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Mixed-Domain Edge-Aware Image Manipulation
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Abstract—This paper gives a novel approach to edge-aware
image manipulation. Our method processes a Gaussian pyramid
from coarse to fine, and at each level, we apply a nonlinear
filter bank to the neighborhood of each pixel. Outputs of these
spatially-varying filters are merged using global optimization,
and this optimization problem is solved using an explicit mixed-
domain (real space and DCT transform space) solution, which
is efficient, accurate, and easy-to-implement. We demonstrate
applications of our method to a set of problems including detail
and contrast manipulation, HDR compression, non-photorealistic
rendering, and haze removal.

Index Terms—mixed-domain, edge-aware image processing,
optimization-based image processing, multi-scale method.

I. INTRODUCTION

EDGE-AWARE image processing is an important tech-
nique that has received much attention in the computer

graphics community. The goal is to process or filter images
in some way without destroying fine scale image edges.
Anisotropic diffusion [1] and bilateral filtering [2] are well-
known examples of such techniques, originally devised for
image smoothing, but later extended to many other applica-
tions. More recently, many other edge-aware techniques have
been proposed, e.g. [3], [4], [5], [6], [7], [8]. The particular
topic considered in this paper is to provide a simple interface
for independently adjusting the overall appearance and details
of input images (in a similar way to [7]), doing so in a way
which both keeps fine edges, and avoids introducing unsightly
artifacts. An example of our manipulation of overall/detailed
appearance is shown in Fig. 1. Different from previous work,
our approach is based on a novel mixed-domain (real space
and DCT transform space) processing framework, which is
fast and simple, and is readily accelerated on the GPU.

A challenging problem in edge-aware image processing is
reducing, or if possible avoiding, artifacts at image edges.
This is particularly true for algorithms which process overall
appearance and detail separately. The problem is illustrated
using a simple 1D signal in Fig. 2 (left). Suppose we want
to amplify the detail, without losing the edge. The grey line
represents an input signal, and the blue line represents the
‘overall’ signal, produced by averaging of the input signal.
The red signal represents the ‘detail’, the difference between
the input and overall signals. If an enhanced version of the
detail is added directly back to the overall signal to give the
output (the black signal), the result will overshoot at the step,
causing what is often referred to as a ‘halo’ effect in image
processing. Conversely, if averaging is done in such a way as
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(a) Input image (b) Color contrast enhancement

(c) Detail enhancement (d) Detail smoothing

Fig. 1. An input image, and three output images produced by our method.
Edges are preserved well at different scales, without unsightly artifacts such
as halos, gradient reversals, or aliasing.

to sharpen the input step, the result can even be a ‘gradient
reversal’, as shown in Fig. 2 (center). Although weak halos
can make image edges stand out, and indeed are deliberately
introduced in unsharp masking, stronger halos are perceived as
unwanted artifacts. Many previous works have thus carefully
considered how to reduce or avoid halos [3], [4], [7].

In this paper, we advocate a new method for halo-free edge-
aware image manipulation. Our method processes a Gaussian
pyramid level-by-level, from coarse to fine, in order to reduce
halos at each scale. At each level, we consider a set of local
filters defined on overlapping windows, and use optimization
to merge their outputs with those of the previous level: the
result at the current level has a detailed appearance in accor-



SUBMITTED TO IEEE TIP 2

Local Filters +
Output of Higher Level

Halo Gradient Reversal Our Result

...

via Optimization

Fig. 2. A simple 1D example. Left, center: poor base-detail decomposition
may cause halos or gradient reversals. Right: our artifact-free result (using
α = 2.0, β = 1.0; see later).

dance with the local filters’ output, and overall appearance in
accordance with the coarser result from the next higher level.
Controlling the detailed behavior of our result in this way
helps us to reduce halos. An enhancement result produced by
our method for the same 1D signal is shown in Fig. 2 (right).

Contributions of our work in this paper include:
• A new, rotationally invariant optimization-based formula-

tion for edge-aware image manipulation, without causing
unsightly artifacts such as halos, gradient reversals, and
aliasing.

• A direct mixed-domain solution to the optimization for-
mulation above, which is exact, efficient, and easy-to-
implement.

II. RELATED WORKS

A. Edge-aware image processing

Edge-aware image processing for computer graphics is a
challenging problem that has received much recent attention.
Here we briefly review the techniques most closely related to
our work.

Anisotropic diffusion [1] uses a non-linear PDE that depends
on local image variation to iteratively smooth an image without
blurring important features. However, being based on iteration,
anisotropic diffusion and related PDE-based methods are slow,
and furthermore, parameters are difficult to set [9]. Tumblin
and Turk [10] show how anisotropic diffusion can be used as
a basis for high dynamic range (HDR) compression, but as
pointed out by [3], [4], it tends to over-sharpen image edges.

Bilateral filtering (BLF) [2] provides an alternative approach
to edge-aware image smoothing. It uses a local, non-iterative,
explicit, data dependent filter, whose simplicity, efficiency,
and effectiveness [11], [12], [13], [14], [15] have led to its
widespread use [16], [17], [18]. The survey in [19] gives an
in-depth treatment. However, as discussed in [4], BLF involves
a trade off between edge preservation and data smoothing.
Methods relying on BLF to separate a mean surface from detail
may lead to halos at image edges if too much smoothing is
applied.

Weighted least squares (WLS) and related methods attempt
to avoid such halos by use of more careful edge-aware decom-
position. WLS [4] computes the smooth (overall) component
of the input image by optimizing a quadratic energy based on

squared gradients with spatially-varying weights; the weights
are set to be small at sharp image edges, to preserve them.
As an alternative, Subr et al. [6] follow the ideas of empirical
mode decomposition (EMD) [20]: they smoothly connect the
local extrema of the input image to form a maximal envelope
and a minimal envelope, and then average these two envelopes
to obtain the smooth component. Compared to classical EMD,
Subr et al.’s approach behaves better at sharp image edges.
However, both of these methods have to solve large sparse
linear systems. Although some fast numerical solvers like
multi-grid methods can potentially be used, these complex
methods are not easy to implement. Our algorithm avoids
solving large linear equations.

Pyramid based methods provide a further approach to edge-
aware image processing, using a multi-scale representation
such as a Gaussian/Laplacian pyramid, or a wavelet decom-
position. Li et al. [21] perform HDR compression by directly
manipulating the wavelet coefficients with a careful correction
scheme, but as noted by [7], this method can also produce
halos with poor choice of parameter values. Later, Fattal [5]
developed two novel data-dependent wavelets more suitable
for edge-aware image applications than traditional wavelets.
Most recently, Paris et al. [7] introduced the local Laplacian
filter (LLF), which uses a set of simple local filters to directly
and ingeniously manipulate the Laplacian pyramid. However,
the LLF is computationally costly because sub-pyramids must
be constructed for each element of the Laplacian pyramid.
Aubry et al.’s unpublished work [22] reveals that LLF is
closely related to anisotropic diffusion and BLF, and provides
an approximate sampling-based algorithm to accelerate LLF.
However, for a desired accuracy, its ability to accelerate the
method depends on the parameter settings used. Our method
in this paper uses Paris et al.’s local filters, but merges them
in a different, multi-scale optimization-based scheme. Unlike
the above techniques, we do not directly manipulate either the
pyramid or the wavelet coefficients.

Domain transform is a recent technique that proposed by
Gastal and Oliveira [8] for real-time edge-aware image pro-
cessing. This method is based on a data-dependent transform
from 5D image manifold to 2D real space that keeps geodesic
distance. However, like many other fast filtering techniques,
domain transform is not rotationally invariant (i.e. filtering a
rotated image and rotating a filtered image produce different
results). Our approach is rotationally invariant.

B. Optimization-based image processing

Optimization is widely used in image processing, with a
variety of objective functions.

Gradient domain image processing [3], [23], [24], [25],
[26], [27], [28] all solve problems by manipulating image
gradients via optimization instead of directly changing pixel
values, taking advantage of the fact that the human visual
system (HVS) is more sensitive to local contrast than absolute
intensities. Fattal et al. [3] utilized a Gaussian pyramid to
compute a gradient attenuation function for gradient domain
HDR compression without halos. Similarly, we use a multi-
scale scheme to produce halo-free results. Recently, Bhat et
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al. [29] provided a uniform quadratic optimization framework,
Gradient Shop, supporting a number of applications, such
as saliency sharpening, pseudo re-lighting, non-photorealistic
rendering, de-blocking, and colorization. However, its ability
to obtain various effects relies on carefully designed spatially-
varying weights for their constraints on gradients, and as a
result, the algorithm can not be accelerated using frequency-
domain approaches like those in [30]. We further explore the
relation of our work to gradient domain techniques later in the
paper.

Quadratic energies defined on image sub-windows have
also been utilized for image matting [31] and haze removal
[32]. However, these methods again require to solve large
linear systems.

Other techniques such as total variation optimization [33]
and L0 smoothing [34] have considered non-quadratic ener-
gies in order to obtain outputs that have ‘sparse gradients’.
However, these require elaborate iterative algorithms, which
are generally slow and may lack mathematical guarantees of
convergence and stability [35].

We give a novel multi-scale optimization-based approach to
edge-aware image manipulation. At each scale, we optimize a
quadratic objective function over sub-windows to merge a set
of local edge-aware filters’ outputs. Unlike WLS, coefficients
of our objective function have a spatially-invariant structure,
which permits a fast frequency-domain solution to this opti-
mization problem. Use of a multi-scale scheme helps to reduce
halos.

III. ALGORITHM

In this section, we explain our algorithm for single-channel
images only. As for color images, we decompose the input
image into channels (in e.g. RGB space or CIELAB space),
and process each channel independently. Note that this is a
common strategy for processing color images [29], [36].

A. Overview

We express the input image as a real-valued 2D signal I .
Our algorithm allows the user to freely manipulate the

detailed appearance and the overall appearance of I separately,
without having to precisely specify how to decompose the
image into these components. Following LLF, we use three
parameters to control the output: α controls detail (α > 1 im-
plies detail enhancement and α < 1 implies detail smoothing),
β controls the overall appearance (β > 1 implies intensity
range expansion and β < 1 implies range compression), and
σ provides a threshold to determine what comprises detail.

To achieve the desired effects, we first create a Gaussian
pyramid for I with l levels from bottom to top: I0, I1, ..., Il−1,
where I = I0. We then compute the output O gradually from
top to bottom: Ol−1, Ol−2, ..., O0, where O = O0.

In the following, we assume that Ik and Ok share a
rectangular definition domain Dk, and the pixel values for Ik
and Ok are denoted by Ik,p and Ok,p for each pixel p ∈ Dk.

For the top level, we simply scale the signal, relative to its
average, to obtain the output:

Ol−1,p = Avg(Il−1) + β(Il−1,p − Avg(Il−1)) (1)

where Avg(Il−1) is the average pixel value over Il−1. Note
that the top level output has the desired properties for overall
appearance, but lacks detail. However, we gradually correct
the detail in the output as we proceed through the levels, as
explained below.

For each k < l − 1, we compute Ok while taking two
concerns into account.

On one hand, we would like Ok to be like the up-sampled
signal of the output from the level above: Upsample(Ok+1).
However, because of the blurring effects of both the down-
sampling and up-sampling, they should differ by a Gaussian
convolution. Thus, we would like the following to be satisfied:

G ∗Ok = Upsample(Ok+1) (2)

where G is a Gaussian kernel and ∗ is the convolution operator.
In the discrete setting, binomial kernels replace Gaussian
kernels: we use a standard 5 × 5 binomial kernel for both
the down-sampling and up-sampling processes [37], and so G
here is a 9× 9 binomial kernel.

On the other hand, we would like our result Ok to have
the desired detail. We consider a neighboring sub-window wp
(not required to be a rectangle) for each pixel p ∈ Dk: wp
is composed of the pixels inside the disk that centered at p
and radius to N . Within this sub-window, we use a carefully
designed local filter that takes the parameters α, β, σ to provide
an ideal output, and we desire that:

Ok,q = LocalFilterα,β,σ,wp
(Ik,q) + Ck,p (3)

for every p ∈ Dk, and for each pixel q ∈ wp. At first, it
might seem that we need Ok,q = LocalFilterα,β,σ,wp

(Ik,q)
for each q ∈ wp. However, this term is meant to control the
detail, which is essentially determined by local differences in
values, or gradients, to which human perception is particularly
sensitive [29]. Thus, we may add some constants over each
sub-window wp, as doing so does not affect the gradient; the
Ck,p above are these constants.

Our local filter design follows the ideas in [7] but with
certain changes to better fit our algorithm, as explained in
Subsection III-B. Our main algorithmic contribution is an
optimization framework to trade-off the two requirements in
Eqs. (2) and (3) (Subsection III-C), via a frequency-domain
solution that is efficient and exact (Subsection III-D).

B. Local filtering

For each pixel p, LocalFilterα,β,σ,wp
is actually a filter bank:

it leaves the center pixel value Ik,p unchanged, but generates a
new value for each of the other pixels in the window centered
on p. It treats each other pixel in a two-scale manner using
threshold σ. Specifically, LocalFilterα,β,σ,wp(Ik,q) generates
the following output for each pixel q ∈ wp:

I ′k,p,q = Ik,p + sign(Ik,q − Ik,p)Mα,β,σ(|Ik,q − Ik,p|) (4)

where Mα,β,σ(d) is a non-linear map:

Mα,β,σ(d) =


σ(d/σ)1/α if d ≤ σ, α ≤ 1
τdσ(d/σ)

1/α + (1− τd)d if d ≤ σ, α > 1
(σ2 + β2(d2 − σ2))1/2 if d > σ

(5)
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Here, τd = max(0,min(1, 100 × (d − 0.01))) to avoid noise
amplification while enhancing detail. Examples of Mα,β,σ(d)
are shown graphically in Fig. 3. The multiple values produced
for each output pixel are resolved by our optimization step.
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β<1

σ

α<1
β>1

σ

α>1
β<1

σ
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β>1

Fig. 3. Mapping function Mα,β,σ(d) for different α and β.

The only difference between our local filter in Eq. (4) and
the one in [7] is that we take a hyperbolic curve instead of a
straight line when d > σ. This ensures that, if the difference
d is large, the mapping function Mα,β,σ(d) produces a result
very close to βd (and does not differ from βd by a constant
like the approach in [7]). As a result, our local filter better
follows the overall appearance inherited from the top level,
via Eq. (1).

C. Global optimization

We next formulate a global optimization scheme to trade-
off Eqs. (2) and (3); it also reconciles the multiple outputs of
Eq. (4). Our objective function has two terms.

The first measures directly the extent to which Eq. (2) is
not satisfied. Its role is to control the overall appearance of
the target Ok:

Eb(Ok) = ‖G ∗Ok − Upsample(Ok+1)‖2 (6)

For the second, we use “averaged squared differences” to
express the requirement in Eq. (3):

Ed(Ok, Ck) =
∑
p∈Dk

∑
q∈wp

(Ok,q − I ′k,p,q − Ck,p)2/W (7)

where I ′k,p,q comes from Eq. (4), and Ck,p are the constants
explained earlier. W is the number of pixels in wp.

These two terms are combined to give an overall energy to
be optimized:

E(Ok, Ck) = Ed(Ok, Ck) + λEb(Ok) (8)

We simultaneously determine Ok and Ck by minimizing this
energy. λ is a positive parameter; simply setting λ = 1 works
well in practice (see later).

Note that Eq. (8) is a quadratic function, with a unique
minimum, so optimizing it is equivalent to solving a linear
equation. However, the coefficients of Eq. (8) have a spatially-
invariant structure, unlike an arbitrary quadratic function. This
observation allows us to instead use an efficient and exact
frequency-domain method to optimize Eq. (8).

D. Frequency-domain solution

Suppose that Ok and Ck minimize the energy in Eq. (8).
Therefore ∂E/∂Ck,p = 0, which implies, for each p ∈ Dk:

Ck,p =
∑
q∈wp

(Ok,q − I ′k,p,q)/W (9)

Algorithm 1 Mixed-domain edge-aware image manipulation
Input : I , α, β, σ, λ.
Output: O.
Construct the Gaussian pyramid of I (with l levels).
Compute Ol−1 according to Eq. (1).
for k from l − 1 to 0 do

Compute I ′k,p,q = LocalFilterα,β,σ,wp(Ik,q) for each pixel
q ∈ wp.
Compute Sk and Tk.
DG← DCT(G), DL← DCT(L).
Uk ← λG ∗ Upsample(Ok+1) + Tk − L ∗ Sk.
DUk ← DCT(Uk).
for all frequencies f do
DOk,f ← DUk,f/(λ(DGf )2 + 1− (DLf )2).

end for
Ok ← InverseDCT(DOk).

end for
O ← O0.

By expanding the signals to cover the whole plane, we can
rewrite Eq. (9) in the following form involving a convolution:

Ck = L ∗Ok − Sk (10)

where L is the kernel for unweighted averaging within a cen-
tered sub-window, and Sk satisfies Sk,p =

∑
q∈wp

I ′k,p,q/W .
Also, ∂E/∂Ok = 0, which yields:

Ok − Tk − L ∗ Ck + λG ∗ (G ∗Ok −O′k) = 0 (11)

where O′k = Upsample(Ok+1), and Tk,p =
∑
q∈wp

I ′k,q,p/W .
Taking a Discrete Cosine Transform (DCT), the convolu-

tions in Eqs. (10) and (11) become multiplications in the
frequency-domain. Substituting Eq. (10) into Eq. (11) to
eliminate Ck, and denoting the DCT transform by D(·), we
obtain:

Ok = D−1
(
λD(G)D(O′k) +D(Tk)−D(L)D(Sk)

λD(G)2 + 1−D(L)2

)
(12)

which provides a direct and exact solution.
To extend the signals to the whole plane for use with DCT,

we reflect signals about the image boundaries. This prevents
artifacts at the boundaries (if we used with cyclic filling with
DFT, signal values would leak from one side to the other).
Note that using Fourier transform to speed up optimization
is a standard technique (e.g. see [30] and [38]). However,
unlike previous work, we have extra variables (the Ck) in our
problem: we carefully eliminate these variables and obtain an
explicit solution. Another feature of our solution is that we
have intermediate variables (the Sk and Tk), which must be
calculated in real space, so that our computation is done in a
mixed-domain (real space and DCT transform space).

In detail, using Eq. (12), we can calculate Ok with just one
2-dimensional DCT and one 2-dimensional inverse DCT, using
the observations that:
• The DCTs of G and L could be efficiently calculated.

For G, we write G = Gx ∗ Gy where Gx and Gy are
the 1-dimensional 9-tap binomial kernels in the x and
y directions, giving D(G)x,y = D(Gx)xD(Gy)y . For
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(a) N = 2 (b) N = 4 (c) N = 4, lowest level only

Fig. 4. HDR compression results. (a,b): N = 2 and N = 4, processing the whole pyramid. (c): N = 4, processing the lowest level only. All the results
are with parameters α = 1.0, β = 0.1, σ = ln(2.5).

L, we calculate each element of D(L) according to the
formal definition of DCT; this is also efficient because L
has few identical non-zero elements. (These DCTs must
actually be computed—although G and L are local, and
the same for all images, their DCTs depend on the size
of Dk.)

• We can first calculate an intermediate signal: Uk = λG ∗
Upsample(Ok+1) + Tk − L ∗ Sk. This is again efficient
because a convolution with G or L can be calculated via
1-dimensional convolutions. The numerator in Eq. (12)
equals D(Uk) and thus can be calculated via a single
2-dimensional DCT.

Pseudocode for our entire mixed-domain edge-aware image
manipulation is summarized in Algorithm 1.

IV. DISCUSSION

Since we use a quadratic objective function, our approach
is closely related to gradient-domain image processing tech-
niques. To see this, consider a 1×2 (or 2×1) window w with
pixels q1, q2. The energy term used to preserve details in this
w would be:

Ed,w(Oq1 , Oq2 , C) = (Oq1−I ′q1−C)
2+(Oq2−I ′q2−C)

2 (13)

whose minimum over arbitrary constant C is achieved when
C = (Oq1 − I ′q1 +Oq2 − I ′q2)/2, and the minimum is:

min
C

Ed,w(Oq1 , Oq2 , C) = ((Oq1 − I ′q1)− (Oq2 − I ′q2))
2/2

= ((Oq1 −Oq2)− (I ′q1 − I
′
q2))

2/2
(14)

This corresponds to requiring the gradient of the output,
Oq1 −Oq2 to be like the desired gradient, I ′q1 − I

′
q2 , which is

the basic principle used in gradient-domain image processing
[29]. However, in our approach, we choose a set of larger
sub-windows providing more extensive overlap, so that our
output is ‘more consistent’. Bigger windows also provide
more information allowing us to produce better local detail.
Fig. 4 (a,b) demonstrate results of using our method for HDR
compression using different sub-window sizes of N = 2 and
N = 4. Note that the smaller N produces a dull result, while
the larger N better provides the desired detail.

The use of a pyramid is important in our method to reduce
halos. Fig. 4 (c) shows the result of our method for N = 4

if we only process the bottom level (i.e. we simply scale I1
like Eq. (1) to obtain O1, and then solve a single optimization
on the bottom level to obtain O0). Unsightly halos appear
near the edges of the desk, as well as the open book’s pages.
These halos result from the combination of the constraints of
both detailed and overall appearances. The output near an edge
may be enhanced/reduced due to the detail constraint, but the
output far away edges tends to be quite close to the “target
base”: Upsample(O1); incompatibility of detail constraint and
target base causes halos. Similar problems arise in WLS [4],
where WLS simply uses input signal as the target base, and
reduces halos by introducing data-dependent weights to the
terms of detail constraint. Our approach does not rely on those
complicated weights; halos are reduced due to the using of
a series of carefully estimated target bases that better suit
the detail constraint. These target bases are computed via a
multi-scale process. However, the computational cost of our
algorithm decreases rapidly at higher levels; processing the
whole pyramid costs about 4/3 the time of processing just the
bottom level. For the remaining examples in this paper, we
set N = 4, constructing the Gaussian pyramid such that the
width and height of the top level image Il−1 are at least 8.

In our objective function in (8), λ is a positive parameter
to trade-off the detail constraint and the overall constraint.
Using a small λ produces better detailed appearance and worse
overall appearance; an extremely small λ causes color tone
deviation of the output (Fig. 5 (b)). Using a large λ produces
better overall appearance and worse detailed appearance, and
an extremely large λ causes ringing artifacts (Fig. 5 (c)). We
set λ = 1 for all examples in this paper and it works well.

Our method and Aubry et al.’s work [22] are two different
approaches to speed up local Laplacian filters. In some ways,
they are complimentary—Aubry et al. use sample to efficiently
estimate coefficients of the Laplacian pyramid, while we use
an optimization-based framework to merge the local filters’
outputs level by level with a Gaussian pyramid. However, the
ability of Aubry et al.’s approximation algorithm to achieve a
speed up for a desired accuracy depends on the upper cutoff
frequency of the mapping function Mα,β,σ (see [22]). It is
faster than our method for e.g. HDR compression (where the
parameter α is typically small and therefore the upper cutoff
frequency of Mα,β,σ is low), however, for detail enhancement,
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(a) Input (b) Output for λ = 0.01 (c) Output for λ = 100 (d) Output for λ = 1

Fig. 5. Our detail enhancement results with different settings of λ. Extremely small λ leads to color tone deviation (b), while extremely large λ causes
ringing artifacts (c). Setting λ = 1 works well in practice (d). All the results are with parameters α = 4.0, β = 1.0, σ = 0.2.

(a) Input images (b) Our results

Fig. 6. Rotationally invariance. (a): input images. (b): our detail smoothing
results; α = 0.0, β = 1.0, σ = 0.15.

where the parameter α is large, it would become much slower.
The performance and accuracy of our method do not depend
on the choosing of mapping function Mα,β,σ .

Another feature of our algorithm is the rotationally invari-
ance (i.e. filtering a rotated image and rotating a filtered image
produce identical results), because we used disk-shaped sub-
windows. This makes our method different from many other
fast filtering techniques that are not rotationally invariant (e.g.
domain transform [8]). An example is shown in Fig. 6.

V. APPLICATIONS

We now showcase several applications to demonstrate the
effectiveness of our method. Further results can be found in
the supplementary material.

(a) L0 smoothing (b) Our result

Fig. 7. Detail enhancement. (a): using L0 smoothing; λ = 0.015; 3× detail
boosting. (b): our result; α = 4.0, β = 1.0, σ = 0.3.

A. Detail and contrast manipulation

Our method can be directly applied for purposes of image
detail and contrast manipulation. Fig. 8 shows the results of
processing a single input image (in RGB color space) with
different parameter settings. In each case, edges are preserved
well without halos resulting (see, for example, the edges of the
flower, and the stigma of the flower). The parameter α con-
trols the detail in the output; α < 1 causes detail smoothing
and α > 1 causes detail enhancement. The parameter β con-
trols the color contrast of the output; β < 1 causes contrast
reduction, while β > 1 leads to contrast enhancement. The
parameter σ allows a tradeoff between detail and contrast
manipulation: a larger σ increases the effects of α and de-
creases the effects of β. Thus, Fig. 8 (c,d) show stronger detail
smoothing and enhancement than Fig. 8 (a,b); however, the
contrast manipulation effects in Fig. 8 (c,d) are weaker than
in Fig. 8 (a,b). σ is an important parameter which must be
carefully chosen since it distinguishes details from edges. If
we use α < 1 to smooth an image with a large σ, e.g. as in
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(a) β = 0.5, σ = 0.1 (b) β = 1.5, σ = 0.1 (c) β = 0.5, σ = 0.3 (d) β = 1.5, σ = 0.3

Fig. 8. Detail and contrast manipulation (in RGB color space). Top to Bottom: α = 0.3, 0.6, 1.5, 4.0. (a,b): contrast reduction and enhancement with a
normal threshold σ = 0.1. (c,d): contrast reduction and enhancement with an extreme threshold σ = 0.3.

the top-right of Fig. 8, some red color ‘leaks’ from the flower
onto the green leaf. We suggest σ should lie within [0.1, 0.2]
for typical detail and contrast manipulation tasks.

In Fig. 7 we compare detail enhancement results using L0

smoothing [34] with those from our method. Note that L0

smoothing tends to produce smooth base components with
sharp edges. Boosting from those components causes gradient
reversals as discussed in Section I. Our method does not
produce such artifacts.

B. HDR compression

HDR compression, or tone mapping, is concerned with
compressing the intensity range of an HDR image while
keeping details. Our implementation follows previous works,

i.e. we first compute the luminance channel using a linear
combination of RGB values: Li = (20ri + 40gi + bi)/61
[16], and then process the logarithm of the luminance ln(Li)
[10], [3], using our method to compress the range without
reducing detail, setting β < 1 and α ≥ 1. Given the output
ln(Lo), we offset and scale ln(Lo) to make its maximum
0 and its minimum −ln(100/(max(L′i) − min(L′i))), where
L′i is the sub-signal of Li obtained by throwing away its
greatest and smallest 0.5% values [7]. Finally, we convert
ln(Lo) back to Lo, and compute the output RGB values. We
set (ro, go, bo) = (riLo/Li, giLo/Li, biLo/Li), then gamma
correct each channel with an exponent of 1/2.2 [7], and finally
clamp values to [0, 1] for display.

In our experiments, we set β = 0.1, σ = ln(2.5); α = 1 to
give ‘photorealistic’ output and α = 4 to give ‘exaggerated’
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(a) BLF-based method (b) WLS (c) LLF (d) Our method

Fig. 9. Comparison of our method with previous HDR compression methods. (a): BLF [16]. (b): Weighted Least Squares [4]. (c): Local Laplacian Filter
[7]. (d): our method; α = 4.0, β = 0.1, σ = ln(2.5).

(a)

(b)

Fig. 10. HDR compression. (a): ‘photorealistic’ rendition with parameters α = 1.0, β = 0.1, σ = ln(2.5). (b): ‘exaggerated’ rendition with parameters
α = 4.0, β = 0.1, σ = ln(2.5).

output. It would also be possible to post-process our results
using interactive techniques like those in [39] but doing so is
beyond the scope of this paper.

We compare our method with several previous methods
(BLF-based method [16], WLS [4], and LLF [7]) in Fig. 9,

by setting parameters for ‘exaggerated’ effects. Note that the
BLF-based method causes edge halos (e.g. see close-ups of
the edges of the book’s pages, the corner of the shadow on
the desk, and the white square on the blue book). WLS largely
reduces halos, but some remain visible. In contrast, our method
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produces halo-free output similar to that of the state-of-the-art
LLF method. This is unsurprising, since both methods use
almost the same local filters. However, our approach merges
those local filters’ multiple outputs via a novel optimization
framework, with an exact and efficient mixed-domain solution,
unlike LLF.

More ‘photorealistic’ and ‘exaggerated’ results using our
method are shown in Fig. 10.

C. Non-photorealistic abstraction

The edge-aware smoothing ability of our method is well
suited to the needs of image abstraction [36], [40]. In Fig. 11,
we process an input image (in RGB color space) with param-
eters α = 0, β = 1, σ = 0.15 to obtain a highly smoothed
image, and then overlay this smoothed image with its DoG
(Difference of Gaussian) edges to make a non-photorealistic
abstraction effect.

(a) Input images (b) Our abstraction results

Fig. 11. Image Abstraction (use RGB color space). (a): input images. (b):
our abstraction results; α = 0.0, β = 1.0, σ = 0.15.

D. Haze removal

Our method can also be applied to joint image filtering, i.e.
to process an image with the edge information provided by
another reference image, denoted R. We simply replace the
local filters in Eq. (4) by:

I ′k,p,q = Ik,p + (Ik,q − Ik,p)
Mα,β,σ(|Rk,q −Rk,p|)
|Rk,q −Rk,p|

(15)

We demonstrate haze removal as an application of this idea,
in Fig. 12. Following [32], we first use the dark channel prior
to roughly estimate a haze transmission map. We then use our
method with the joint local filters in Eq. (15) to smooth the
transmission map, taking the input hazy image as the reference
image. As the reference is a color image, we use the Euclidean
distance in CIELAB color space for the term |Rk,q−Rk,p| in
Eq. (15).

VI. IMPLEMENTATION

We have implemented our method on both the CPU and
GPU. On the CPU, we used the FFTW 3.3 library [41] to com-
pute DCTs. Our implementation takes less than 3.2 seconds to

(a) Input images (b) Our haze-free results

Fig. 12. Haze removal (use CIELAB color space for reference images). (a):
input hazy images. (b): our haze-free results; α = 0.0, β = 1.0, σ = 20.

process each channel of the 800× 1200 image in Fig. 1, with
an Intel Core 750 @ 2.66GHz using a single thread, with the
sub-window size N = 4. Our GPU implementation was based
on an NVIDIA GeForce 560 GTX card, using the NVIDIA
CUFFT [42] for DCTs. The processing time was reduced to
under 280 milliseconds.

Our algorithm is easy to program, since it involves only
DCTs (widely supported by libraries) and a few pixel-wise
operations, rather than complex solvers for large sparse linear
systems (e.g. multi-grid methods) or complex signal decom-
position.

VII. SUMMARY AND FUTURE WORK

This paper has presented a novel approach to edge-aware
image manipulation, controlled by several intuitive parameters
directly affecting the output’s detailed and overall appearances.
Our method processes a Gaussian image pyramid level-by-
level from coarse to fine. At each level, a set of local filters is
defined on overlapping sub-windows, and a spatial-domain op-
timization problem is solved in the frequency-domain to merge
the local filters’ outputs. This frequency-domain solution is
exact, fast, and easy-to-implement. The results are halo-free,
and can match the state-of-art results in several applications.

Our mixed-domain method is best suited to rectangular im-
ages; others can be padded to a rectangle at a slightly increased
computational cost. A minor drawback of our method is that
we can currently only support two-scale manipulation (detail
versus overall appearance), as we have to process the whole
pyramid to reduce halos. However, we believe that the idea
of mixing spatial-domain and frequency-domain processing
will have other useful applications in image processing for
computer graphics. In particular, it would be interesting to
adapt our frequency-domain solver to other more general op-
timization problems (e.g., we could use a linear transformation
instead of the offsetting model in Eq. (7), like in [31]). We
also hope to generalize our optimization approach to other
spatially-varying local filters for further applications such as
up-sampling and deblurring. Finally, extending our approach to
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video by taking temporal consistency into account is a further
problem of interest.
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