
Write-A-Video: Computational Video Montage from Themed Text

MIAO WANG, State Key Lab of Virtual Reality Technology and Systems, Beihang University; Tsinghua University, Beijing

GUO-WEI YANG, BNRist, Tsinghua University, Beijing
SHI-MIN HU∗, BNRist, Tsinghua University, Beijing
SHING-TUNG YAU, Harvard University

ARIEL SHAMIR, The Interdisciplinary Center, Herzliya

Input Video Repository

London Westminster Abbey

Elizabeth Tower Tower Bridge

Hyde Park Elizabeth Tower

Tower Bridge London

Input Text Candidate Shots
2.

Visual-Semantic

Matching

3.

Assembly

1.

User Edits

U
se

r
In

te
rf

ac
e

London Elizabeth Tower Tower Bridge …
Extend Shot Duration Reduce Shot Duration More Movement

Keywords and Idioms

Hyde Park

Westminster Abbey

Output Video

Fig. 1. The general Write-A-Video pipeline proceeds in three steps: (1) the user writes text and edits the attributes of text segments via a novel interface

(highlighted in pink in the Text Editor), (2) candidate shots are retrieved automatically from an input video repository using visual-semantic matching, and (3)

final movie shots are assembled by optimizing cinematographic rules with user-specified idioms.

We present Write-A-Video, a tool for the creation of video montage using

mostly text-editing. Given an input themed text and a related video reposi-

tory either from online websites or personal albums, the tool allows novice

users to generate a video montage much more easily than current video

editing tools. The resulting video illustrates the given narrative, provides

diverse visual content, and follows cinematographic guidelines. The pro-

cess involves three simple steps: (1) the user provides input, mostly in the

form of editing the text, (2) the tool automatically searches for semantically

matching candidate shots from the video repository, and (3) an optimization

method assembles the video montage. Visual-semantic matching between

segmented text and shots is performed by cascaded keyword matching and

visual-semantic embedding, that have better accuracy than alternative solu-

tions. The video assembly is formulated as a hybrid optimization problem

over a graph of shots, considering temporal constraints, cinematography

metrics such as camera movement and tone, and user-specified cinematog-

raphy idioms. Using our system, users without video editing experience are

able to generate appealing videos.

∗Shi-Min Hu is the corresponding author (shimin@tsinghua.edu.cn). This work was
mainly completed while Miao Wang was a Postdoc at Tsinghua University.

Authors’ addresses: Miao Wang, State Key Lab of Virtual Reality Technology and
Systems, Beihang University; Tsinghua University, Beijing, miaow@buaa.edu.cn; Guo-
Wei Yang, BNRist, Tsinghua University, Beijing, ygw19@mails.tsinghua.edu.cn; Shi-Min
Hu, BNRist, Tsinghua University, Beijing, shimin@tsinghua.edu.cn; Shing-Tung Yau,
Harvard University, yau@physics.harvard.edu; Ariel Shamir, The Interdisciplinary
Center, Herzliya, arik@idc.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART177 $15.00
https://doi.org/10.1145/3355089.3356520

CCS Concepts: • Information systems→Multimedia content creation.

Additional Key Words and Phrases: Video Montage, Computational Cine-

matography, User Interaction

ACM Reference Format:

Miao Wang, Guo-Wei Yang, Shi-Min Hu, Shing-Tung Yau, and Ariel Shamir.

2019. Write-A-Video: Computational Video Montage from Themed Text.

ACM Trans. Graph. 38, 6, Article 177 (November 2019), 13 pages. https:

//doi.org/10.1145/3355089.3356520

1 INTRODUCTION

Intelligent tools that assist inexperienced users in creative processes

are becoming more abundant: for image editing, for drawing and

even for 3D modeling and fabrication. One process that is still chal-

lenging for novices is the creation and editing of video. Professional

video editors use editing tools such as Adobe Premiere or Apple Final

Cut Pro to manipulate raw footage and produce a coherent video

according to a narrative or storyline. However, non-professionals

may find it difficult to handle and learn how to use such software,

and can lack cinematographic or aesthetic knowledge for video

editing.

In contrast to video editing, the ability to tell a story using text is

simpler and more widespread. Therefore, in this work, we present a

method that bridges the gap between editing text and editing video—

we presentWrite-A-Video, a computational tool that generates video

montage from themed text. The tool allows the user to create a video

by editing text. We use the term “themed text” to emphasize that our

method does not work on arbitrary text, but rather on inputs where

the subject is focused, not too abstract, and not too specific. We

assume that the user wants to create a video using a narrative text

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:2 • Wang, M. et al

such as a travel video (e.g. visiting London), or a video illustrating a

given song.

A video repository related to the subject is assumed to be avail-

able, gathered from online resources or from personal albums. One

of the main challenges in our setting is how to match the semantics

of the text to the visual content of the video shots. We propose to di-

vide the text into segments, and for each segment retrieve candidate

shots from the repository using visual-semantic matching. Another

key challenge is how to use the text to assemble a video given the

set of candidate shots. We formulate shot selection and assembly

as an optimization problem that considers cinematographic guide-

lines, temporal constraints and user preferences for cinematography

idioms. Towards this end, we present a novel method to enforce

cinematographic guidelines based on 2D cues in video, and build

on previous idiom-based editing approaches to efficiently automate

low-level editing tasks based on high-level objectives given by the

user for the text segments.

Our intelligent tool is illustrated in Figures 1 and 4. The user can

add text in the Text Editor, while the tool automatically finds appro-

priate shots for segmented text fragments. Text editing operations

such as insertion or deletion, and changing the order of segments,

are converted to editing of the video montage by adding, deleting

or changing the order of shots respectively. The tool allows the user

to explore visual styles for each segment using cinematographic

idioms and other high-level directives. At any point, the user can

render the movie and preview the video montage result, which is

assembled by optimization from the candidate shots with an accom-

panying voice-over narration. Thus, we combine the abilities of an

intelligent tool for video assembly and an inexperienced user using

text processing to create a video montage that illustrates the given

narrative, follows cinematographic guidelines, and provides diverse

visual content.

The proposed approach has been tested on various pieces of

themed text and video repositories, with quantitative evaluation and

user studies. Users without video editing experience could produce

satisfactory videos using our tool. The user study results demon-

strate that all video assembly energy terms are meaningful to the

video montage quality. Moreover, the tool lets even novice users

produce results significantly faster than skilled video editors using

commercial frame-based editing software.

Our work expands on the concept of “text-based video editing”

by introducing a tool for creating video montages from themed

text. Our tool lets users operate on text instead of manually edit-

ing potentially large collections of video. More broadly, this work

demonstrates the potential of automatic visual-semantic matching

in idiom-based computational editing, offering an intelligent way

to make video creation more accessible to non-professionals.

2 RELATED WORK

Content-based Video Indexing and Retrieval. Content-based video

indexing and retrieval has a long research history in computer vi-

sion [Hu et al. 2011; Smoliar and Zhang 1994]. Ramesh Naphade

et al. [2002] proposed a probabilistic multimedia object model to

represent high-level semantics of video. The VideoScapes system

[Tompkin et al. 2012] builds a graph to index unstructured videos

with 3D reconstruction technology. The Video Digests system [Pavel

et al. 2014] provides a new format for browsing and skimming in-

formational videos. The Event Sketch was proposed to represent

dynamic properties of semantic object actions from video events

[Zhang et al. 2016]. Voice has been employed to experience and

navigate how-to videos [Chang et al. 2019]. In the deep learning era,

visual-semantic embedding techniques [Faghri et al. 2018; Karpathy

and Fei-Fei 2015; Miech et al. 2018] were proposed to match visual

content to other forms of semantics using neural networks. Our

method uses visual-semantic embedding [Faghri et al. 2018] as a

component to retrieve shots semantically matching text segments.

In our experiments, we have demonstrated the effectiveness of our

visual-semantic matching method with various themed texts. Nev-

ertheless, any new visual-semantic embedding algorithms could

replace the current component.

Computational Cinematography. Film editing requires professional

skills to ensure that fluent narration and artistic expression are ex-

perienced by viewers. Recently, computational cinematographic

models have been investigated by computer graphics researchers,

with the goal of creating better tools for both professionals and non-

professionals. Several works have addressed use of cinematographic

rules in 3D animation and virtual reality [Elson and Riedl 2007;

Galvane et al. 2015; Serrano et al. 2017]. With the holistic sense of

the scene, the content is rendered by planing an optimal camera

path, driven by continuity of actors, actions and camera movements.

For live videos, domain specific footage editing systems have been

developed, including lecture videos [Heck et al. 2007; Machnicki and

Rowe 2001; Pavel et al. 2014; Shin et al. 2015], social camera videos

[Arev et al. 2014], instructional videos [Chi et al. 2013; Truong et al.

2016], portrait videos [Berthouzoz et al. 2012; Huang et al. 2017],

dialogue scenes [Leake et al. 2017], first-person videos [Joshi et al.

2015; Wang et al. 2018, 2019] and aerial videos [Xie et al. 2018; Yang

et al. 2018]. Live video-footage editing relies on semantic cues and

computational features that are usually extracted from the video

content in a pre-processing step. In our application, the input videos

are diverse and may have little overlap, so are unsuitable for 3D

scene reconstruction or tracking. Therefore, our method assesses

computational cinematography rules using 2D-based video cues.

Intelligent Video Editing. Frame-based video editing as found in

commercial software can be difficult for non-professionals to use.

Recently, user-friendly editing tools have been presented to simplify

the tedious video editing process. Methods have been proposed to

improve the performance of alignment or retrieval of video content

from either film scripts or book chapters [Pavel et al. 2015]. Such

retrieval provides fast jumps and navigation of video by navigating

a script or a text-based story [Hu et al. 2011]. Our goal differs, aim-

ing to edit video footage by editing text. In terms of video footage

editing, the Hitchcock system [Girgensohn et al. 2000] provides

a semi-automatic approach to home video editing, by analyzing

input videos and rating unsuitability scores. The user can create a

movie by dragging rated video shots into a storyboard and manually

adjusting shots’ lengths. Berthouzoz et al. [2012] presented an inter-

view video editing tool based on editing an interview script: each

time the user updates the script, a continuous shot is regenerated to

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:3

Table 1. Brief comparison of our method and representative video montage

works. Async. Takes stands for synchronized input videos; Scene Varia-

tion stands for single or multiple scenes in a video; Shots Per Seg. stands

for the number of shots can be included in a text segment.

Methods

Input Editing

Optimization

Result

Video

Source

Async.

Takes

Editing

Texts

Editing

Idioms

Scene

Variation

Shots

Per Seg.

Social Cameras

[Arev et al. 2014]

Personal

Album
No - - Frame-wise DP

Single

(Event)
-

Dialogue Video

[Leake et al. 2017]

Personal

Album
No No Global HMMs

Single

(Dialogue)
Single

QuickCut

[Truong et al. 2018]

Personal

Album
Yes No - Frame-wise DP Multiple

Multiple-

Interactive

Write-A-Video

(Ours)

Personal

Album
or Internet

Yes Yes

Global

or
Local

Hybrid DP Multiple
Multiple-

Automatic

coincide with the script. Jain et al. [2015] proposed a video cropping-

and-warping algorithm based on human gaze analysis. Zhang et al.

[2015; 2018] presented algorithms to detect and remove visual dis-

tractors via camera path optimization. Arev et al. [2014] presented

an algorithm to create transitions following cinematographic rules

between synchronized videos, but it relies on 3D reconstruction

of the scene and a large overlap between camera views. Liao et al.

[2015] synthesize videos driven by music, not text. Video editing

algorithms [Bellini et al. 2018; Davis and Agrawala 2018] have been

proposed to map the visual motion of an input video to the beat of

background music. Kim et. al. [2014] considered summarizing on-

line videos given photo streams as storyline guidance. However the

output video neither follows a narrative story, nor uses cinemato-

graphic rules and timing constraints. Leake et al. [2017] developed

an idiom-based interface for dialogue-driven footage editing. Users

can globally edit film-editing idioms; the tool then generates footage

editing results. Our work uses a similar approach for idiom based

guidance, and further provides fine segment-level controls.

The closest tool to our work is QuickCut [Truong et al. 2016],

which allows interactively editing of narrated video for a script. The

main differences between QuickCut and our method are as follows.

(1) In QuickCut, personally captured shots for a fixed script are col-

lected. In contrast, our method processes shots either downloaded

from the Internet or provided by the user without accurate corre-

spondence to a pre-determined script. (2) In the QuickCut interface,

the input text is fixed while manual candidate shot selections must

be provided for each segmented text. In contrast, our interface al-

lows the user to edit the text. More importantly, the assembled shot

sequence can be automatically optimized. (3) QuickCut optimization

supports alternatives mode and ordered-grouping mode. In alterna-

tives mode, only one shot is employed to represent a sentence, while

in ordered-grouping mode, candidate shots and their order must

be determined manually. Our optimization process automatically

determines the shot sequence and the best cuts following cinemato-

graphic rules and idioms. Table 1 briefly compares our method and

prior art.

3 OVERVIEW

Write-A-Video aims to convert a themed text to a video montage by

assembling shots from a video repository. The design objectives for

our solution include the following.

• The video content should illustrate the narration.

• The video content should be diverse.

• The video montage should follow cinematographic rules, con-

cerning visual continuity, tone, duration etc.

• The user should be able to iteratively edit the text and the

video montage results should be updated accordingly.

The first three objectives regard automatic cinematography and

the last one regards the usability of our system. To meet the last

objective, we develop an intelligent tool supporting idiom-based

editing of text segments to allow iterative video montage editing

(Section 5). To meet the first objective, we break the whole text

into text segments, and perform visual-semantic matching between

text segments and segmented video shots (Section 4). In essence,

each segment provides more accurate matching than the whole text.

To ensure content diversity, we allow users to merge or split seg-

mented text, and edit segment-wise visual styles by editing segment

attributes. The third objective is met using a hybrid optimization

algorithm using dynamic programming, jointly considering shot-

wise, cut-wise and segment-wise cinematographic guidelines and

user defined high-level idioms, to gather the best matching shots

and cut positions (Section 6).

4 VISUAL-SEMANTIC MATCHING

The key to composing a video illustration of a given text is a search

for candidate shots matching text segments. Towards this endwe use

a visual-semantic matching approach including two cascaded steps:

keyword matching and visual-semantic embedding. We assume that

for each themed text, a set of keywords such as {London, Tower

Bridge, . . . } or {zebra, giraffe, . . . } are provided by the user. Such

keywords are used to label the segmented texts and to index video

shots in the repository.

For a given text segment with one or more labeled keywords,

the keyword matching step retrieves all video shots indexed by

the same keywords from the video repository. Next, a matching

score is calculated for each retrieved shot based on a visual-semantic

embedding technique; the top ranked ones are selected as candidates.

Figure 2 illustrates the whole visual-semantic matching procedure.

4.1 Text Labeling and Shot Indexing Using Keywords

Both texts and videos are associated with a set of keywords indicated

by the user. The user can either define descriptive keywords relevant

to the themed text in advance, or incrementally add new keywords

to the keyword set during editing.

Text Labeling. The themed text is represented by a sequence of

text segments. Each segment r is a continuous interval of text, from
part of a sentence up to several sentences. Initially, each sentence

is a segment; during editing, segments can be merged or split. For

each text segment, we use string matching to search for keywords,

and use matched keywords to label the text. If no matches are

found, the labels of the current segment follow those of its previous

neighboring segment, but they can be modified during editing.

Shot Indexing. All videos in the repository are segmented into

shots. Shots provide flexibility in semantic matching, and allow

use of cinematographic guidelines at a fine level while assembling

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:4 • Wang, M. et al

…The zebra is a

herbivorous mammal

known for its black and

white stripes all over
its body. …

cow cheetah elephant

giraffe zebra rhinoceros

Text Segment Video Shots

Keyword Set

Embedded Feature Space

Keyword Matching

Visual-Semantic

Embedding

Fig. 2. Visual-semantic matching. All possible keywords from the keyword

set are sought in each text segment. Next, video shots indexed using the

same keywords are retrieved. Finally, the text segment and retrieved shots

are embedded into a visual-semantic feature space to compute similarity

scores. Top ranked shots are returned as candidates for video montage of

each segment.

the video montage. We use a simple but effective histogram-based

segmentation algorithm similar to the one in [Chu et al. 2015]. A

shot boundary is marked between frames if their histograms in HSV

color space differ by more than 80%, and more than 80% of tracked

SURF keypoints [Bay et al. 2006] fail to match between the frames.

We discard very short (< 2 seconds) and very long (> 30 seconds)

shots, as short ones reduce visual quality, and long ones reduce

efficiency and variability.

The shots are indexed using the aforementioned keywords. If

the video repository is collected from the Internet using keyword

searching, then these are used for indexing the shots. If a keyword

is an object class label from an object detection dataset, we employ

object detection on the shots and index shots according to object

presence. For example, we automatically add labels for keywords

such as “zebra” and “giraffe” to various shots using an object detec-

tion network [He et al. 2017] pre-trained on the MS-COCO dataset

[Lin et al. 2014]. We also use face recognition to label shots con-

taining specific people, given their portrait photos. Other object

detection or action recognition methods [Caba Heilbron et al. 2015;

Ma et al. 2016] could also be used to index shots. Finally, further

keyword labels can be manually assigned to shots.

4.2 Visual-Semantic Embedding

To quantitatively compute matching scores between text segments

and video shots with the same indexing keywords, we use the

state-of-the-art visual-semantic embedding with hard negatives

(VSE++) approach [Faghri et al. 2018]. This method learns to en-

code cross-model content such as a text r and an image i into a

joint feature space using a neural network with triplet loss. In the

embedded space, the feature similarity between the encoded ob-

jects reveals the similarity of cross-model content. Let η(i, r) be the
visual-semantic similarity between an image i and a text r . Given

Fig. 3. Shot similarity results from two different textual segments. Each

result shows a text segment and the corresponding top 10 retrieved shots.

a positive pair (i, c) (e.g. a text describing an image), the hardest

negative samples for learning are given by i ′ = argmaxj�i η(j, r)

and r ′ = argmaxu�r η(i,u). The loss function for optimizing the

feature embedding network is defined as:

L(i, r) = max
r ′

[τ +η(i, r ′)−η(i, r)]++max
i′

[τ +η(i ′, r)−η(i, r)]+, (1)

where τ = 0.2 serves as the margin parameter, and [x]+ ≡max(x , 0).
Using this loss function, a ResNet152 network [He et al. 2016] is

trained on the MS-COCO captioning data [Lin et al. 2014] with the

output embedding dimension set to 2048. For more details, please re-

fer to [Faghri et al. 2018]. We clarify that visual-semantic embedding

is an active area of research in computer vision. Our system uses

the VSE++ algorithm [Faghri et al. 2018] as a modular component,

that can be replaced by newer or better alternatives as the field

progresses.

The similarity between a text r and a shot s is computed as the

average cosine similarity between the embedding of r and the em-

bedding of a set of frames sampled from s (we uniformly sample

one in ten frames). The top K =10 ranked shots are returned as

the candidates for each query text segment. Figure 3 shows shot

retrieval results for two segments from the Animals in Africa

example.

5 USER INTERFACE AND INTERACTION

Our method provides an interactive video montage interface, al-

lowing the user to concentrate on writing the text and editing the

segments without tedious editing of video frames. Figure 4 shows

the user interface. It includes four main components: the Text Editor,

the Candidates window, the Keywords and Idioms window and the

Preview window.

The Text Editor is the primary tool in which the user performs

most of the work. It is an enhanced text editor with extra features.

While the user can write text as in a normal text editor, the inter-

face additionally provides functions to manipulate text segments.

Initially, each sentence is a text segment. Users can right click the

mouse between two segments and select “Merge Segments” tomerge

two neighboring segments, or select “Split Segment” to split one.

The default keyword labeled in each text segment can be changed or

supplemented from the keyword set using a drag-and-drop opera-

tion; the keyword set can be expanded. Users can easily edit segment

attributes, including inserting local visual-semantic match points,

performing split timing editing, and assigning cinematographic id-

ioms for diverse stylistic control in shot assembly.

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:5

CandidatesText Editor Preview

K
eyw

ords and Idiom
s

Fig. 4. The interactive video montage interface. The Text Editor is the main component for text and segment attribute editing. The Candidates window

visualizes candidate shots for text segments using shot thumbnails. The Keyword and Idioms window provides the current keyword list and cinematography

idioms that can be assigned to text segments. Any shot and the assembled video can be played in the Preview window.

Local visual-semantic match points allow users to require an exact

visual-semantic match for a word or phrase instead of the whole

segment. Local visual-semantic match points can be set by selecting

some text, right-clicking the mouse and choosing “Visual-Semantic

Match”. The selected text will be highlighted using a bold font with

an underline. Shots that better match the semantics of marked text

are automatically retrieved and used in the resulting video.

Split timing editing provides a stylistic effect that intentionally de-

lays the start time of audio or video. By default, the timings of shots

match the start and end of the audio of the text segments. Users can

click the “Timing” button and drag the visual cut indicator forwards

or backwards from the segment boundary for cut adjustment.

Cinematographic idioms can be assigned to each text segment, to

further adjust the visual style of the assembled video. Cinemato-

graphic idioms were used by Leake et al. [2017] for fast manipulation

of style, for example, to avoid jump cuts. However, instead of setting

a global idiom configuration for the whole movie, our tool allows

the user to locally edit such idioms for segments. In our implementa-

tion, the user can require more or fewer shots in a text segment and

encourage the shots to have more static or more dynamic camera

movements by dragging these idioms onto a segment.

Once editing is finished,Write-A-Video automatically runs shot

retrieval (Section 4) and shot assembly optimization (Section 6), and

displays thumbnails of the selected shots in the Candidates window.

Each row represents a shot sequence linked to a text segment. The

user can expand the view of each row to explore the top candidate

shots, click on a thumbnail to watch the shot in the Preview window,

and select or de-select specific shots for detailed control of assembly.

The whole video can be rendered with a voice-over and displayed in

the Preview window by pressing the “Render” button. To synthesize

voice-over audio, we use the off-the-shelf text-to-speech synthesis

technique WaveNet [Oord et al. 2016]. Results without segment

attribute editing provide a default cinematographic style, while the

user can iteratively edit the text and its attributes to explore results

in diverse styles.

6 CINEMATOGRAPHY-AWARE SHOT ASSEMBLY

Cinematographic guidelines are commonly used in professional

films to enhance the flow of the story [Dmytryk 1984; Niu and Liu

2012]. We propose a cinematography-aware shot assembly algo-

rithm that depends on 2D-based camera motion estimation and

tone analysis, which can be efficiently computed. Shot assembly is

formulated as an optimization problem that composes the output

video by choosing and cutting a sequence of shots Ŝ that follows

cinematographic guidelines, text timing, and user-specified segment

attributes (see Section 5). The novelty of our shot assembly process

lies in that: (1) the cinematographic guidelines, including camera

movement, tone and duration, are estimated from 2D-based cues

and (2) a hybrid optimization method is employed, considering

shot-wise, cut-wise and segment-wise energies together.

6.1 2D-based Cinematographic Guidelines

Computational cinematographic guidelines are often estimated and

used in automatic video editing by reconstructing 3D scenes [Arev

et al. 2014], or using facial landmark alignment [Leake et al. 2017].

In our setting, such techniques are not always applicable. The shots

retrieved using visual-semantic matching may not contain the same

scene or object for 3D scene reconstruction, and faces may not be

available for alignment. Below we describe how such guidelines are

formulated and adapted to our setting; more details are provided in

Appendix A.

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:6 • Wang, M. et al

Jump Cut Opposite Camera Movement

Cut Cut

Fig. 5. Jump cuts and opposite camera movements should be avoided in

consecutive shots. In a jump cut (left) the visual content of two consecutive

shots is close but still different. Opposite camera movement (right) means

the camera path directions are opposite before and after the cut.

Content Stability. Shots with greater stability are preferred in

assembling the video. The stability of a shot s , denoted by Fstab(s),
depends on local acceleration of the video content: the greater the

acceleration, the lower the content stability. The stability term is

computed using 2D feature-based frame alignment between con-

secutive frames [Bay et al. 2006; Fischler and Bolles 1981], and

represented as the negative average of frame corner offsets needed

for aligning neighboring shot frames.

Saturation and Brightness. It has been shown [Niu and Liu 2012]

that professional shots are typically vivid and bright. Shots with

frames having high saturation and brightness are preferred. We

compute the saturation and brightness of frames using color his-

tograms. The tonal term Ftone(s) for a shot s is measured as the ratio

of high saturation and brightness regions over the shot.

Shot Duration. Varying the shot duration can affect visual smooth-

ness. Short-duration shots with frequent cuts can be disturbing,

while long-duration shots without content diversity can be boring.

The shot duration term Fdur(s) is computed as the deviation from

a standard duration, set to 3.5 seconds to avoid unnecessary long-

short duration changes [Niu and Liu 2012]. The standard duration

can be globally adjusted to suit the user’s preference.

Jump Cuts. Jump cuts should be avoided (see Figure 5). Jump

cuts appear when camera positions and angles of two consecutive

shots are different but similar, leading to a noticeable portion of

overlap between their frames.We detect jump cuts FJC(s, s
′) between

neighboring shots (s, s ′) by feature alignment on SURF keypoints

[Bay et al. 2006; Fischler and Bolles 1981].

Opposite Movements. Neighboring shots with opposite camera

movement should be avoided (see Figure 5). We detect opposite

movement FOM(s, s ′) before and after a cut between shots (s, s ′) by
comparing the estimated 2D movements from shot frame corners.

Tonal Continuity. Continuity of saturation and brightness are

important to the smoothness of visual perception. The tonal conti-

nuity term FTC(s,s ′) for a shot pair (s, s
′) is measured by histogram

differences of saturation and brightness. See Appendix A.

6.2 Hybrid Optimization of Video Assembly

The input text R = 〈r1, r2, · · · , rL〉 is composed of L segments with

associated segment attributes A = 〈A1,A2, · · · ,AL〉. Each text seg-

ment rl starting at time tl has an associated attribute setAl , and a set
of candidate shots Sl = {si

l
|1 ≤ i ≤ K}. The goal of shot assembly

Segment

EcutE
shot

Cut Between Shots

Shot

Sequence

Eseg

Split Editing

Segment

Fig. 6. Shot assembly stage. Hybrid energy optimization is based on Eshot
for individual shots, Ecut for transition between shots and Eseg for matching

between shots and text segments attributes.

is to generate a sequence of shots Ŝ = 〈Ŝ1, Ŝ2, · · · , ŜL〉 by select-

ing and ordering a subset of candidate shots and cutting between

them. We present a novel hybrid, cinematography-aware optimiza-

tion objective, that considers shot-wise, cut-wise and segment-wise

energies:

E(Ŝ,A) =

L∑
l=1

(Eshot(Ŝl) + Ecut(Ŝl) + Eseg(Ŝl ,Al)), (2)

where shot energy Eshot(Ŝl) evaluates the quality of individual se-

lected shots in the l-th segment, cut energy Ecut(Ŝl) measures the

cuts between consecutive selected shots in the l-th segment, as well

as the boundary cuts, and segment energy Eseg(Ŝl ,Al) measures the

assembled shots in terms of segment attributes. Figure 6 briefly illus-

trates the above energy terms. Compared to existing video editing

methods (see Table 1), this hybrid optimization approach not only

ensures the diversity of visual styles, but also preserves the style

consistency of each segment.

Shot Energy. When considering a candidate shot sequence Ŝl for
text segment rl , the shot energy term is considered for each shot

s independently from other shots, including its visual-semantic

matching score Fvsm(s), camera stability Fstab(s), and tonal term

Ftone(s). The shot energy term Eshot is defined as:

Eshot(Ŝl) =
1

|Ŝl |

∑
s ∈Ŝl

α1Fvsm(s) + α2Fstab(s) + α3Ftone(s),

where Ŝl is a possible shot sequence segment corresponding to rl
in the assembled video, and α1 = 1.0,α2 = 0.3,α3 = 0.3 are the

weights for the shot energy terms.

Cut Energy. We measure the visual compatibility of two consecu-

tive shots 〈s, s ′〉 in the output video by measuring whether opposite

camera motions and jump cuts are avoided (FOM(s, s ′) and FJC(s, s
′)),

and whether tonal continuity is preserved (FTC(s, s
′)). The overall

cut energy Ecut for all neighboring shots related to text segment rl
is formulated as:

Ecut(Ŝl) =
1

|C |

∑
s ∈Ŝl

β1FOM(s, s ′) + β2FJC(s, s
′) + β3FTC(s, s

′),

where Ŝl is a possible shot sequence segment corresponding to

rl , s
′ is the shot following shot s , |C | is the number of cuts, and

β {1,2,3} = −1.0 are the uniform weights of the cut energy terms.

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:7

London Tour Animal In Africa Gardening Tips Autumn Driving Brothers I Have a Pet Play in the Playground

Fig. 7. Representative frames from the 7 video repositories for video montage. Image courtesy of YouTube users Kendra Cus, ENG FRED, Gary Pilarchik, Billy

Wolffe, Howl Of A Dog, Min Kids TV.

Segment Energy. Let the sub-sequence of shots in the video as-

sembly for text segment rl be Ŝl , and Al be the segment attributes

assigned by the user.Al contains local visual-semantic match points,

split timing editing, and duration and content movement idioms.

Based on these attributes, let Fmatch(Ŝl ,Al) be the local visual-

semantic match energy, Fsplit(Ŝl ,Al) be the split timing editing

energy, and Fidiom(Ŝl ,Al) be the cinematographic idiom energy.

The segment energy for text segment rl is given by:

Eseg(Ŝl ,Al) = γ1Fidiom(Ŝl ,Al) + γ2Fmatch(Ŝl ,Al) + γ3Fsplit(Ŝl ,Al),

where γ1 = −1.0,γ2 = 3.0,γ3 = −3.0 are the segment term weights.

All the term weights were fixed to provide the best visual quality

based on our experiments.

6.3 A Dynamic Programming Solver

To efficiently optimize this objective function, we present a dynamic

programming method and also use some acceleration strategies. Let

〈l , Ŝl , t〉 denote the state for the current selected shot sequence, with

cuts for the first l segments ending at (global) time t , where Ŝl is
the partial shot sequence already chosen for current segment rl . Let

D(l , Ŝl , t) denote the optimal energy for this state. When choosing

the next shot s for shot assembly from the current state 〈l , Ŝl , t〉, the
current state can transition to a state still in the current segment

rl or in the next segment rl+1. In the former case, the next state

would be 〈l , Ŝ ′
l
, t ′〉 with a new partial shot sequence Ŝ ′

l
including

the chosen shot s and ending at time t ′. In the latter case, the next

state would be 〈l + 1, Ŝ ′
l+1
, t ′〉 where Ŝ ′

l+1
is the new partial shot

sequence in segment rl+1 with only one chosen shot s ending at t ′.
State transition details are provided in Appendix B.

The optimal solution can be obtained by solving:

Ŝ∗L , t
∗ = arg max

〈ŜL,t 〉
D(L, ŜL , t), (3)

using dynamic programming and back-tracking the shot sequence

with cuts from Ŝ∗
L
with a global ending time of t∗. The worst case

optimization complexity is O(LT̄ 2 ¯|S |!), where L is the number of

segments, |S̄ | is the average number of candidate shots retrieved

by visual-semantic matching for a textual segment, and T̄ is the

average temporal length of segments. This can become infeasible to

compute, and we rely on two strategies to speed up the optimization.

The first one is to search for possible solutions only among sampled

frames. In our implementation, we sample one frame in every ten

frames and only perform cuts at sampled frames. The second one

is to set an upper bound on the number of shots actually selected

in each segment in the final video. We found that four shots are

typically enough for the different stylistic effects. These strategies

make the problem tractable in practice. The user can relax these

strategies to achieve higher quality outputs at the cost of time. To

avoid using repetitive shots in the montage, we iteratively run the

optimization and remove repeated shots until shot uniqueness is

met.

7 RESULTS AND EVALUATION

We have usedWrite-A-Video to generate 20 video montage results,

covering various topics such as tour guiding, an introduction to ani-

mals, gardening and driving tutorials, and personal stories. The texts

were collected from public websites, online video voice-overs, lyrics

of nursery rhymes and personal creations. In total, 7 video reposito-

ries (720p at 30 fps) were used (see Figure 7), either downloaded from

YouTube (London Tour, Animals in Africa, Gardening Tips, Au-

tumn Driving, I Have a Pet, Play in the Playground) using user

specified keywords, or collected from an album (Brothers). The

supplementary material provides interaction demos and full details,

including texts, video montage, keywords, editing operations and

time. We encourage readers to watch the videos.

For our YouTube video repositories we collected about 250 videos

for each user-provided keyword, segmented them into shots and

labeled the shots automatically with corresponding query keywords

in a pre-processing stage. Object detection was employed to label

shots for the Animals in Africa and I Have a Pet repositories.

For the video repository Brothers, portrait photos of the main

characters and their names were used to automatically index shots

by character name using face recognition. Two additional keywords

were interactively assigned to shots in this repository. Next, the

cinematography-aware energy terms were pre-computed to support

interactive video montage editing. The pre-processing was executed

for each video repository once, allowing it to be used to create

multiple video montages.

We tested our tool on a 2.6 GHz PC with 16GB memory. The

pre-processing time varies with example, depending on the input

video length and the number of segmented shots. As reported in

Table 2, shot segmentation and feature embedding speeds were

111 fps and 470 fps respectively on a single core; this could be

significantly accelerated with parallelization. Shot retrieval took less

than 0.10 seconds. Considering efficiency, diversity and accuracy,

we set K = 10 as the number of candidate shots in all of our video

montage results. Video assembly time varied from 0.06 seconds to

8.56 seconds, typically determined by text length. The rendering

procedure to generate output video performs at 255 fps.

7.1 Video Montage Results

We briefly introduce video montage results generated for various

applications. Full results are provided in supplementary files.

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:8 • Wang, M. et al

Table 2. Pre-processing statistics for video repositories. For each repository, the number of videos, their total duration, shot segmentation time (Segmentation),

feature embedding time (Embedding), shot energy computation time (Energy) and manual labeling time (Labeling) are given. We also show statistics of the

pre-processed results including the number of shots (Shots), the average shot duration (Avg. Duration), and number of keywords (Keyword).

Repository
Raw Input Pre-Processing Time Pre-Processed Shots

Video Total Duration Segmentation Embedding Energy Labeling Shots Avg. Duration Keywords

London Tour 469 31:32:39s 7:33:28s 04:01s 1:03:22s 0s 6817 12.98s 8

Animals in Africa 451 22:00:02s 5:42:05s 03:06s 0:30:05s 0s 4210 12.15s 6

Gardening Tips 449 35:34:19s 8:31:59s 03:44s 0:28:16s 0s 2716 17.43s 6

Autumn Driving 403 23:40:25s 6:57:03s 03:26s 0:43:08s 0s 3945 13.07s 6

Brothers 4 03:22:47s 2:06:19s 06:08s 1:40:33s 32:33s 1206 9.04s 4

I Have a Pet 126 10:05:46s 3:39:31s 03:13s 45:43s 0s 2348 10.85s 6

Play in the Playground 100 7:29:53s 2:33:40s 03:03s 42:36s 0s 1961 11.44s 4

The giraffe is the

world's tallest…

The African

elephant lives in…

The near threatened

white rhinoceros…

The zebra is a

herbivorous…

0.022 0.085 0.024 0.006

0.639 0.391 0.437 0.826

M
o

re
 M

o
v
e

L
es

s
M

o
v
e

Fig. 8. Two video montage results with different cinematographic styles,

using the repository Animals in Africa. Each row from left to right shows

four shot thumbnails from corresponding text segments. Top row: video

montage with less camera movement; bottom row: video montage with more

camera movement. Movement term values are listed below the thumbnails.

Video Montage for Online Text. Several London Tour videos were

created based on a text from a website introducing scenic locations

in London: Elizabeth Tower, Westminster Abbey, Hyde Park, Bucking-

ham Palace, Tower Bridge and the National Gallery. The texts were

iteratively edited with various visual styles. Animals in Africa

videos were created to introduce several animals that live in Africa,

including giraffe, elephant, cheetah, zebra, rhinoceros and cow. Figure

8 shows two representative results with different stylistic movement

controls. The Autumn Driving results provide tutorials giving ad-

vice on driving in autumn, including key subjects check tires, fallen

leaves, dark road, winter tires and icy road. Gardening Tips videos

provide tips on gardening, including container gardening, gardening

soil, gardening location, watering plants and trimming leaves. Five lo-

cal visual-semantic matches were applied to better match the action

timing.

Video Montage for Personal Stories. We created two videos from

an original story named Brothers; the video repository comes from

an album. It introduces a short story about a chemistry teacher John,

with different visual styles.

Video Montage for Human Voice-overs. Instead of using the text-

to-speech synthesis technique to generate voice-overs for texts, we

used the inverse speech recognition technique [Chiu et al. 2018]

to recognize words and get the timing from voice-overs. We tested

this on three different human voice-overs extracted from existing

YouTube videos, and generated new videos for them using Lon-

don Tour, Animals in Africa and Gardening Tips repositories

respectively.

Table 3. Precision of visual-semantic matching methods.

Method Top-1 Top-5 Top-10 Top-20

Random 7.34% 10.01% 10.71% 10.74%

MEE 13.59% 14.99% 16.12% 16.37%

VSE++ 57.43% 47.28% 41.58% 38.30%

Random&Keyword Matching 48.47% 56.18% 54.99% 54.83%

MEE&Keyword Matching 51.09% 58.19% 57.65% 58.53%

VSE++&Keyword Matching (Ours) 76.85% 71.28% 69.95% 64.43%

Video Montage for Nursery Rhymes. We generated music videos

for nursery rhymes I Have a Pet and Play in the Playground

using their lyrics and timing.

A Minimum Interaction Mode. We developed a simple interface,

that only allows users to write and edit text. The rest of the process-

ing is fully automatic and uses default cinematographic guidelines.

After updating the text, a video montage result is immediately gen-

erated. A demo video is provided in the supplementary material.

7.2 Evaluation of Visual-Semantic Matching

We evaluated our visual-semantic matching method by measuring

the precision of top-ranked shots for query texts. The evaluation

was performed on video repositories London Tour, Animals in

Africa, AutumnDriving and Gardening Tips with corresponding

segmented texts. The ground truth visual-semantic matched shots

for text segments were labeled by human workers in advance. Note

that in our video montage problem, because top-ranked shots are re-

turned as candidates, the precision value for the returned candidates

is more important. We compared our method against ones without

either keyword matching, without visual-semantic embedding, or

both. We also compared the employed visual-semantic embedding

algorithm VSE++ to an alternative text-video embedding algorithm,

MEE [Miech et al. 2018]. Overall statistics shown in Table 3 demon-

strate that our visual-semantic matching performance is better than

that of alternatives and each cascaded stage plays an important role.

7.3 Evaluation of Cinematography-Aware Shot Assembly

Cinematography-aware shot assembly is a key component of our

method. We evaluated results using all terms against results without

certain individual terms. In our formulation, some terms are used by

default, such as visual-semanticmatching and camera stability, while

some can be employed by users via cinematography idioms, such as

adjusting shot duration. To be consistent across all evaluations, to

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:9

2.2

2

1.3

3

2.9

4.4

3

2.6

2.3

3.6

4

5

5.5

4.7

5.1

5

5.7

4.3

5.6

5.4

w/ LSD

w/ MM

Ours

Ours

Ours

Ours

Ours

Ours

Ours

Ours

Please rate the visual content and voice-over semantic matching
score through the whole video (1-Very Poor; 7-Excellent)

Please rate the average camera stability score through
the whole video (1-Very Shaky; 7-Very Stable)

Please rate the average saturation and brightness
through the whole video (1-Very Low; 7-Very High)

Please rate the adjacent opposite camera move appearance frequency
through the whole video (1-Very Frequent; 7-None)

Please rate the Jump Cut appearance frequency
through the whole video (1-Very Frequent; 7-None)

Please rate the saturation and brightness continuity
through the whole video (1-Very Poor; 7-Excellent)

Please rate if shot duration is even
through the whole video (1-Very Poor; 7-Excellent)

Please rate the synchronization between sound and picture
through the whole video (1-Very Poor; 7-Excellent)

Please rate the movement level of content or camera
through the whole video (1-Very Low; 7-Very High)

Please rate the shot duration
through the whole video (1-Very short; 7-Very long)

w/ SD

w/ M

Fig. 9. User study questions and results for individual energy terms, see

text for details.

generate a video montage, the same London Tour repository was

used with a specific reference text composed of 5 text segments. In

addition to our standard result (Ours), we generated various results

without certain terms: visual-semantic matching (w/o VSM), camera

stability (w/o CS), saturation and brightness (w/o SB), avoiding

opposite motions (w/o AOM), avoiding jump cuts (w/o AJC), keeping

tonal continuity (w/o TC), shot duration constraints (w/o SD) and

segment timing constraints (w/o ST). We also generated videos with

a cinematography idiom assigned globally to the text, including

ones with more movement (w/ MM), less movement (w/ LM), long

shot duration (w/ LSD) and short shot duration (w/ SSD).

We performed pairwise evaluation tests to rate the video results.

Paid tasks were created via a crowd-sourcing platform; each worker

was asked to watch and rate a pair of videos. The workers were

asked to rate each video using a 7-point Likert scale according to

the term being evaluated. In total, 10 scores were collected for each

video. During the tests, videos were displayed in full-screen mode;

within each pair, the video to be played first was randomly chosen.

Workers could watch each video multiple times before making a

decision. Figure 9 shows the evaluation results. They demonstrate

that each individual term plays a positive role in its corresponding

visual style.

7.4 Comparison toQuickCut

We compared our hybrid optimization to QuickCut’s optimization

procedure. QuickCut supports two main modes: alternatives mode

and ordered-grouping mode. The alternatives mode only assembles

one shot for a segmented script; this can limit diversity in the result.

The ordered-grouping mode optimizes cut positions for a manually

determined shot sequence. In contrast, our optimization method

automatically decides the shot sequence order and cut positions

Table 4. Comparison toQuickCut optimization. Our Opt.&Nrg.: our hy-

brid optimization and our energy terms; Our Opt.+QC Nrg.: our hybrid

optimization andQuickCut energy terms;QCAlter.:QuickCut Alternatives

mode; QC Ordered.: QuickCut Ordered-grouping mode.

Metric Our Opt.&Nrg. Our Opt.+QC Nrg. QC Alter. QC Ordered.

Time 5.82s 8.05s 0.10s 25.4s

Score 5.0 3.5 2.0 2.7

for shot assembly. Furthermore, our hybrid optimization method

runs faster than QuickCut’s plain dynamic programming. QuickCut

employs sharpness, stability and jump cut terms as cinematographic

guidelines, while our optimization further considers saturation and

brightness, opposite movements and shot duration. We used the

same reference text from the London Tour example to generate the

following results for evaluation: Our Optimization+Our Energy, Our

Optimization+QuickCut Energy, QuickCut Alternatives, QuickCut

Ordered-grouping. Because QuickCut Ordered-grouping needs a pre-

determined order of shots as input, we simply feed their method

the sequence order determined by Our Optimization+Our Energy.

We invited 10 subjects to rate all videos using a 7-point Likert

scale, considering cinematographic aesthetics, content diversity

and visual-semantic matching of narration and visual content (1

= very poor, 7 = excellent). During testing, videos were displayed

in full-screen mode with videos played in random order for each

subject. Subjects rated each video after watching it. Table 4 shows

the run time and the evaluation result. Our method was more highly

preferred by users than all other optimization methods, and ran

faster than QuickCut Ordered-grouping.

7.5 Comparison to Professional Manual Editing.

We compared video editing time using the same reference text, for

a video editing novice usingWrite-A-Video, and a professional video

editor using commercial frame-based editing software. We further

conducted a user study to evaluate the quality of the videos produced.

The professional editor had 8 years of video editing experience. She

was asked to edit a video for a text with corresponding voice-over

using the given London Tour video repository, and to ensure visual-

semantic consistency and maximum visual quality. We also asked

her to use only simple cuts between shots, without fades, speed ups

or other special effects. She was free to determine the editing style.

In the editing task, we asked the professional editor to generate

videos both from the original video repository (Task I) and from the

segmented shots indexed by keywords (Task II). The repository in

Task I consisted of all downloaded raw videos. Editing video from

this repository corresponded to all processing stages of our tool.

The repository in Task II was segmented into shots and indexed

by the keyword set. The professional editor was free to use such

keywords for semantic assistance or not, as desired.

The editor chose Adobe Premiere as the frame-based editing tool.

For a fair comparison, we only counted the human active time during

editing. As shown in Table 5, Task I took the editormore than 7 hours

while Task II took her more than 4.5 hours. For both editing tasks,

the human active time using our tool was significantly lower than

these times. After finishing the tasks, we invited the editor to watch

and comment on the results created by our tool. Generally, she rated

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:10 • Wang, M. et al

Table 5. Comparison between the professional editor and a novice using

Write-A-Video.

Method
Time Score

Task I Task II Task I Task II

Professional Editor 7:20:20s 4:40:12s 5.3 5.8

Novice using Write-A-Video 0:13:16s 5.0

our videos as reasonable and plausible. She also commented that her

personal preference would be to use more precisely matched visual

content to the voice-over, even if this meant using more frequent

cuts between shots.

To further evaluate the generated videos, 10 non-expert subjects

were invited to watch the editor’s results and our results. They were

asked to rate for each video with a 7-point Likert scale (1 = poor,

7 = excellent), taking into account the general visual quality and

visual consistency with the narration. During the tests, videos were

displayed in full-screen mode using a random order within each

pair. Subjects could watch each video multiple times before making

a decision. The user study results are reported in Table 5. It can

be seen that although the visual quality of our results are slightly

inferior to the professional editor’s, our results rated 5.0 points on

average. More importantly,Write-A-Video drastically reduced the

editing time compared to frame-based manipulation.

7.6 Inexperienced User Study

Because the primary goal of Write-A-Video is to help inexperienced

users to create videos, its effectiveness is key.We invited 5 users aged

18 to 30 without any video editing skills to try the tool. Their goal

was to create a video based on a reference text and a video repository.

When editing videos, the user could iteratively edit the reference

text by adding, removing, re-ordering the text or changing it, and

setting text segment attributes, until the video montage met his or

her preference. We started the study by showing the participants a

video tutorial and explaining the editing operations provided. We

gave each participant the pre-processed London Tour repository

and corresponding reference text, and allowed him/her to explore

the tool for 15 minutes. After a 5-minute rest, they started the formal

task with the repository and reference text of Animals in Africa.

Table 6 reports the editing statistics. Full editing operations are

provided in the supplementary material. On analysis of the edit-

ing process, we found that in addition to editing the text, most

frequently used operations were cinematographic idioms and local

visual matches to explore different visual styles. We interviewed

the users after the tests, and asked them to rate the tool and the

generated video, using the following questions:

• Q1: How would you rate the usability of our tool (1-7)?

• Q2: How would you rate the result of the generated video

(1-7)?

• Q3:Would you bewilling to post the output video to Facebook,

Twitter or Instagram?

For Q1, we got an average response of 6.0; for Q2 the average

response was 6.6 (see Table 6). All participants were willing to share

their video with friends via a social network. They also confirmed

that without this tool, it would have been impossible for them to

produce such a nice video in such a short time.

Table 6. User experience statistics. Seg. is the number of segments; Length

is the length of output video; Editing Time stands for the video editing

time; Sys. Rating stands for user rating on our tool; Res. Rating stands

for the visual quality rating of generated video.

Seg. Length Editing Time Sys. Rating Res. Rating

User 1 20 1:50s 35:47s 6.0 6.0

User 2 18 1:45s 27:01s 6.0 7.0

User 3 15 1:25s 8:19s 5.0 6.0

User 4 14 1:09s 9:48s 7.0 7.0

User 5 14 1:19s 10:11s 6.0 7.0

8 DISCUSSION AND CONCLUSION

Non-professional users find it difficult to learn and use profes-

sional frame-based video editing software, and lack cinematography

knowledge for film editing. Therefore, we have presented Write-

A-Video, a method to create video montages to illustrate a themed

text using mostly text editing. Given an input repository of relevant

shots,Write-A-Video makes it possible for any user to create visually

pleasing videos by simplywriting and editing the text and using high

level cinematography idioms. The tool provides fast feedback, as the

output video is rendered within a few seconds after the user finishes

an iteration of editing. With this tool and the novel text-based video

assembly concept, a user can create a video montage in minutes.

As video has become a main storytelling form in modern media,

we believe the proposed approach will impact computational video

editing field. While our method enables users to generate video

montages easily, it has limitations which suggest future research

directions.

Visual-Semantic Matching. Our method focuses on themed text

and relies on visual-semantic matching. If the input text is too

specific, involving specific people or subjects or actions, then it is

possible that good video matches may not be found. If the text is

too abstract or combines several themes, it could also be difficult to

build a good text-to-video embedding space. In future, incorporating

more advanced visual-semantic matching algorithms may lead to

better performance and support a wider scope for texts.

Artistic Expression and Fine Control. On one hand, our tool can

help inexperienced users create plausible videos easily. On the other

hand, as the professional editor pointed out, sometimes cinematog-

raphy guidelines are intentionally broken to express artistic style.

For example, intentional jump cuts with small shot lengths are some-

times favored in selfie videos. Although certain special visual effects

can be obtained by use of cinematographic idioms and parameters

in our tool, more fine control could be developed in future. In addi-

tion, the outputs of our video montage tool could be exported as an

Edit Decision List (EDL) file for further professional frame-based

adjustment using commercial software.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments

and Professor Ralph Martin for helpful discussions. Miao Wang was

supported by the NSFC (Project Number: 61832016, 61902012). Shi-

Min Hu was supported by the NSFC (Project Number: 61521002).

Ariel Shamir was supported by the ISF as part of the ISF-NSFC Joint

Program (2216/15).

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:11

REFERENCES
Ido Arev, Hyun Soo Park, Yaser Sheikh, Jessica Hodgins, and Ariel Shamir. 2014. Au-

tomatic editing of footage from multiple social cameras. ACM Trans. Graph. 33, 4
(2014), 81.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up Robust
Features. 404–417.

Rachele Bellini, Yanir Kleiman, and Daniel Cohen-Or. 2018. Dance to the beat: Syn-
chronizing motion to audio. Computational Visual Media 4, 3 (2018), 197–208.

Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2012. Tools for Placing Cuts
and Transitions in Interview Video. ACM Trans. Graph. 31, 4 (2012), 67:1–67:8.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. 2015.
ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding.
In IEEE CVPR.

Minsuk Chang, Anh Truong, Oliver Wang, Maneesh Agrawala, and Juho Kim. 2019.
How to Design Voice Based Navigation for How-To Videos. In ACM CHI. Article
701, 701:1–701:11 pages.

Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and Bjoern Hartmann.
2013. Democut: generating concise instructional videos for physical demonstrations.
In ACM UIST. 141–150.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen,
Zhifeng Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al.
2018. State-of-the-art speech recognition with sequence-to-sequence models. In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
4774–4778.

W. S. Chu, Yale Song, and A. Jaimes. 2015. Video co-summarization: Video summariza-
tion by visual co-occurrence. In IEEE CVPR. 3584–3592.

Abe Davis and Maneesh Agrawala. 2018. Visual Rhythm and Beat. ACM Trans. Graph.
37, 4, Article 122 (2018).

Edward Dmytryk. 1984. On Film Editing: An Introduction to the Art of Film Construction.
Focal Press.

David K Elson and Mark O Riedl. 2007. A Lightweight Intelligent Virtual Cinematogra-
phy System for Machinima Production. (2007).

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2018. VSE++: Improv-
ing Visual-Semantic Embeddings with Hard Negatives. In BMVC.

Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography.
Commun. ACM 24, 6 (1981), 381–395.

Quentin Galvane, Rémi Ronfard, Christophe Lino, and Marc Christie. 2015. Continuity
Editing for 3D Animation. In AAAI. 753–762.

Andreas Girgensohn, John Boreczky, Patrick Chiu, John Doherty, Jonathan Foote,
Gene Golovchinsky, Shingo Uchihashi, and Lynn Wilcox. 2000. A Semi-automatic
Approach to Home Video Editing. In ACM UIST. 81–89.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn. In
IEEE ICCV. 2980–2988.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In IEEE CVPR. 770–778.

Rachel Heck, Michael Wallick, and Michael Gleicher. 2007. Virtual videography. ACM
Trans. Multimedia Comput. Commun. Appl. 3, 1 (2007), 4.

Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. 2011. A survey
on visual content-based video indexing and retrieval. IEEE Trans. Syst., Man, Cybern.
C 41, 6 (2011), 797–819.

Haozhi Huang, Xiaonan Fang, Yufei Ye, Songhai Zhang, and Paul L. Rosin. 2017. Practical
automatic background substitution for live video. Computational Visual Media 3, 3
(2017), 273–284.

Eakta Jain, Yaser Sheikh, Ariel Shamir, and Jessica Hodgins. 2015. Gaze-Driven Video
Re-Editing. ACM Trans. Graph. 34, 2, Article 21 (2015), 12 pages.

Neel Joshi, Wolf Kienzle, Mike Toelle, Matt Uyttendaele, and Michael F. Cohen. 2015.
Real-time Hyperlapse Creation via Optimal Frame Selection. ACM Trans. Graph. 34,
4 (2015), 63:1–63:9.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for generating
image descriptions. In IEEE CVPR. 3128–3137.

G. Kim, L. Sigal, and E. P. Xing. 2014. Joint Summarization of Large-Scale Collections
of Web Images and Videos for Storyline Reconstruction. In IEEE CVPR. 4225–4232.

Mackenzie Leake, AbeDavis, Anh Truong, andManeeshAgrawala. 2017. Computational
Video Editing for Dialogue-driven Scenes. ACM Trans. Graph. 36, 4 (2017), 130:1–
130:14.

Zicheng Liao, Yizhou Yu, Bingchen Gong, and Lechao Cheng. 2015. Audeosynth:
Music-driven Video Montage. ACM Trans. Graph. 34, 4, Article 68 (2015).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in
context. In IEEE ECCV. 740–755.

Shugao Ma, Leonid Sigal, and Stan Sclaroff. 2016. Learning Activity Progression in
LSTMs for Activity Detection and Early Detection. In IEEE CVPR.

Erik Machnicki and Lawrence A Rowe. 2001. Virtual director: Automating a webcast.
In Multimedia Computing and Networking 2002, Vol. 4673. 208–226.

Antoine Miech, Ivan Laptev, and Josef Sivic. 2018. Learning a text-video embedding
from incomplete and heterogeneous data. arXiv preprint arXiv:1804.02516 (2018).

M. Ramesh Naphade, I. V. Kozintsev, and T. S. Huang. 2002. Factor graph framework
for semantic video indexing. IEEE Trans. Circuits Syst. Video Technol. 12, 1 (2002),
40–52.

Yuzhen Niu and Feng Liu. 2012. What makes a professional video? a computational
aesthetics approach. IEEE Trans. Circuits Syst. Video Technol. 22, 7 (2012), 1037–1049.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016. Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).

Amy Pavel, Dan B Goldman, Björn Hartmann, and Maneesh Agrawala. 2015. Sce-
neskim: Searching and browsing movies using synchronized captions, scripts and
plot summaries. In ACM UIST. 181–190.

Amy Pavel, Colorado Reed, Björn Hartmann, and Maneesh Agrawala. 2014. Video
Digests: A Browsable, Skimmable Format for Informational Lecture Videos. In ACM
UIST (UIST ’14). 573–582.

Ana Serrano, Vincent Sitzmann, Jaime Ruiz-Borau, Gordon Wetzstein, Diego Gutierrez,
and Belen Masia. 2017. Movie Editing and Cognitive Event Segmentation in Virtual
Reality Video. ACM Trans. Graph. 36, 4, Article 47 (2017), 12 pages.

Hijung Valentina Shin, Floraine Berthouzoz, Wilmot Li, and Frédo Durand. 2015. Visual
transcripts: lecture notes from blackboard-style lecture videos. ACM Trans. Graph.
34, 6 (2015), 240.

S. W. Smoliar and HongJiang Zhang. 1994. Content based video indexing and retrieval.
IEEE MultiMedia 1, 2 (1994), 62–72.

James Tompkin, Kwang In Kim, Jan Kautz, and Christian Theobalt. 2012. Videoscapes:
Exploring Sparse, Unstructured Video Collections. ACM Trans. Graph. 31, 4, Article
68 (2012), 12 pages.

Anh Truong, Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2016. QuickCut:
An Interactive Tool for Editing Narrated Video. In ACM UIST. 497–507.

M. Wang, J. Liang, S. Zhang, S. Lu, A. Shamir, and S. Hu. 2018. Hyper-Lapse From
Multiple Spatially-Overlapping Videos. IEEE Transactions on Image Processing 27, 4
(2018), 1735–1747.

M. Wang, G. Yang, J. Lin, S. Zhang, A. Shamir, S. Lu, and S. Hu. 2019. Deep Online Video
Stabilization With Multi-Grid Warping Transformation Learning. IEEE Transactions
on Image Processing 28, 5 (2019), 2283–2292.

Ke Xie, Hao Yang, Shengqiu Huang, Dani Lischinski, Marc Christie, Kai Xu, Minglun
Gong, Daniel Cohen-Or, and Hui Huang. 2018. Creating and Chaining Camera
Moves for Qadrotor Videography. ACM Trans. Graph. 37, 4 (2018), 88:1–88:13.

Hao Yang, Ke Xie, Shengqiu Huang, and Hui Huang. 2018. Uncut Aerial Video via a
Single Sketch. Computer Graphics Forum 37, 7 (2018), 191–199.

F. Zhang, J. Wang, H. Zhao, R. R. Martin, and S. Hu. 2015. Simultaneous Camera
Path Optimization and Distraction Removal for Improving Amateur Video. IEEE
Transactions on Image Processing 24, 12 (2015), 5982–5994.

F. Zhang, X. Wu, R. Li, J. Wang, Z. Zheng, and S. Hu. 2018. Detecting and Removing Vi-
sual Distractors for Video Aesthetic Enhancement. IEEE Transactions on Multimedia
20, 8 (2018), 1987–1999.

Yu Zhang, Xiaowu Chen, Liang Lin, Changqun Xia, and Dongqing Zou. 2016. High-level
representation sketch for video event retrieval. Science China Information Sciences
59, 7 (2016), 072103.

A APPENDIX: ENERGY TERM DETAILS

In this appendix we define all energy terms used in our optimization

method for shot assembly. Values of each term are normalized to

the range [0, 1] before combination.

A.1 Shot Energy Terms

Visual-Semantic Matching. Fvsm(s) measures how semantically

consistent the visual content of a shot s is with the query text

segment r . We define Fvsm(s) for a shot s as the inverse of its rank
index indr (s) when retrieved with corresponding query segment r :
Fsemantic(s) = 1/indr (s).

Camera Stability. . Fstab(s) evaluates average acceleration of video
content as a proxy for camera stability: the smaller the acceleration,

the greater the camera stability. Let H (f , f ′) be the homography

transformation matrix linking consecutive frames f and f ′ in a

shot, computed using SURF features [Bay et al. 2006], and RANSAC

regression [Fischler and Bolles 1981]. We use the estimated ho-

mography matrices H (f , f ′) and H (f ′, f ′′) from three consecutive

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

177:12 • Wang, M. et al

sampled frames f , f ′, f ′′ in shot s , to compute the local camera

shake measure lcs(f) for frame f :

lcs(f) =
1

4

4∑
i=1

| |H (f ′, f ′′)pf ′ (i) − pf ′ (i) − (H (f , f ′)pf (i) − pf (i))| |2,

where pf (i), i = 1, . . . , 4 are the 2D positions of the four frame

corners measured in pixels. The camera stability term Fstab(s) is
computed as the negative average of local shake values over time:

Fstab(s) = −
1

|s |

∑
f ∈s

lcs(f), (4)

where |s | is the number of sampled frames in shot s , and the sampling

step is 10 frames.

Saturation and Brightness. Ftone(s) measures the saturation and

brightness of frames over the whole shot. We first represent frame

f in HSL color space, then compute the ratio ξ (f) of pixels whose S
and L channel intensities are both above 70% of the maximum value

(i.e. 255). Ftone(s) is then defined as:

Ftone(s) =
1

|s |

∑
f ∈s

ξ (f). (5)

A.2 Cut Energy Terms

Avoid Opposite Camera Movements. We determine whether shots

move in opposite directions before and after the cut by comparing

the estimated 2D movements of frame corners before and after:

FOM(s, s ′) =

{
1 if Q(e(s),b(s ′)) < η
0 otherwise,

Q(f1, f2) =
4∑
i=1

ν (f1, i) · ν (f2, i)

|ν (f1, i)| |ν (f2, i)|
,

ν (f , i) = p(i) − H (f)p(i),

(6)

where s and s ′ are consecutive shots, e(s) is the last frame of s and
b(s ′) is the start frame of s ′, Q(f1, f2) is the cosine distance of the
2D frame corner movement vectors of f1 and f2, η = −0.01 is a

threshold determining whether the movements are opposite, ν(f , i)
is the function estimating the 2D movement of the i-th frame corner

p(i) of f , and H (f) is the estimated homography transformation

linking shot frame f and the next sampled frame.

Avoid Jump Cuts. A cut between consecutive shots s ′ and s is
determined as a jump cut if the last frame e(s ′) in s ′ and the first

frame b(s) in s can be registered and aligned with a small 2D offset:

FJC(s, s
′) =

{
1 if 1

4

∑4
i=1 | |H (e(s),b(s ′))p

e(s)
i − p

e(s)
i | |2 < ϵ

0 otherwise,

where H (e(s),b(s ′)) is the homography matrix between e(s) and

b(s ′), p
e(s)
i , i = 1, . . . , 4 are the positions of the four corners of the

frame e(s), ϵ is a threshold determining whether the offset magni-

tude suffices for a jump cut. In our implementation, we set ϵ = 150

for 720p video.

Tonal Continuity. We compute tonal continuity between neigh-

boring shots 〈s, s ′〉 based on saturation histogram difference and

brightness histogram difference:

FTC(s, s
′) =

1

2
(Γ(ΨS (s),ΨS (s

′)) + Γ(ΨL(s),ΨL(s
′))), (7)

where ΨS (s) is the S-channel histogram of frame s , and ΨL(s) is the
L-channel histogram of frame s , both quantified to 256 bins. Γ(·, ·)
is the chi-square distance of two color histograms.

A.3 Segment Energy Terms

The cinematography idioms energy term Fidiom(Ŝl ,Al) is theweighted

sum of two terms: the movement term Fmove(Ŝl ,Al) and the shot

duration term Fdur(Ŝl ,Al):

Fidiom(Ŝl ,Al) = Fmove(Ŝl ,Al) − 0.03Fdur(Ŝl ,Al). (8)

Movement Preference. Fmove(Ŝl ,Al) encourages motions of shots

Ŝl to follow the user preferenceAmove
l

, whereAmove
l

is either 1.0 for

dynamic shots or −1.0 for static shots. We first compute the local

movement lm(f) of each frame in a shot s: lm(f) is determined

using the magnitude of the 2D translations of frame corners needed

to spatially align the current frame f to the next frame f ′:

lm(f) =
1

4

4∑
i=1

| |H (f , f ′)pf (i) − pf (i)| |2, (9)

where pf (i), i = 1, 2, 3, 4 are the positions of the four corners of the

frame f . H (f , f ′) is the homography matrix linking f to f ′. The

movement term Fmove(Ŝl ,Al) is defined as:

Fmove(Ŝl ,Al) =
Amove
l∑nl
i |̂si

l
|
·

nl∑
k

∑
f ∈ŝk

l

lm(f). (10)

Shot Duration Preference. Fdur(Ŝl ,Al) encourages the shots in Ŝl
to follow a user specified shot duration Adur

l
for segment rl :

Fdur(Ŝl ,Al) =
1

|Ŝl |

nl∑
k

(
|sk
l
|

γ
−Alen

l
)2, (11)

where |Ŝl | is the number of shots in Ŝl , |s
k
l
| is the number of frames

in the k-th shot of Ŝl , γ is the video frame rate, set to 30 fps. Adur
l

is the reference shot length for segment rl in seconds, with default

value 1.0 for cinematography idiom ‘Reduce Shot Duration’ and

10.0 for cinematography idiom ‘Extend Shot Duration’; the user

can further set shot length values via a slide bar. If no such idioms

are chosen, the default shot length is set as 3.5 seconds to avoid

unnecessary long-short duration changes [Niu and Liu 2012]. The

default length can be globally changed during tool initialization

according to user preference.

Split Time Editing Preference. Fsplit(Ŝl ,Al) allows the user to ad-

just cutting points for video and audio separately. Let Aoff
l

be a

user-specified starting timing offset for the first shot ŝ1
l
for segment

rl , with default value 0, and let t (̂s1
l
) be the start time of ŝ1

l
in the

global time-line. Fsplit(Ŝl ,Al) is defined as:

Fsplit(Ŝl ,Al) = (t (̂s1
l
) − (tl +A

off
l
))2, (12)

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

Write-A-Video: Computational Video Montage from Themed Text • 177:13

where tl is the global start time of the voice-over of segment rl .

Local Visual-Semantic Match. Fmatch(Ŝl ,Al) allows local visual
match points at which the visual content appears in the movie

when a specified word, phrase or character appears in the narration.

Assume the times ofml user specified keywords or character names

〈w1
l
,w2

l
, · · · ,w

ml

l
〉 in segment rl are A

match
l

= 〈a1
l
,a2

l
, · · ·a

ml

l
〉 in

the time-line, and σk
l
is the best shot interval that matches wk

l
in

candidate shots Sl ; [α
k
l
, βk

l
] is the global time of σk

l
in the assembled

video. The local visual-semantic match term Fmatch(Ŝl ,Al) is given
by:

Fmatch(Ŝl ,Al) =

ml∑
k

δ (ak
l
,αk

l
, βk

l
). (13)

δ (a,α , β) =

{
1 if α ≤ a ≤ β
0 otherwise.

(14)

The weights to combine shot energy, cut energy and segment energy

terms are empirically set to: α1 = 1.0, α2 = 0.3, α3 = 0.3, β1 = −1.0,

β2 = −1.0, β3 = −1.0, γ1 = −1.0, γ2 = 3.0, γ3 = −3.0.

B APPENDIX: DYNAMIC PROGRAMMING DETAILS

We present the details of the transition equation for the dynamic

programming method in Section 6. As explained there, 〈l , Ŝl , t〉
denotes the state for the current selected shot sequence with cuts

for the first l segments ending at global time t , where Ŝl is the partial

shot sequence already chosen for the current segment rl . D(l , Ŝl , t)
denotes the optimal energy for this state.

Initially, the energy for the first globally selected shot s with cut

length t is defined as:

D(1, Ŝ1, t) = Eshot(Ŝ1) + Eseg(Ŝ1,A1), (15)

where Ŝ1 = 〈s〉 only contains shot s , and A1 is the attribute set for

the first segment.

When we already have D(l , Ŝl , t) for the first l segments and wish

to determine the next shot s for shot assembly, the new shot can be

chosen from the same segment rl with an ending cut point t ′, using
the following transition equation:

D(l , Ŝ ′
l
, t ′) =D(l , Ŝl , t) + Eshot(Ŝ

′
l
) − Eshot(Ŝl)

+Ecut(Ŝ
′
l
) − Ecut(Ŝl) (16)

+Eseg(Ŝ
′
l
,Al) − Eseg(Ŝl ,Al),

by concatenating Ŝl and the newly chosen shot s Ŝ
′
l
is the new partial

sequence for segment rl ; Eshot, Ecut, Eseg are the shot energy, cut

energy and segment energy terms respectively (see Section 6 and

Appendix A). Al is the attribute set for the l-th segment.

The other case is that the next shot s is chosen from the candidate

shots of segment rl+1 with ending cut point t ′, using the following

transition equation:

D(l + 1, Ŝ ′
l+1, t

′) =D(l , Ŝl , t) + Eshot(Ŝ
′
l+1)

+Ecut(〈Ŝl , s〉) − Ecut(Ŝl) (17)

+Eseg(Ŝ
′
l+1,Al+1),

where Ŝ ′
l+1

is the newly chosen partial sequence for segment rl+1

with only one shot s , and 〈Ŝl , s〉 denotes the concatenated shot

sequence of selected shots for segment rl and the newly chosen

shot s .
With the above transition equations, we can recursively infer

optimal states and get the optimal value for state D(L, Ŝ∗
L
, t∗), where

Ŝ∗
L
is the selected shot sequence for the last segment rL in the optimal

solution and t∗ is the optimal ending time. Backtracking from Ŝ∗
L
,

we are able to obtain the whole shot sequence Ŝ with cuts.

ACM Trans. Graph., Vol. 38, No. 6, Article 177. Publication date: November 2019.

