. For each
control point, we randomly select a pixel from the exemplar
image, and assign the feature vector at the pixel to the control
point. All the gradients are initialized to zero.

4.2 Optimization-based Synthesis

Optimization is the key step in our gradient solid texture
synthesis pipeline. It involves iterations of two alternating
steps, namely choosing optimal patches from exemplars that

best match the current representation and updating the repre-
sentation to better approximate the exemplar patches. Unlike
traditional texture optimization [12], [11], we optimize the fea-
ture vectors in the control points of the gradient solids, a much
more compact representation than voxels. New challenges
exist due to the different nature of the representation which
we will address with various technical solutions. We apply NO

iterations for each synthesis level, and use a modified coarse-
to-fine strategy detailed in Sec. 4.2.3. NO = 3 is sufficient
and used for all the experiments in the paper.

4.2.1 Finding matched patches from exemplars

We first identify those local patches from the exemplars that
best match the current gradient solid. These patches will then
be used to improve the representation. Since gradient solids
have much sparser control points than voxels, we randomly
choose a small number NC of check points within each cube
of the grid (NC = 3 provides a good balance and is used for
all the examples in the paper). At each check point, we sample
three orthogonal planes each with N × N samples (denoted
as sx, sy and sz respectively) which are evaluated based on
our representation (as illustrated in Fig. 3). A fast approximate
evaluation is used in intermediate synthesis to significantly im-
prove the performance without visually degrading the quality
(see Sec. 4.2.4).

We then find three local patches from exemplars that best
match these sampled patches. If all the three slices are equally
important, we use three independent searches as [11]. Many
practical solid textures are anisotropic and it is not possible
to keep all three slices well matched with a single exemplar
image. In such cases, it is known that matching two slices
instead of three may lead to better results [11]. We propose a
new approach that takes crossbar consistency into account,
which works best when two slices are matched. Crossbars
are those voxels shared by two or three slices (see Fig. 3)
and inconsistent crossbars may result from independent best
searches. For computational efficiency, we first search for the
patch Ex from exemplars that best matches sx, as usual. We
then search for the patch Ey that best matches sy from a
set of N1 candidates with the most consistent crossbar voxels
as Ex. If three slices are matched, we similarly search for
the best match Ez of sz from a set of N2 candidates with
the most consistent crossbars as Ex and Ey . N1 = 20 and
N2 = 50 are used for all the experiments in the paper. This
leads to improved synthesis results with better structure preser-
vation, which shows the importance of crossbar consistency, as
demonstrated in Fig. 5. While crossbar matching has been used
in correction-based synthesis [1], using this in optimization
based synthesis is new.

To speed up the computation, a PCA projection of the match-
ing vectors is used [32], which effectively reduces dimensions
from hundreds to 10-20 while keeping most of the energy.
After this, the searches can be effectively accelerated with
ANN approximate nearest neighbor library.

5

Ex

Ey

Ez

Sx

Sy

Sz

Fig. 3. Illustration of crossbars.

open

closed

2N

Fig. 4. Illustration of bucket reuse.

4.2.2 Representation update

Each matched patch at every check point gives N×N samples,
which will be used to update the gradient solid representation.
To efficiently collect samples, we conceptually build a bucket
for each voxel in the grid that holds all the samples located in
the voxel. After considering check points in all the cubes, each
bucket may end up with none or a few samples. For buckets
with more than one samples, in order to determine the feature
vector, simply averaging all the samples in the bucket tends to
produce blurred voxels. Previous methods [33], [11] use mean
shift clustering to avoid blurring, which is expensive as all the
samples in the buckets need to be preserved and clustering
algorithms need to be performed many times. We propose two
novel approaches to significantly improve the efficiency.

Quantization. To avoid blurring without storing all the sam-
ples in each bucket, we propose a novel approach based
on vector quantization. We preprocess the given exemplar to
quantize colors of all the pixels into NT clusters. A small
number of NT (e.g. 12) is sufficient for practical textures. For
the texture with a binary mask, we start from two clusters
for both positive and negative regions, and iteratively allocate
the new cluster to regions with most significant average
quantization error, until all the NT clusters are allocated. We
use a two-pass approach in the synthesis. In the first pass,
for every bucket, only the number of samples belonging to
each cluster is recorded. In the second pass, we compute the
average feature vector only for those samples belonging to the
two dominant clusters (with maximum counts in the first pass).
Since the dominant clusters are known before the second pass,
whenever a sample is generated we test if it should be included

Fig. 5. Results without (left) and with (right) crossbar
matching.

for averaging. Only the sum and the number of samples need to
be kept which significantly saves the storage. This avoids using
the computationally expensive clustering algorithm for each
voxel but also significantly reduces blurring, as demonstrated
in various results in Sec. 5. Using quantization in the finest
level is sufficient, according to our experience.

Bucket reuse. Although conceptually the number of buckets
is the same as the number of voxels, i.e. O(n3), we can
significantly reduce the memory requirement by bucket reuse.
We update our representation in the 3D scanline order of
control points. Depending on the template size N , check points
more than

√
2

2 N voxels away will not produce any sample in
the current bucket, where N

2 is half the template size and√
2 is introduced due to rotation. As illustrated in Fig. 4

for a 2D illustration, we keep track of two references in the
dominant dimension (one of the three dimensions that can
be chosen arbitrarily) that mark the boundaries of the open
region (from which new check points will be generated) and
the closed region (where no more samples will be produced
and we can safely update the gradient solid representation).
In case the two-pass algorithm in quantization is used, this
buffer needs to be doubled i.e. up to 2

√
2N span in the

dominant dimension is sufficient, or the memory cost is
O(n2N). This is because either pass has an affected region as
we discussed and the second pass relies on the results collected
from the first pass. The required buffering space does not
increase with more synthesis iterations as buckets are cleared
after each synthesis iteration and no further propagation as
in [1] happens. Since N � n and often constant for various
examples, this effectively saves the storage by reducing the
complexity from n3 to n2, without any extra recomputation.
This is possible, because after each iteration of optimization,
only a very compact gradient solid representation is kept,
while traditional solid texture synthesis requires the whole
dense volume to be accessible. By using this technique, we
can synthesize gradient solid textures corresponding to 10243

voxels within 2GB memory, even less than storing the voxels
alone.

After obtaining the average feature vector for any bucket with
at least one sample, we assign each non-empty bucket to the
closest control point. The feature vector as well as gradients of
the control point are updated by minimizing the fitting error in
the least-squares sense. For a particular control point, assume
s buckets are related with relative coordinates dut, dvt, dwt

and feature vector ft (1 ≤ t ≤ s), we find fc, fc
du , fc

dv , fc
dw that

6

minimizes

EC =

s∑
t=1

∣∣∣∣∣∣∣∣fc +
fc
du
dut +

fc
dv
dvt +

fc
dw

dwt − ft

∣∣∣∣∣∣∣∣2 . (2)

This can be considered as a local first-order Taylor expansion
of our representation which can be efficiently solved by small
linear systems. This approximation is sufficient for interme-
diate computation and we use the accurate evaluation only in
the final stage.

4.2.3 Multi-resolution synthesis

To capture features at multiple scales, a multi-resolution ap-
proach is also used in our algorithm. However, since a sparse
control grid is used, reducing the resolution is not feasible
as it would be too coarse in low resolutions to effectively
capture details. Instead, inspired by fractional sampling [15],
in each successive coarser level we keep the resolution of
the control grid unchanged and double the spacing between
sample pixels in exemplar image and voxels in the 3D space.
From coarse to fine we use three levels of synthesis with
N = 9, 11, 21 respectively. The finest level uses a significantly
larger neighborhood in order to cover a few control points at
minimum in our sparse representation.

4.2.4 Fast approximate evaluation

Our gradient solid representation is relatively easy to evaluate;
however, in the solid texture synthesis process, many evalua-
tions are needed. We suggest two approximations for improved
performance. In the intermediate synthesis process, instead of
evaluating the accurate values at each sample point, we use
a first-order Taylor expansion as an approximation. For any
point p whose closest control point is c with feature vector fc
and its gradients fc

du , fc
dv , fc

dw , the approximate feature vector at
p with relative coordinates dup, dvp, dwp, can be evaluated as
fp = fc + fc

dudup + fc
dvdvp + fc

dwdwp. This approximation does
not ensure smoothness, but only involves 3 multiplications and
3 additions for each component of the feature vector, thus
only takes about 1/10 of the computation of a full evaluation.
In the iterative synthesis, another approximation is to ignore
the region-based calculation given in Sec. 3.2 (as if there is
no separated region as in the single channel case such as
Fig. 6(middle)). This may mix up voxels in different regions
within the same cube and leads to visual degradation of the
final results; the impact on the intermediate synthesis however
is negligible as it is restricted to a couple of voxels due to the
cube size.

4.3 Gradient solid representation refinement

As the final step, we further optimize the gradient solid
representation to better represent the synthesized gradient
solids.

Region separation. For solids with smooth variation of colors
(e.g. Fig. 10), our algorithm does not require a binary mask

as input and can effectively reproduce the solids with a single
region. For solids with sharp region boundaries that need
to be preserved, we differentiate regions with positive and
negative signed distances for the computation of control point
parameters described in Sec. 4.2.2. For each control point,
we compute positive parameters (fP and gradients) using
samples with positive signed distance. Similarly, samples with
negative signed distance contribute to negative parameters
(fN and gradients). To improve reliability in the fitting of
boundary control points, we propagate boundary samples (with
neighboring samples having different signs of distance) to the
near neighboring space, similar to dilation in mathematical
morphology. This mainly ensures cubes near region boundaries
have sufficient samples to make fitting reliable.

Control point optimization. To further improve the quality,
instead of fitting with first order approximation, we minimize
the fitting error of all the samples between the sample values
and those interpolated using Eqn. 1. For a sample point with
sampled feature vector f̂i located in the cube ci with corner
control points collected as Vi and parameter (ui, vi, wi), the
evaluated feature vectors f̃ are linear functions of Vi, denot-
ed as f(Vi;ui, vi, wi). We minimize the following quadratic
energy

ĒC =

#samp∑
i=1

‖f̃i− f̂i‖2 =

#samp∑
i=1

‖f(Vi;ui, vi, wi)− f̂i‖2, (3)

where #samp is the number of sample points. Minimization
of ĒC leads to a sparse linear system. As we have a good esti-
mation from the previous approximation, the linear system can
be effectively solved by a few iterations of gradient descent.
As demonstrated in Table 1, control point optimization reduces
the approximation error but also takes some extra time. Our
method without this optimization is sufficiently good in many
cases so it is considered as an option to tradeoff quality with
speed.

4.4 Instant solid editing

3D solids are expensive to store, and also time-consuming to
edit. Thanks to our compact representation, we can achieve
instant solid editing, by adapting a recent development [34]
in images and videos. A typical scenario for this editing is
the user first draws a few strokes with different intensities
indicating how strong the selected voxels will be affected by
the editing. The user then selects a reference color, and voxels
will be affected based on similarities in the position and the
appearance (color) to those with user specifications. While
the editing in [34] is generally efficient, dealing with large
volumes is still relatively slow. Worse still, if the volume is in
some vector representation, naive application of this method
will involve converting to raster representation before editing
and back to vector representation afterwards. We show as
follows that our adaptation of the editing algorithm is instant
with virtually equivalent solution; this cannot be achieved with
Wang’s representation.

7

Fig. 6. Comparison of results using direct upscaling (left) and our algorithm without (middle) and with (right) region
separation.

Fig. 7. Synthesized object without (a) and with the field (c); the field is given in (b).

Fig. 8. Synthesized solids without fields. First row: tiled low resolution (1283) solids. Second row: high resolution (5123)
solids.

Fig. 9. Synthesized high-resolution (512 samples in the longest dimension) solids following given directional fields
with our algorithm: ‘vase’, ‘horse’, ‘tree’ and ‘dinopet’ with synthesized solids, close-ups and internal slices. ‘Dinopet’
is turned pink with instant editing.

8

For each control point i with color ci = (r, g, b)T and position
pi = (x, y, z)T , we need to know the influence hi. This is
effectively modeled as m RBFs, the centers of which are
randomly selected from the stroke voxels

hi =

m∑
k=1

ωkhi,k =

m∑
k=1

ωk exp
{
−α(β|pi − p̄k|2 + |ci − c̄k|2)

}
,

(4)
where p̄k and c̄k are the position and color of k-th stroke voxel
selected as a RBF center. ωk, restricted to be non-negative,
can be obtained by solving a linear programming problem that
minimizes the strength deviation for user specified voxels [34].
Parameters α and β control the propagation and α = 10−4,
β = 0.1 work well in many cases. Assuming the reference
color is cref , to compute the edited gradient solids, ci and
dci

dpi
need to be updated for each control point, which can be

effectively calculated as follows. We define c′i = (1−hi)ci +
hi · cref , and thus we have

dc′i
dpi

= (1− hi)
dci
dpi
− (ci − cref)(

dhi
dpi

)T , (5)

where

dhi
dpi

= −
m∑

k=1

ωk2αhi,k{β(pi − p̄k) +

(
dci
dpi

)T

(ci − c̄k)}.

(6)
The editing is demonstrated in Fig. 1 to turn a fish purple
instantly. A few strokes on the fish object are drawn to indicate
the effect of change and a purplish color sample is chosen (as
in the box). Another example is in Fig. 9 where ‘dinopet’ is
turned pink instantly with a few strokes and a pink reference
color (as in the box). The editing process takes only 0.1
seconds in total with 0.01 seconds for linear programming
and the remaining time for gradient solid update, providing
instant feedback on such large volumes. Comparatively, direct
application on raster solid of equivalent resolution takes about
1 second and naive implementation on vector solids takes a
few minutes.

5 RESULTS AND DISCUSSIONS

O Ur algorithm is useful for either direct synthesis of
solid textures, or vectorizing input solids. We carried out

our experiments on a computer with 2 × 2.26GHz CPU and
NVIDIA GTS 450 GPU.

5.1 Solid texture synthesis

Our algorithm directly synthesizes more compact and
resolution-independent gradient solid textures from 2D ex-
emplars. Solids with comparable quality to the state of the
art can be synthesized, as shown in Figs. 1, 4-8, 12. As
for other CPU-based algorithms that focus on synthesizing
full solids of a 1283 cube, the typical reported times have
been tens of minutes, e.g. [11] uses 10-90 minutes (without
tensor fields) and [19] (a CPU-based implementation similar
to [1] with direction fields considered) reported about 30

minutes with a single core. Our results are vector solid textures
which are resolution-independent. For simplicity, we consider
solid textures with equivalent detail resolution to raster solid
textures when certain resolution is referred to in the following
discussion. Our current implementation, after about 10 seconds
preprocessing of the input exemplar (which is the same for
arbitrarily sized output volumes), takes only 13 seconds. Even
counting the different performance of CPUs, our algorithm is
over 10 times faster. Due to the compactness in representation
and the technique for memory reuse, we can synthesize high-
resolution solid textures in full. 5123 solids can be synthesized
within 15 minutes (Fig. 8). Other examples throughout the
paper with 512 samples in the longest dimension take 3-
7 minutes, while the example in Fig. 12 at resolution of
1024 takes 35 minutes and within 900MB memory. Region
separation is not needed if the input texture does not contain
sharp boundaries, as the ‘vase’ and ‘tree’ examples in Fig. 9.
In these examples, the binary mask is used only as part of the
feature vector, not for region separation. The ‘tree’ example
shows that our synthesis algorithm can be generalized to
synthesize solids with different exemplars covering different
spaces, mimicking the real structure of a tree.

We demonstrate the effectiveness of our algorithm with various
examples. Although our method uses a rather sparse set of
control points, they are much more expressive than voxels at
the same resolution. An example is given in Fig. 6. The left re-
sult is synthesized with [2] (using a proportionally downsized
exemplar image as input) and looks sensible at original 323

resolution. We use tricubic interpolation to upscale the volume
to 1283 and clear artifacts appear indicating that 323 volume is
not sufficient to capture the structure of the solid. Our results
with also 323 control points are significantly better and sharp
region boundaries can be recovered with region separation.
Tiling small cubes such as of 1283 size to cover the whole
space is commonly used, due to the prohibitively expensive
computation with most previous algorithms. Synthesizing high
resolution solids is essential to avoid visual repetition (as
demonstrated by ‘table’, ‘cake’ and ‘statue’ in Fig. 8) or
produce solids following certain direction fields (see Fig. 9).
A comparison of results without or with the field is given
in Fig. 7. High resolution solid textures with 512 and 1024
samples in the longest dimension are shown in Figs. 1 and 12,
respectively. Note that in all the results we synthesize the
full solids rather than only the visible voxels [1], [2]. This is
preferred since in many applications objects are synthesized
once but rendered many times on lower-end systems. Our
representation makes rendering algorithm both efficient and
simple to implement.

5.2 Vectorization of solid textures

Our approach can also be used for solid texture vectorization.
In this application, we take each voxel as a sample and produce
gradient solids with the method in Sec. 4.3 if optimization is
used or otherwise a first order approximation as in Sec. 4.2.4.
We perform comparative experiments on the same computer,
using the code directly from [3]. 5, 000 RBFs are used to

9

(a) (b) (c) (d)

Fig. 10. Solid vectorization of the input volume ‘caustic’ without binary mask. (a) input volume; (b)(c) our results
without and with further optimization; (d) result using [3].

(a) (b) (c) (d) (e) (f)

Fig. 11. Solid vectorization results with a binary mask. (a) input volume ‘balls’; (b) input volume rendered in
transparency; (c) input mask; (d) vectorized solid with our algorithm without optimization; (e) our result with
optimization; (f) result using [3].

provide sufficient flexibility, more than most examples in [3],
for fair comparison. Although our algorithm is highly parallel,
we only use a single core for fair comparison. Detailed running
times and fitting errors are given in Table 1. Whilst pixel-
wise error measurement before and after vectorization may
not be the best criterion perceptually, it is widely used in
image vectorization. For most solids suitable for vectorization,
our method produces results with lower per-pixel error and
avoids the spotty artifacts caused by the use of RBFs. Although
RBFs seem to be more flexible, unless using a (potentially
impractically) large number of RBFs for relatively complicated
input, spotty artifacts are reasonable reflection of radial bases
and large approximation errors result. We also experimented
with varying RBFs from 3, 000 to 5, 000 but the approxima-
tion errors in our experiments only drop marginally. Wang’s
algorithm may also get stuck at suboptimal solutions due to
the highly non-linear nature. Our vectorization does not suffer
from these problems and is much simpler to optimize as only
sparse linear systems need to be solved.

Our method without control point optimization is on average
500 times faster and has much reduced reconstruction error
and better color reproduction than [3], as shown in Figs. 10
and 11 as well as Table 1. If the optional control point
optimization is used, the error can be further reduced at a
small cost. This shows that we currently achieve interactive
performance for vectorization of moderate sized volumes. Di-
rect synthesis of gradient solid textures requires many times of
intermediate vectorization and evaluation and it would become
impractically slow without the speedup. Since the algorithm
is highly parallel, a parallel GPU-based implementation may
further improve the speed.

We use regions to represent sharp boundaries (Fig. 11) but
our method can deal with input solids that cannot be naturally

separated into multiple regions (see Fig. 10). In this case, no
binary mask image needs to be provided. A more thorough
evaluation on the whole dataset provided by [11] with 21
solid textures shows that for more than 75% of the examples,
especially those examples more suitable for vectorization (with
lower approximation for both methods), our method outper-
forms [3] in fitting error (see the accompanied supplementary
material for detailed statistics).

We quantize each value with 8 bits, and our representation,
without further careful coding, takes only 6.5% (without
region separation) or 15% (with region separation) of the voxel
solids, while 17%-26% is reported in [3]. The size of the look-
up table is not considered because it does not depend on input
and thus does not need to be stored in external files and its
size is fixed and small enough to be kept in current graphics
card without any problem.

5.3 Rendering

While our current synthesis implementation is CPU-based,
gradient solids are rendered efficiently with commodity GPUs.
For each visible pixel, we obtain the interpolated texture
coordinate using the vertex shader and evaluate the color with
Eqn. 1 using the fragment shader; the colors and gradients at
control points are stored as textures for efficient GPU access.
The color at any continuous position is calculated by linear
interpolation of entries in the look-up table described in Sec. 3
through hardware-supported texture fetches, a commonly used
technique for realtime rendering. For solid textures with binary
masks, the relevant set of feature vectors is used based
on the evaluated signed distance. This is both efficient and
ensures accuracy as accurate values are obtained at 83 times
higher resolution than raster solids. This linear interpolation is

10

example error time
Wang’s ours w/o opt. ours w/ opt. Wang’s ours w/o opt. ours w/ opt.

Fig. 10 (‘caustics’) 6.14 2.62 1.50 8 min 25 sec 1.08 sec 5.10 sec
Fig. 11 (‘balls’) 8.59 5.83 4.21 24 min 21 sec 2.67 sec 11.46 sec

TABLE 1
Statistics of solid vectorization results.

accurate at 1
8 voxel resolution and is sufficiently close to the

real function such that no visible artifact is produced, even
when extremely magnified. In most practical applications, a
precomputed look-up table with 1

4 voxel resolution is suffi-
cient, which leads to a look-up table with 173×32 entries and
taking less than 0.6MB storage. To avoid jagged boundaries
when gradient solids with two regions are rasterized, we use
similar antialiasing technique as in [3]. The idea is for pixels
close to boundaries, colors evaluated with both positive and
negative regions are linearly blended.

Our representation has similar real-time rendering perfor-
mance as [3]. To make a fair comparison, in the perfor-
mance measurement, we have disabled mipmapping for [3]
and enabled antialiasing for both methods. For a 1283 solid
with a mesh containing 70K vertices rendered at 1024× 768
resolution, our average frame rate is 80 fps and the rendering
algorithm from [3] achieves on average 75 fps. High resolution
solid textures in this paper are rendered with 30-60 fps. The
slightly lower frame rates are due to the relatively complicated
geometry and large textures with lower cache performance.

5.4 Discussions and Limitations

Although we can represent sharp boundaries with regions,
similar to Wang et al. [3] using a single distance field we
cannot in general recover sharp boundaries if more than two
regions touch. An example is given in Fig. 13. The input
solid (a) can be vectorized with our algorithm producing the
reconstructed solid (b) with close-up (c). Sharp boundaries
between triangles cannot be preserved with the single binary
mask. Compared with [3], our blurring effects are much more
local. If such blur is not acceptable, our algorithm needs to
be modified to be augmented with another distance field to
separate adjacent triangle pairs, as shown in (d) (a close-
up view). Another limitation is although our fitting error is
usually lower than Wang et al. [3] for typical input, fine details
within a region may not be fully reproduced; this however
is a limitation for virtually all the vectorization methods. To
simulate fine details of textures without excessive storage,
the approximation error at any position is modeled as a
Gaussian distribution. Assume for each position x, and an
arbitrary channel c (including r, g, b) with a sample pixel
value p̂c(x) and corresponding reconstructed value from the
vector representation p̃c(x), the residual rc(x) = p̂c(x)−p̃c(x)
is a Gaussian distribution with probability p satisfying

p(rc(x) = y) = G(0, σc(x)) =
1√

2πσc(x)2
exp{− y2

2σc(x)2
},

(7)
where σc(x) is the standard deviation and y an arbitrary value.
We optimize σc(x) such that p(rc(x) = p̂c(x) − p̃c(x)) is

maximized, which is worked out as σc(x) = |p̂c(x)− p̃c(x)|.
For efficiency, σc is also compactly represented using our
vector representation, treating as an additional channel. When
rendering at any position, the residual r is randomly sampled
from the distribution. To ensure consistent result, a position de-
termined hash function as Perlin noise [8] is used. With similar
lookup table based GPU acceleration, extra computation can
be efficiently done, keeping the rendering algorithm realtime
(current implementation with 30%− 50% of the original fps).
An example is shown in Fig. 14 where richer details are
recovered without losing the benefits of vector representation
such as resolution independence.

6 CONCLUSIONS AND FUTURE WORK

I N this paper, we propose a novel gradient solid represen-
tation for compactly representing solids. We also propose

an efficient algorithm for direct synthesis of gradient solid
textures from 2D exemplars. Our algorithm is very efficient
in both computation and storage, compared with previous
voxel-level solid texture synthesis methods and thus allows
high-resolution solid textures to be synthesized in full. The
algorithm can be generalized to take 3D solids as exem-
plars which will also benefit from the compactness of our
representation. The representation is also potentially useful
for accelerating volume processing. We have demonstrated
instant editing of large volumes, and we would like to explore
other applications such as efficient volumetric rendering and
manipulation of (solid) textures (e.g. [35], [36]) in the future.
Our current implementation of the synthesis algorithm is
purely CPU based. The algorithm is highly parallel and we
expect to implement this on the GPU to further improve the
performance. Our rendering implementation can be further
augmented with mipmapping for adaptive scaling especially
minification and texture composition to produce richer fractal-
like boundaries, using techniques similar to those in [3].

REFERENCES

[1] Y. Dong, S. Lefebvre, X. Tong, and G. Drettakis, “Lazy solid texture
synthesis,” Computer Graphics Forum, vol. 27, no. 4, pp. 1165–1174,
2008.

[2] G.-X. Zhang, S.-P. Du, Y.-K. Lai, T. Ni, and S.-M. Hu, “Sketch guided
solid texturing,” Graph. Mod., vol. 73, no. 3, pp. 59–73, 2011.

[3] L. Wang, K. Zhou, Y. Yu, and B. Guo, “Vector solid textures,” in Proc.
ACM SIGGRAPH, 2010, p. Article 86.

[4] J. Sun, L. Liang, F. Wen, and H.-Y. Shum, “Image vectorization using
optimized gradient meshes,” ACM Trans. Graph., vol. 26, no. 3, p.
Article 11, 2007.

11

(a) (b) (c) (d)

Fig. 12. Synthesized high-resolution solid texture (1024 samples in the longest dimension) with a field. (a) input user
specified tensor field; (b) synthesized solid texture; (c) close up (d) internal slices.

(a) (b) (c) (d)

Fig. 13. An example that a single distance field is not sufficient to fully recover sharp boundaries. (a) input solid; (b)
vectorized solid with a single distance field; (c) close-up of (b); (d) vectorized solid with an additional distance field to
recover sharp boundaries (close-up).

Fig. 14. Vector solid textures without (left) and with added details (right).

[5] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in
example-based texture synthesis,” in Eurographics State-of-Art Report,
2009.

[6] N. Pietroni, P. Cignoni, M. A. Otaduy, and R. Scopigno, “Solid-texture
synthesis: a survey,” IEEE Computer Graphics and Applications, vol. 30,
no. 4, pp. 74–89, 2010.

[7] D. R. Peachey, “Solid texturing of complex surfaces,” in Proc. ACM
SIGGRAPH, 1985, pp. 279–286.

[8] K. Perlin, “An image synthesizer,” in Proc. ACM SIGGRAPH, 1985, pp.
287–296.

[9] N. A. Carr and J. C. Hart, “Meshed atlases for real-time procedural solid
texturing,” ACM Trans. Graph., vol. 21, no. 2, pp. 106–131, 2002.

[10] L.-Y. Wei, “Texture synthesis from multiple sources,” in SIGGRAPH
2003 Sketch, 2003.

[11] J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-
T. Wong, “Solid texture synthesis from 2D exemplars,” ACM Trans.
Graph., vol. 26, no. 3, p. Article 2, 2007.

[12] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” ACM Trans. Graph., vol. 24, no. 3, pp.
795–802, 2005.

[13] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” in Proc. ACM SIGGRAPH, 1995, pp. 229–238.

[14] J. Chen and B. Wang, “High quality solid texture synthesis using position
and index histogram matching,” The Visual Computer, vol. 26, no. 4,
pp. 253–262, 2010.

[15] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,” ACM
Trans. Graph., vol. 24, no. 3, pp. 777–786, 2005.

[16] R. Jagnow, J. Dorsey, and H. Rushmeier, “Stereological techniques for
solid textures,” in Proc. ACM SIGGRAPH, 2004, pp. 329–335.

[17] R. Jagnow, J. Dorsey, and H. Rushmeier, “Evaluation of methods for
approximating shapes used to synthesize 3d solid textures,” ACM Trans.
Applied Perception, vol. 4, no. 4, p. Article 24, 2008.

[18] K. Takayama, M. Okabe, T. Ijiri, and T. Igarashi, “Lapped solid textures:
filling a model with anisotropic textures,” ACM Trans. Graph., vol. 27,
no. 3, p. Article 53, 2008.

[19] C. Ma, L.-Y. Wei, B. Guo, and K. Zhou, “Motion field texture synthesis,”
ACM Trans. Graph., vol. 28, no. 5, p. Article 110, 2009.

[20] Y.-K. Lai, S.-M. Hu, and R. R. Martin, “Automatic and topology-
preserving gradient mesh generation for image vectorization,” ACM
Trans. Graph., vol. 28, no. 3, p. Article 85, 2009.

12

[21] T. Xia, B. Liao, and Y. Yu, “Patch-based image vectorization with
automatic curvlinear feature alignment,” ACM Trans. Graph., vol. 28,
no. 5, p. Article 115, 2009.

[22] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: a vector representaiton for smooth-shaded
images,” ACM Trans. Graph., vol. 27, no. 3, p. Article 92, 2008.

[23] W. Barrett and A. S. Cheney, “Object-based image editing,” ACM Trans.
Graph., vol. 21, no. 3, pp. 777–784, 2002.

[24] J. Tumblin and P. Choudhury, “Bixels: Picture samples with sharp
embedded boundaries,” in Proc. Eurographics Symposium on Rendering,
2004, pp. 186–196.

[25] D. Pavić and L. Kobbelt, “Two-colored pixels,” Computer Graphics
Forum, vol. 29, no. 2, pp. 743–752, 2010.

[26] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi, “Volumetric
modeling with diffusion surfaces,” ACM Trans. Graph., vol. 29, no. 6,
p. Article 180, 2010.

[27] P. Ning and L. Hesselink, “Fast volume rendering of compressed data,”
in Proc. IEEE Visualization, 1993, pp. 11–18.

[28] B.-L. Yeo and B. Liu, “Volume rendering of dct-based compressed 3d
scalar data,” IEEE Trans. Vis. Comp. Graph., vol. 1, no. 1, pp. 29–43,
1995.

[29] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” ACM
Trans. Graph., vol. 25, pp. 541–548, 2006.

[30] J. Ferguson, “Multivariable curve interpolation,” J. ACM, vol. 11, no. 2,
pp. 221–228, 1964.

[31] F. Lekien and J. Marsden, “Tricubic interpolation in three dimensions,”
J. Numerical Methods Engin., vol. 63, pp. 455–471, 2005.

[32] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
“Image analogies,” in Proc. ACM SIGGRAPH, 2001, pp. 327–340.

[33] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Trans. PAMI, vol. 29, no. 3, pp. 463–476, 2007.

[34] Y. Li, T. Ju, and S.-M. Hu, “Instant propagation of sparse edits on images
and videos,” Computer Graphics Forum, vol. 29, no. 7, pp. 2049–2054,
2010.

[35] H. Fang and J. C. Hart, “Textureshop: Texture synthesis as a photograph
editing tool,” in ACM SIGGRAPH, 2004, pp. 354–359.

[36] J. Lu, A. S. Georghiades, A. Glaser, H. Wu, L.-Y. Wei, B. Guo,
J. Dorsey, and H. Rushmeier, “Context-aware textures,” ACM Trans.
Graph., vol. 26, no. 1, p. Article 3, 2007.

	cover
	ss-TVCG

