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Deep Portrait Image Completion and Extrapolation
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Ariel Shamir, and Shi-Min Hu , Senior Member, IEEE

Abstract— General image completion and extrapolation
methods often fail on portrait images where parts of the human
body need to be recovered - a task that requires accurate human
body structure and appearance synthesis. We present a two-
stage deep learning framework for tackling this problem. In the
first stage, given a portrait image with an incomplete human
body, we extract a complete, coherent human body structure
through a human parsing network, which focuses on structure
recovery inside the unknown region with the help of full-body
pose estimation. In the second stage, we use an image completion
network to fill the unknown region, guided by the structure
map recovered in the first stage. For realistic synthesis the
completion network is trained with both perceptual loss and
conditional adversarial loss. We further propose a face refinement
network to improve the fidelity of the synthesized face region.
We evaluate our method on publicly-available portrait image
datasets, and show that it outperforms other state-of-the-art
general image completion methods. Our method enables new
portrait image editing applications such as occlusion removal
and portrait extrapolation. We further show that the proposed
general learning framework can be applied to other types of
images, e.g. animal images.

Index Terms— Image completion, portrait extrapolation,
human parsing, deep learning.

I. INTRODUCTION

THERE are common mistakes that novice users often make
when shooting a portrait photo. As a typical example,

while photography rules suggest that cutting off hands, feet,
and foreheads can ruin the visual flow, many portrait images
are taken with such improper composition. The feet are often
cut off as the photographer is focusing mostly on the face
region when shooting the picture (see Fig. 1b). At other
times, the accessories that the person is carrying (e.g. the bag
in Fig. Fig. 1a), or the other objects that partially occlude the
main subject (e.g. the dog in Fig. 12) could be distracting

Manuscript received August 19, 2018; revised May 5, 2019 and August 14,
2019; accepted October 1, 2019. Date of publication October 11, 2019;
date of current version January 10, 2020. This work was supported by the
National Natural Science Foundation of China under Project 61561146393 and
Project 61521002. The work of F.-L. Zhang was supported by the Research
Establishment Grant of the Victoria University of Wellington under Project
8-1620-216786-3744. The work of A. Shamir was supported by the Israel
Science Foundation under Project 2216/15. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was
Prof. Ce Zhu. (Corresponding author: Shi-Min Hu.)

X. Wu, R.-L. Li, J.-C. Liu, and S.-M. Hu are with the Department of
Computer Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: shimin@tsinghua.edu.cn).

F.-L. Zhang is with the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington 6012, New Zealand.

J. Wang is with Megvii (Face++) Research, Seattle, WA 98052 USA.
A. Shamir is with the Efi Arazi School of Computer Science, Interdiscipli-

nary Center Herzliya, Herzliya 4610101, Israel.
Digital Object Identifier 10.1109/TIP.2019.2945866

and better be removed from the photo. To remove these
imperfections, one could specify the unwanted objects to
remove, or expand the border of the image to try to cover
the whole human body, both leaving holes or blank regions in
the image to be filled in properly.

Although image completion has been actively studied in
the last twenty years, there is no existing approach that can
work well for portrait images, where holes on the human
body need to be filled in. A successful completion method
is required to recover not only the correct semantic struc-
ture in the missing region, but also the accurate appearance
of the missing object parts. Both goals are challenging to
achieve for portrait photos. In terms of semantic structures,
although human body has a very constrained 3D topology,
the large variation of its pose configurations, coupled with
3D to 2D projection, makes accurate structure estimation and
recovery from a single 2D image difficult. In term of appear-
ance, despite the large variation in clothing, there are strong
semantic constraints such as symmetry that the completion
algorithm has to obey, e.g. two shoes usually have the same
appearance regardless of how far they are separated in the
image. As we will show later, without paying special attention
to these constraints, general-purpose hole filling methods often
fail to generate satisfactory results on portrait photos (see
Fig. 7 and 8).

Extracting human body structures from images and videos
has been well studied in previous human parsing [1], [2]
and pose estimation approaches [3], [4]. Naturally, we want
to rely on these methods to estimate human body structure
from an incomplete portrait photo first, and then use it to
guide the image completion process. Following this idea,
we propose a two-stage deep learning framework for portrait
photo completion and expansion. In the first stage, we utilize a
human parsing network to estimate both of a human pose and a
parsing map simultaneously from the input image. The human
pose is then used to help refine the parsing map, especially
inside the unknown region. In the second stage, we employ an
image completion network to synthesize the missing region in
the input image with the guidance of the parsing map, followed
by a face refinement network for improving the generated
face region. These two networks are trained sequentially with
both the perceptual loss and the adversarial loss for improved
realism. We show that our approach can be used in many
portrait image editing tasks that are difficult or impossible for
traditional methods to achieve, such as portrait extrapolation
for recovering missing human body parts (e.g. Fig. 11), and
occlusion removal (e.g. Fig. 12). Furthermore, We demonstrate
that the proposed learning framework is quite generic, and is
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applicable for other types of images such as ones of horses
and cows (e.g. Fig. 10).

To the best of our knowledge, we are the first to integrate
deep human body analysis techniques into an image com-
pletion framework. Our main contributions of this paper are
summarized as follows:

• we propose a novel two-stage deep learning framework
where human body structure is explicitly recovered to
guide human image completion with face refinement;

• we show that our framework enables new portrait
photo editing capabilities such as re-composition by
extrapolation.

II. RELATED WORK

A. Image Completion

Traditional image completion methods can be catego-
rized into diffusion-based and patch-synthesis-based ones.
Diffusion-based methods, first proposed by Bertalmio et al.
[5] and then extended by Ballester et al. [6] and
Bertalmio et al. [7], propagate nearby image structures to fill
in the holes by assuming local continuity. These techniques
however can only handle small holes or narrow gaps. Patch-
based methods are derived from texture synthesis algorithms
[8]–[10]. They extract patches from the known region of the
image and use them to fill large holes. Criminisi et al. [11]
proposed a best-first algorithm by searching the most similar
patch. Simakov et al. [12] presented a global optimization
approach based on bidirectional similarity. These techniques
were greatly accelerated by PatchMatch [13], [14], a ran-
domized nearest neighbor field algorithm. They were further
improved with appending gradients into the distance metric
by Darabi et al. [15]. These methods can handle larger holes
than propagation-based ones, but still need semantic guidance
for structured scenes.

Many inpainting approaches rely on additional guidance
for semantically meaningful hole filling. Some use manually
specified guidance, such as points of interest [16], lines [17],
and perspective [18]. Other methods estimate image structures
automatically, by various means such as tensor voting [19],
search space constraints [20], statistics of patch offsets [21]
and regularity in planar projection [22]. However, since they
only depend on low-level visual features, such methods can
only derive meaningful guidance in simple cases.

Hays and Efros [23] presented the first data-driven
method to use a large reference dataset for hole filling.
Whyte et al. [24] extended this approach with geometric and
photometric registration. Zhu et al. [25] presented a faithful
completion method for famous landmarks using their images
found on the Internet. Barnes et al. [26] proposed a patch-
based data structure for efficient patch query from the image
database. These techniques may fail if the input image has a
unique scene that cannot be found in the dataset.

Recently, deep learning emerges as a powerful tool for
image completion. However, initial approaches can only han-
dle very small regions [27]–[29]. Context encoders [30] intro-
duced a generative adversarial loss [31] into the inpainting

network and combined this loss with an L2 pixel-wise recon-
struction loss. It can produce plausible result in an 128 × 128
image for a centered 64×64 hole. Yang et al. [32] proposed to
update the coarse result iteratively by searching nearest neural
patches in the texture network for handling high resolution
images. Yeh et al. [33] searched for the closest encoding in
latent space with an adversarial loss and a weighted content
loss, and then decoded it to a new complete image. More
recently, Iizuka et al. [34] proposed an end-to-end completion
network that was trained with a local and a global discrimina-
tor. The local discriminator examines the small region centered
around the hole for local reality, while the global discriminator
examines the entire image for global consistency. Dilated
convolution layers [35] were also used to enlarge its spatial
support. Yu et al. [36] extended this method with a novel
contextual attention layer, which utilizes features surrounding
the hole. Li et al. [37] focused on face completion with
the help of semantic regularization. Existing learning-based
methods are able to produce realistic completion results for
general scenes such as landscapes and buildings, or certain
specific objects such as human faces. However, they cannot
handle portrait images as they do not consider the high-level
semantic structures of human body.

B. Human Parsing

Human parsing has been extensively studied in the litura-
ture. Liu et al. [38] combined CNN with KNN to predict
matching confidence and displacements for regions into the
test image. Co-CNN [1] integrates multi-level context into
a unified network. Chen et al. [39] introduced an attention
mechanism into the segmentation network, which learns to
weight the importance of features at different scales and
positions. Liang et al. [40], [41] employed Long Short-Term
Memory (LSTM) units to exploit long range relationships in
portrait images.

Without recovering the underlying human body struc-
ture, previous human parsing methods sometimes produce
unreasonable results. In contrast, extracting human body
structure has been extensively studied by pose estimation
techniques [3], [4], [42]. Therefore, pose information has
recently been integrated into human parsing frameworks to
improve their performance. Gong et al. [2] presented a self-
supervised structure-sensitive learning approach. It generates
joint heatmaps from the parsing result map and the ground-
truth label, and then calculates the joint structure loss by their
Euclidean distances. JPPNet [43] builds a unified framework,
which learns to predict human parsing maps and poses simul-
taneously. It then uses refinement networks to iteratively refine
the parsing map and the pose. In our problem, pose estimation
is helpful to guide the parsing prediction in the unknown
region. Therefore, we adopt the basic architecture of JPPNet
in our human parsing network, and specifically improve it for
the following completion stage.

C. Portrait Image Editing

Previous work has explored editing portrait images in
various ways, and body shape editing is one that has been

Authorized licensed use limited to: Tsinghua University. Downloaded on July 18,2020 at 11:49:35 UTC from IEEE Xplore.  Restrictions apply. 



2346 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 1. We address the problem of portrait image completion and extrapolation. (a) Shows that our method can remove the unwanted object from the portrait
image. (b) Shows that our method can extrapolate the portrait image to recover the lower-body or the forehead.

paid special attention. Zhou et al. [44] integrated the 3D
body morphable model into a single image warping approach,
which is capable of reshaping a human body according to
different weights or heights. PoseShop [45] constructed a large
segmented human image database, from which new human
figures can be synthesized with given poses. There are also
methods for generating temporally-coherent human motion
sequences with required poses [46] or shapes [47]. These tech-
niques are mostly based on geometric deformation or database
retrieval, so that their flexibility is limited.

Recently, many studies have been devoted to human image
synthesis based on deep generative models. Lassner et al. [48]
used the Variational Auto-Encoder (VAE) [49] to synthesize
diverse clothes in human images. FashionGAN [50] can
change the dress of the human figure in an input image with
a given text description. Zhao et al. [51], Ma et al. [52] and
Balakrishnan et al. [53] learned to generate human images
with user-specified views or poses, while maintaining the
character’s identity and dress. Our goal is quite different from
these methods, as we aim to recover only the missing parts of
the human figure, not to generate an entirely new one.

III. APPROACH

To realistically synthesize missing human body parts, one
needs to estimate plausible region-level body structure as well
as coherent textures in these regions. Training a network
for simultaneously predicting both the structural configuration
and appearance features is extremely difficult. We instead
propose a deep learning framework which employs a two-stage
approach to solve this problem. In stage-I, from the incomplete
human body image we predict a complete parsing map through
a human parsing network. In stage-II, we use a completion
network to generate the inpainting result with the guidance
of the parsing map, and a face refinement network to further
improve the face region.

Fig. 2. Overview of our human parsing network at stage-I. The input image
is fed into both the parsing subnet and the pose subnet. The two subnets
then produce a human parsing map and pose heatmap respectively. Finally,
the refinement network refines the parsing map with the help of the pose
heatmap.

A. Stage-I: Human Parsing

Human parsing aims to segment a human body image into
different parts with per-pixel labels. Compared with pose
estimation, human parsing not only extracts the human body
structure, but also estimates the image region boundary of each
body part, which is beneficiary for image completion at the
next stage. On the other hand, as suggested in JPPNet [43],
pose estimation can help increase the accuracy of human
parsing. Thus, we jointly train our human parsing network
for both human body parsing and pose estimation. We then
use the generated pose heatmap to refine the human parsing
result within the unknown region.

The input of the human parsing network is an image with
a pre-defined fill-in region. We denote the input image as
x, the human parsing network as P. Following JPPNet [43],
P consists of two subnets, a parsing subnet and a pose
subnet. The two subnets share the first four stages in
ResNet-101 [54]. In the parsing subnet, atrous spatial pyramid
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Fig. 3. Overview of our image completion networks at stage-II. The completion network generates the result image from the input image, parsing map
and mask. It is trained with the perceptual loss and two adversarial losses. The perceptual loss measures feature maps from the VGG-19 network and the
adversarial losses are backward from the discriminators. The result image with human parsing is fed into the discriminators, to tell whether it is realistic and
in agreement with the structure. The input of global discriminator is the entire image with parsing, while the input of local discriminator is the local area
surrounding the hole.

pooling (ASPP) [55] is applied to the fifth stage of ResNet-101
after the shared layers, to robustly segment different body
parts. The parsing subnet produces the initial parsing result p0.
In the pose subnet, several convolution layers are applied after
the shared layers. The pose subnet produces the pose heatmap
h. Then a refinement subnet utilizes h to refine the initial
parsing result p0 and produces the final result p. We train the
overall network end-to-end. Fig. 2 shows the overview of our
human parsing network.

For effectiveness, we make several modifications to the net-
work architecture of JPPNet [43] in P. Specifically, we remove
the pose refinement network in JPPNet and just keep the
parsing refinement network. We thus do not apply iterative
refinement and only refine the parsing map once. We regard p
as our final result instead of averaging all results over different
iterations. After applying these simplifications, we have found
that we can generate parsing results faster with better visual
quality in the unknown region.

The typical loss function of human parsing is the mean of
softmax losses at each pixel, formulated as:

L = 1

W × H

W∑

i

H∑

j

LS(pi j , p̂i j ). (1)

LS denotes the softmax loss function. p̂ denotes the ground-
truth labels of the human parsing output. W and H are the
width and height of the parsing map. Importantly, in our
completion task we only need to generate image content inside
the unknown hole region. Thus, the parsing accuracy inside
the unknown region is much more important than that of the
known region. Therefore, we propose a spatial weighted loss
function that gives more weights on the pixels inside the hole.
It is defined as:

L = 1

W × H

W∑

i

H∑

j

(αmij + 1)LS(pi j , p̂i j ), (2)

where m is a binary mask indicating where to complete (1 for
unknown pixels) and α is a weighting parameter. We apply
the spatial weighted loss to both the parsing subnet and the
refinement subnet. We set α = 9 in our experiments by default.

B. Stage-II: Image Completion

In stage-II, we use a completion network to synthesize
missing regions with structure guidance. The input of the
completion network consists of the input image x, the human
parsing map p and the binary mask m for marking the
unknown region. We denote the completion network as G,
and its fully convolutional architecture is shown in Fig. 3.
We bring in residual blocks [54] to enhance the representation
ability, and employ dilated convolutions [35] to enlarge the
spatial support. Instead of using a loss based on per-pixel
color distance, we use a perceptual loss measured by feature
maps from a pre-trained VGG-19 network [56]. Furthermore,
to ensure that the network generates fine details that are
semantically consistent with the known parts of the image,
we feed the output of G to local and global discriminators to
measure adversarial losses. The details of the architecture and
our training method are described in the following sections.

1) Completion Network Architecture: The completion net-
work begins with a stride-1 convolutional layer and then uses
two stride-2 convolutional layers to downsample the resolution
to 1

4 of the input size. Four residual blocks are followed to
extract features of both the input image and the human parsing
map. Each residual block contains two stride-1 convolutional
layers with a residual connection. Residual connection [54]
has demonstrated its excellent ability to resolve the gradient
vanishing problem, which usually happens in deep neural
networks. In our experiments, we found residual blocks can
significantly improve the quality of the synthesized results.
Similar to Iizuka et al. [34], we use dilated convolutions [35]
in the middle part of the network. Dilated convolution delivers
large field of view without increasing computational cost,

Authorized licensed use limited to: Tsinghua University. Downloaded on July 18,2020 at 11:49:35 UTC from IEEE Xplore.  Restrictions apply. 



2348 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

which is necessary for global consistency of the completed
image. After that, 4 residual blocks, 2 stride-2 deconvolu-
tional layers and a stride-1 convolutional layer are applied
sequentially. Kernel sizes of the first and the last convolution
layers are 7. Kernel sizes of the other convolutional layers
are all 3. Batch normalization layer and ReLU activation are
applied after each convolution layer except the last one. We use
a tanh layer in the end to normalize the result into [-1, 1].
The completion network G is fully convolutional and can be
adapted to arbitrary size of input images.

2) Perceptual Loss: Most previous completion methods
[30], [34], [36] use L1 or L2 per-pixel distance as loss function
to force the output image to be close to the input image.
Recent works [57] have discovered that perceptual loss is more
effective than L1 or L2 loss for synthesis tasks due to its
advanced representation. Perceptual loss is first proposed by
Gatys et al. [58] for image style transfer. Between a source
and a target image, it measures the distance of their feature
maps extracted from a pre-trained perception network. We use
VGG-19 [56] as the perception network, which is pre-trained
for ImageNet classification [59].

Denote the pre-trained perception network as �. Layers
in � contain hierarchical features extracted from the input
image. Shallower layers usually represent low-level features
like colors and edges, while deeper layers represent high-level
semantic features and more global statistics. Therefore, col-
lection of layers from different levels contain rich information
for image content synthesis. We define our perceptual loss
function as:

L p =
n∑

i=1

∥∥�i (x̂) − �i (G(x, p, m))
∥∥2

2 , (3)

where n is the number of selected layers and �i is the
i-th selected layer. In our experiments, � includes relu1_2,
relu2_2, relu3_2, relu4_2 and relu5_2 layers in VGG-19 [56].

3) Discriminators: Using only perceptual loss in training
often leads to obvious artifacts in output images. Inspired by
previous image completion methods [30], [34], [36], we add
an adversarial loss into the completion network to prevent
generating unrealistic results. The adversarial loss is based
on Generative Adversarial Networks (GANs) [31]. GANs
consist of two networks, a generator and a discriminator. The
discriminator learns to distinguish real images from generated
ones. The generator tries to produce realistic images to fool the
discriminator. The two networks compete with each other, and
after convergence the generator can produce realistic output.

In our task, the generated result (i.e. the filled holes) needs
to be not only realistic, but also coherent with the structure
guidance. Therefore, we employ conditional GANs [60] in our
completion network, where the discriminator D also learns
to determine whether the generated content conforms to the
condition, i.e. the human parsing map p. Hence we define the
adversarial loss as:

Ladv =min
G

max
D

E[log D(p, x̂)+log(1 − D(p, G(x, p, m))].
(4)

Inspired by Iizuka et al. [34], we use both global and local
discriminators in our completion network. The input to the
global discriminator is a concatenation of the input image and
the parsing map. The input to the local discriminator is the
image region and its corresponding parsing patch centered
around the hole to be completed. At training stage, the size
of the image is scaled to 256 × 256 and the size of the patch
is fixed to 128 × 128. As in Iizuka et al. [34], we only use
G to complete a single hole at training time. Note that G can
fill multiple holes at once in testing stage. Noted by Pinheiro
et al. [61], unequal channels of the signal may cause imbalance
that one signal dominates the other ones. Therefore, we repeat
the one-channel parsing map for three times to match the
RGB channels. We adopt the network architecture proposed
by DCGAN [62] for two discriminators. All convolutional
layers in the discriminators have kernels of size 4 and stride 2,
except the last stride-1 convolution. The global discriminator
has 7 convolution layers and the local discriminator has 6.
They both end with a Sigmoid layer to produce a true or false
label.

We define the overall loss function for the completion
network as

Lc = λp L p + λg Ladv−g + λl Labv−l . (5)

Ladv−g and Ladv−l represent adversarial losses for the global
and the local discriminators, respectively. λp , λg and λl are
the hyper parameters to balance the different losses. We set
λp = 100, λg = λl = 1 in our experiments.

C. Face Refinement

The human face may only occupy a small area in the input
image, but contains many delicate details that the human vision
system is sensitive to. Completion network G can recover
general missing regions well, but may have difficulties with
human faces as it is not specifically trained on them. Similar to
Chan et al. [63], we thus propose a dedicated face refinement
network F to refine inpainted human faces.

We crop the inpainting result G(x, p, m) produced by the
completion network to a window around the synthesized face
G f (x, p, m), then feed it along with the cropped parsing
map pf and the cropped mask mf into the face network F.
We calculate the centre of mass of the face region through the
human parsing map and crop the region around the center by
the size of 64 × 64. Then F produces the residual face image
R f = F(G f (x, p, m), p f , m f ) with the size of 64 × 64. The
final synthesized result R̂ is the addition of the residual face
image Rf and the initial inpainting result G(x, p, m). Fig. 4
shows the pipeline of the face refinement.

After the training of the completion network is finished,
we train the face network with the parameters of the comple-
tion network fixed. For the realism of the refined face image,
we introduce a face discriminator Df to distinguish generated
faces from the real ones. We also use the perceptual loss
to ensure that the generated faces are perceptually indistin-
guishable from the ground-truth. The architecture of the face
network F is similar to the completion network G except
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Fig. 4. Overview of our face refinement network. We crop the initial
inpainting result of the face region and feed it into the face network. The
final output is the sum of the produced residual image and the initial result.

that the number of the residual blocks is reduced to 4. The
face discriminator Df also adopts the architecture proposed by
DCGAN [62]. The full objective is

L f =λ

n∑

i=1

∥∥∥�i (x̂ f )−�i(R̂ f )
∥∥∥

2

2
+log(1 − D f (p f , R̂ f )). (6)

We set λ = 10 in our experiments.

D. Implementation Details

We train the networks at two stages separately. At stage-I,
we train the human parsing network by stochastic gradi-
ent descent with momentum. We set the learning rate to
0.0001 and momentum to 0.9. At stage-II, We use the Adam
solver [64] with a batch size of 1 to train all the networks.
We set the learning rate to 0.0002. We scale the input image
to 256×256 at training time. We randomly crop a rectangular
region in the input image. The edge of the rectangle is
randomly set in range [64, 128]. Since we are concerned about
completion for the human body, we make sure that the rectan-
gle overlaps the human body in image. We set the pixels inside
the cropped region to the mean pixel value of the datasets.
To prevent overfitting, we apply several data augmentation
methods for training, including scaling, cropping and left-right
flipping. When training the face network, we randomly crop
a rectangular region in the face area by the size of 32 × 32.

At testing time, the input image goes through the human
parsing network, the completion network and the face network
sequentially to generate the final result. Because all the net-
works are fully-convolutional, our method can be adapted to
arbitrary size of image. We use Poisson image blending [65] to
post-process the final result, as previous completion methods
[32], [34] do, for more consistent boundary of the completion
region.

IV. RESULTS

We evaluate our method on two human image datasets,
ATR dataset [1] and LIP dataset [2]. ATR dataset contains
17700 human images with parsing annotations on 17 body part
categories. We randomly select 1/10 of the images for testing
and others for training. LIP dataset contains 30462 training
images and 10000 validation images. Each image in LIP
dataset has per-pixel parsing annotations on 19 categories and
annotations on 16 keypoints for the pose estimation. Because
there is no pose annotation in ATR dataset, we use JPPNet [43]
pre-trained on LIP dataset to predict the body pose for each
image in ATR dataset and use the result as the ground-truth
label for training.

TABLE I

COMPARISON WITH EXISTING COMPLETION METHODS
IN TERMS OF L1 ERROR, PSNR, SSIM AND FID

Fig. 5. Completion results by different human parsing methods. We complete
the input image with different human parsing method. We show that our
method leads to the best completion performance.

We initialize the human parsing network with the parameters
loaded from pre-trained JPPNet and we then train the network
for 10 epochs on the two datasets. Meanwhile, we train
the completion network for 200 epochs on ATR dataset and
100 epochs on LIP dataset. After that, we train the face
network with 100 epochs on ATR dataset and 50 epochs on
LIP dataset. It takes about 20 hours to train the human parsing
network, 100 hours for the completion network and 50 hours
for the face network. When testing on GPU, our two-stage
framework spends about 0.48s to produce the final result for
an input image of size 256 ×256. We evaluate our method on
using an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with
4 cores and NVidia GTX 1080 Ti GPU.

A. Comparisons With Existing Completion Methods

We compare our approach with several existing completion
methods, including Photoshop Content Aware Fill (Patch-
Match) [13], Iizuka et al. [34] and Yu et al. [36]. We train
the model of Iizuka et al. [34] on training sets of ATR and
LIP for the same epoch numbers as our method. We initialize
the model with the parameters per-trained on Places2 dataset
[66]. We also train the model of Yu et al. [36] for the same
epoch and initialize it with the model pre-trained on ImageNet
dataset. We test the models of Iizuka et al. [34], Yu et al. [36]
and our method at the scale of 256 × 256. We then resize the
result to the scale of the original image for a fair comparison.
Fig. 7 shows some comparisons from the test set in ATR.
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TABLE II

COMPARISON OF THE HUMAN PARSING METHODS IN TERMS OF MEAN
IOU. WE MEASURE THE IOU FOR BOTH THE ENTIRE IMAGES AND FOR

THE UNKNOWN REGIONS ON ATR DATASET AND LIP DATASET

Fig. 8 shows some comparison results from the validation set
in LIP. These results suggest that our approach can generate
plausible results for large holes, while other methods fail to
handle complicated human body structures. Fig. 9 also shows
some completion results with multiple holes by our method.

We also compare our approach with other approaches quan-
titatively. We report the evaluation in terms of L1 error, PSNR
and SSIM [67]. Table. I shows that our method outperforms
other methods under these measurements on the two public
datasets. Please note that these evaluation metrics are by
no means the best metrics for evaluating the results, since
there may be many visually pleasing completion results that
are equally acceptable other than the ground truth images.
Recently, FID [68] was proposed to measure the perceptual
quality of the generative model. Our method also achieves the
best performance under this perceptual metric.

B. Comparisons on Human Parsing

We compare our human parsing network with JPPNet [43]
to show its effectiveness for completion. We use JPPNet
trained on complete images and refined on incomplete images
with the same pattern as our parsing network. We apply the
mean of intersection over union (IoU) as the performance
metric. We measure the mean IoU for the entire image and the
unknown region. We report the results in Table. II. As shown
in the table, our method achieves the best parsing performance
especially inside the unknown region. Fig. 5 also shows that
our human parsing method leads to the best completion result.

C. Completion Results for Animals

Although we focus on human body completion in this
paper, the proposed learning framework is generic and can
be applied to other types of images with highly structured
visual features, such as animal images. To demonstrate it,
we train our model on the Horse-Cow dataset [69]. Horse-
Cow dataset contains 295 images for training and 277 images
for testing. We additionally label the keypoints of poses for
this dataset since it only includes parsing annotations. We re-
train the parsing network for 300 epochs and the completion
network for 1000 epochs on the training set. Notably, we train
the horses and cows together since these two kinds of animals
have similar structures. Fig. 10 shows some completion results
using the testing images. We also compare our method with

Fig. 6. Completion results before (middle) and after (right) the face
refinement. The face network refines the facial structures and makes the
completion result more realistic.

Iizuka et al. [34] and Yu et al. [36]. We train the models
of the two methods for the same epochs as ours. From the
results, we can see that our two-stage deep structure can be
generalized to other images in which the inherent semantic
structures could be captured and predicted.

D. Ablation Study

We perform an ablation study to validate the importance
of our human body structure guidance and face refinement
network. We train an exactly the same completion network
without using the parsing map as input. The training protocols
are kept unchanged as well. This model is denoted by G.
We also train a completion network with human body parsing
maps, denoted as G+P. Similarly, our full model with the face
refinement network is denoted as G+P+F. Results in Table. I
show that the parsing guidance and the face refinement are
both beneficiary to the completion result. Fig. 6 compares
the completion results before and after the face refinement,
showing the effectiveness of our face network.

We also evaluate the effectiveness of our spatial weighted
loss for human parsing, by comparing to the results when α
is 0. As shown in Table. II, the spatial weighted loss can
increase the parsing accuracy inside the holes, which is good
for the following completion process.

V. APPLICATIONS

A. Portrait Extrapolation

As a general photography rule, it is not recommended to
cut off people’s feet or foreheads in the composition. Never-
theless, amateur photographers often make such mistakes. It
is desirable to extend the portrait image to recover the missing
feet or faces to create a better composition. Fortunately, this
problem can be directly solved by our framework, by treating
it as a completion problem, where the unknown region is at
the bottom or top part of the extrapolated image.

We re-train the entire framework by fixing the cropped
rectangle in the input image. For the downward extrapolation,
the bottom is cropped by the size of 64 × 256, and for
the upward extrapolation, the top is cropped by the size
of 32 × 256. The reason for the different heights is that
normally the missing head region is shorter than the missing
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Fig. 7. Comparison results on the ATR testing set. We compare our method with PatchMatch [13], Iizuka et al. [34] and Yu et al. [36].

legs/feet region. We abandon the local discriminator due to
the exceeded scale of the hole. We also add dropout layers
into the completion network for more flexible results. Our
human parsing network can analyze the posture and predict
reasonable structures for the legs and shoes, as well as the
hair and face. Then the completion network can generate the

extrapolated image that contains consistent body parts and
background. The face region would be further enhanced by
the final face network. For comparisons, we also train the
model of Yu et al. [36] with the same pattern. Note that,
we also remove the local discriminator in their framework.
To demonstrate the importance of the structural information in
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Fig. 8. Comparison results on the LIP validation set. We compare our method
with PatchMatch [13], Iizuka et al. [34] and Yu et al. [36].

Fig. 9. Completion results with multiple holes on the ATR testing set.

the portrait extrapolation task, we train the model G without
the parsing guidance as a comparison, as shown in Fig. 11.

Fig. 10. Comparison results on Horse-Cow dataset. We compare our method
with Iizuka et al. [34] and Yu et al. [36]. We show that our method is generic
and also available for animals like horse or cow.

Fig. 11. Comparison results of portrait extrapolation. We compare our full
model with Yu et al. [36] and the model G. The results show that our method
can generate plausible lower body parts and faces, while other methods fail.

These results suggest that by generating high fidelity human
body completion results, our method opens new possibilities
for portrait image enhancement and editing.
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Fig. 12. Examples of occlusion removal by our approach.

Fig. 13. Some failure cases from the ATR dataset. Our method cannot
produce satisfactory result when the textured region is heavily covered and
will be confused with multiple persons.

B. Occlusion Removal

Occlusion removal is a natural application for the task of
image completion. Fig. 12 shows that our approach can recover
the full human body when removing the unwanted objects.
Because our framework has a human parsing stage to generate
correct structural information for the hole region, we can
handle large occlusions as shown in the bottom example
in Fig. 12. Note that we preserve the geometric features along
the arm and clothes boundaries after completion.

VI. CONCLUSION AND LIMITATION

We propose a two-stage deep learning framework to solve
portrait image completion problem. We first employ a human
parsing network to extract structural information from the
input image. Then we employ a completion network to gen-
erate the unknown region with the guidance of the pars-
ing result and a following face network to refine the face
appearance. We have demonstrated that, aware of the structure
of the human body, we can produce more reasonable and
more realistic result compared to other methods. And we
have shown the capability of our method for applications
like occlusion removal and portrait extrapolation. Besides
humans, we have also experimented our method on animals
and achieved impressive completion results, which indicates
that our framework can be extended to other kinds of images
where the inherent semantic structures could be encoded and
predicted.

Our method may fail in some cases as shown in Fig. 13.
Firstly, when most of the textured region or the logo is covered,
our method may not yield satisfactory completion result due
to the inadequate information, as shown in Fig. 13 (left).
Secondly, our model will be confused when the hole region
is connected to multiple persons, as shown in Fig. 13 (right).
That is because our current human parsing network is only
trained by portrait images with a single person. We plan to
extend our framework to deal with multiple persons in the
future.
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