
1

Spherical Piecewise Constant Basis Functions for
All-Frequency Precomputed Radiance Transfer

Kun Xu1 Yun-Tao Jia1 Hongbo Fu2 Shi-Min Hu1 Chiew-Lan Tai2
1Tsinghua University

2Hong Kong University of Science and Technology

Abstract— This paper presents a novel basis function, called
spherical piecewise constant basis function (SPCBF), for precom-
puted radiance transfer. SPCBFs have several desirable proper-
ties: rotatability, ability to represent all-frequency signals, and
support for efficient multiple product. By smartly partitioning
the illumination sphere into a set of subregions, and associating
each subregion with an SPCBF valued 1 inside the region and 0
elsewhere, we precompute the light coefficients using the resulting
SPCBFs. Efficient rotation of the light representation in SPCBFs
is achieved by rotating the domain of SPCBFs. During run-time
rendering, we approximate the BRDF and visibility coefficients
using the set of SPCBFs for light, possibly rotated, through fast
lookup of summed-area-table (SAT) and visibility distance table
(VDT), respectively. SPCBFs enable new effects such as object
rotation in all-frequency rendering of dynamic scenes and on-
the-fly BRDF editing under rotating environment lighting. With
graphics hardware acceleration, our method achieves real-time
frame rates.

Index Terms— Real-Time Rendering, Precomputed Radiance
Transfer, Spherical Piecewise Constant Basis Functions

I. INTRODUCTION

Real-time, realistic global illumination for static or dynamic
scenes under dynamic environment lighting is a challenging
problem. The difficulty lies in fast computation of per-vertex
integration of lighting functions (represented by irradiance
environment maps), BRDF, and (self and/or occluder) visi-
bility functions over the hemisphere of lighting directions.
The precomputed radiance transfer (PRT) technique [1] and its
variants [2]–[5] have demonstrated their great ability in real-
time rendering of complex scenes under dynamic environment
lighting. They employ different kinds of basis functions to
approximately represent light, BRDF and visibility functions,
thus making precomputation memory-affordable and simpli-
fying the expensive rendering integrals to simple and fast
dot/multiple products.

There are three desirable properties that basis functions for
PRT should possess. First, the basis functions should be able
to effectively approximate all-frequency signals, providing all-
frequency shadowing effects using only a low-order basis.
Second, they should support efficient rotation, which has
different significance for light, BRDF, and occluder-visibility
functions. Efficient rotation of the light representation under
a basis enables the efficient rotation of environment lighting.
Efficient rotation of the BRDF representation enables separate

This work was done when Yun-Tao Jia was a master student at Tsinghua
University. He is currently a PhD student at the University of Illinois, Urbana-
Champaign.

SH Wavelet SRBF SPCBF
All-frequency rendering × √ √ √
Rotation

√ × √ √
Multiple-product

√ √ × √

TABLE I

PROPERTIES OF SPCBF COMPARED TO PREVIOUS BASIS FUNCTIONS.

storage of BRDF from a model (instead of storing one BRDF
per vertex) and efficient rotation of BRDF from the local frame
at each vertex to the global frame, thus supporting on-the-
fly BRDF editing. Efficient rotation of the occluder-visibility
representation enables the occluder-visibility function to be
efficiently rotated from the local frame at an object to the
global frame, thereby allowing rotatable objects in dynamic
scenes. Third, they should support efficient multiple product.
This property is crucial for dynamic scene rendering, which
involves multiple product between light, BRDF, self-visibility
and occluder-visibility functions.

Several kinds of basis functions have been proposed for
PRT in past years, such as spherical harmonics (SH) [1],
wavelet [2], [3], spherical radial basis functions (SRBFs) [5].
However, each one of them lacks certain desirable properties,
as summarized in Table I (see more details in Section II).

In this paper, we present a novel spherical basis repre-
sentation for PRT, called spherical piecewise constant basis
functions (SPCBFs), which possess all the above-mentioned
three desirable properties (Section III). The key idea is as
follows. We first partition a unit sphere on which light, BRDF
and visibility functions are all defined into a common set
of subregions, and associate each subregion with an SPCBF
valued 1 within the subregion and 0 outside it. The result-
ing SPCBFs naturally form an orthogonal basis. Then we
approximate the integrands in the rendering integral with
piecewise constant functions which are all represented in the
same SPCBF basis. The apparent advantage of representing the
integrands with the SPCBFs is that, the rendering integral can
then be approximated by efficient multiple products between
the individual coefficients of the integrands under the basis.

SPCBFs can represent all-frequency signals. However, not
all arbitrary SPCBFs are suitable for all-frequency PRT render-
ing. As the environment light is considered distant and thus
is the same for every object point in the scene, we choose
to use the environment map to define the partition of the
unit sphere (i.e., the domain of the SPCBFs with which the
BRDF and visibility functions are also represented). Inspired

2

by importance sampling [6], we partition the sphere according
to the light energy; specifically, regions with high light inten-
sity are partitioned into small subregions. Such a deliberate
partitioning guarantees that the resulting SPCBFs are able to
represent all-frequency signals of a given environment map,
and yet the representation is compact.

Rotating functions in SPCBFs representation can be eas-
ily done by rotating the domain of SPCBFs. However, as
the BRDF and visibility functions are represented with the
same set of SPCBFs as those defined over the environment
map, when the light is rotated, the coefficients of BRDF
and visibility functions in SPCBFs representation need to be
recomputed over the rotated SPCBFs. Re-computation of these
coefficients is very time-consuming. We propose to precom-
pute summed-area table (SAT) and visibility distance tables
(VDTs) for BRDF and visibility integration, respectively. At
run-time rendering, we approximate the coefficients of BRDF
and visibility by fast lookup of SAT and VDTs, respectively.
With this strategy of precomputing the light coefficients and
run-time approximating the BRDF and visibility coefficients,
our method supports efficient rotation of light, BRDF and
visibility.

Our rendering algorithm involves two approximations.
Roughly speaking, we first approximate the environment map
using disjoint area light sources of constant intensity. We then
use SAT/VDT to approximate the integral of BRDF/Visibility
with respect to each area light source. Although the individual
errors introduced by the BRDF and visibility representations
are possibly large, they will be significantly weakened by the
small light coefficient, thanks to our importance-sampling-like
partitioning of the environment map. Thus our method always
produces compelling rendering results.

In summary, our main contributions consist of:

• A novel basis for precomputed radiance transfer that pos-
sesses rotatability, the ability to represent all-frequency
signals, and support for efficient multiple product.

• A real-time PRT rendering framework that supports new
effects, in particular,

– all-frequency rendering of dynamic scenes involving
both object rotation and translation, and

– on-the-fly BRDF editing under rotating environment
lighting,

and is capable of incorporating existing challenging ef-
fects such as

– local light illumination and
– local deformable shading.

II. RELATED WORK

In this section, we first discuss the existing precomputed
radiance transfer techniques for static and dynamic scenes,
and then give a brief review of summed-area table.

A. PRT for Static Scenes

Precomputed radiance transfer framework for environment
light rendering was first proposed by Sloan et al. [1]. The
rationale of PRT is to represent the environment light and

the light transport function with a certain linear basis, thus
making precomputation storage-affordable, and meanwhile ap-
proximating the computationally expensive rendering integral
at each vertex of a scene with a simple dot product of the
coefficients of the basis.

Spherical harmonics (SH) is the first type of basis used
in PRT rendering. It has several attractive properties, such as
orthonormality, rotational-invariance projection, and support of
efficient multiple product. The resulting PRT frameworks [1],
[7], [8] are effective in real-time rendering of static scenes
under dynamic low-frequency environment maps. However,
as SH cannot effectively approximate high-frequency signals,
these frameworks can only handle low-frequency shadowing
effects and low-frequency materials (BRDF).

Wavelet bases can encode functions at all frequencies in a
compact way. Ng et al. [2] propose a nonlinear wavelet lighting
approximation technique to perform all-frequency PRT render-
ing of glossy objects with fixed views or diffuse objects. Using
an efficient triple product wavelet algorithm [3] or BRDF
factorization [9], [10], wavelet-based PRT frameworks allow
high-resolution lighting effects with changing views. However,
unlike SH, wavelet representations cannot be easily rotated,
making efficient rotation of light, BRDF and visibility difficult.
For example, rotation of an environment map requires re-
projection of the environment map to the wavelet basis, which
may cause flickering artifact. To address the problem, Wang
et al. [11] give a computational wavelet rotation method by
precomputing rotation matrices. However, due to large data
storage, their method can only sample rotation matrices at 2D
normal directions, which is insufficient for the 3D rotation
space and thus does not support arbitrary wavelet rotation.

Tsai et al. [5] propose to use spherical radial basis functions
(SRBFs) for PRT. They find a compact set of SRBFs to repre-
sent for high-frequency signals of environment light through
an optimization process. Similar to the rotation of functions in
our SPCBFs representation, rotating the functions represented
with SRBFs is achieved by rotating the SRBFs themselves.
Unlike ours, their method employs different sets of SRBFs for
the light, BRDF and visibility functions and thus does not need
to change the SRBF representations of BRDF and visibility
functions when the light rotates. However, a combined set of
SRBFs is generally not orthogonal. To our best knowledge, the
product of triple or multiple functions represented with non-
orthogonal SRBFs cannot be efficiently calculated, limiting
their method to only static scenes.

Green et al. [12] present a real-time method with com-
plex view-dependent effects under all-frequency environment
lighting. They approximate the light transport function as
a summation of Gaussian functions, which leads to a fast
convolution with the lighting function at render time. Their
method models high-frequency specular effects well, but it
is unclear how their method can produce high-frequency
shadows.

Recently, Xu et al. [13] propose a real-time homogenous
translucent material editing method. They utilize a 1D piece-
wise polynomial basis to approximate the multiple scattering
diffusion reflectance function and the single scattering expo-
nential attenuation function. However, their focus is on translu-

3

cent materials and the method is limited to approximating 1D
curves.

B. PRT for Dynamic Scenes

PRT rendering for dynamic scenes is a hard problem
because the movement of objects invalidates the precom-
puted light transport function. Mei et al. [14] present a real-
time rendering method for dynamic glossy objects under all-
frequency environment lighting. Their method is based on the
precomputation of shadow maps under the assumption that the
illuminants are distant.

Zhou et al. [4] introduce a shadow field framework for
rendering dynamic scenes with both distant illuminants and
local light sources. Each occluder’s shadowing effects are
precomputed and stored in the SH or wavelet basis at the
sample points of the occluder’s surrounding space. The irra-
diance map of each local light is precomputed in a similar
way. Their approach enables real-time low-frequency shad-
owing effects (if using the SH basis) and interactive all-
frequency shadowing effects of dynamics scenes (if using
the wavelet basis). Because the occluder visibility vector in
SH can be efficiently rotated to global frame due to the
rotatability of SH, their approach also supports rotation of
objects in low-frequency lighting environments. Sun et al. [15]
extend the dot or triple product to a generalized multi-function
product in the wavelet domain. They also propose a just-in-
time radiance transfer (JRT) technique to accelerate shadow
computation. Their method renders all-frequency shadows of
dynamic scenes in real-time. As the wavelet representation
cannot be easily rotated, none of the above techniques can
handle real-time rendering of rotating objects in all-frequency
lighting environments.

The amount of PRT data sets can be extremely large
and thus infeasible to store, especially for dynamic scene
rendering. Exploiting inter-vertex data coherence, several com-
pression techniques have been proposed [16], such as clustered
principle component analysis (CPCA) [7] and clustered tensor
approximation (CTA) [5]. We adopt CPCA to compress the
PRT data sets.

C. Summed-Area Table

Crow [17] introduces the summed-area table (SAT) for rapid
box filtering (averaging) in texture mapping. Its usage is later
extended to volume rendering, image and video processing
(see [18] and references therein). As illustrated in Figure 1,
by pre-integrating the top-left rectangular area corresponding
to each sample point, the integral in a rectangle area R defined
by (l, r, t, b) can be rapidly computed with four lookups:∫

R

f(x, y)dxdy = SAT (r, b)− SAT (l, b)

−SAT (r, t) + SAT (l, t). (1)

When SAT is implemented in graphics hardware, a precision
problem occurs, which can be alleviated with techniques
proposed in [18].

The remainder of this paper is organized as follows. We
introduce the definition of SPCBFs and their properties in

R
t

b

l r

(x ,y) 0 0

Fig. 1. An illustration of SAT definition and usage.

Section III. We give the overview of the proposed PRT
rendering framework with SPCBFs in Section IV, and de-
scribe the algorithm details in Section V. After presenting
the implementation details in Section VI, we analyze the
rendering errors of our method in Section VII. Results are
given in Section VIII, and conclusion as well as future work
in Section IX.

III. SPHERICAL PIECEWISE CONSTANT BASIS FUNCTIONS

In this section, we state the definition of spherical piecewise
constant basis functions (SPCBFs) and discuss their general
properties. The PRT framework using SPCBFs is introduced
in the next section.

A. Definition

Given a partition {S1, S2, . . . , Sn} of a unit sphere S (i.e.
S = S1∪S2∪· · ·∪Sn, and Si∩Sj = ∅ for any i �= j), for each
subregion Si, we define a spherical function valued 1 inside
Si and 0 elsewhere as an SPCBF Bi(ω). The set {Bi(ω)}
forms an orthogonal basis for a function space defined over
the sphere. Any function F (ω) in this function space is called
a spherical piecewise constant function (SPCF) and thus can
be represented as a linear combination of the basis functions
{Bi(ω)}:

F (ω) =
∑

i

ciBi(ω),

where ci is the coefficient corresponding to the i-th basis
function Bi(ω).

B. Projection and Reconstruction

Due to the orthogonality of {Bi(ω)}, a scalar function G(ω)
defined over the sphere S can be projected into its coefficients
via an integral of G(ω) over each subregion S i:

ci =
1
|Si|

∫
S

G(ω)Bi(ω)dω =
1

|Si|
∫

Si

G(ω)dω, (2)

where |Si| denotes the solid angle of Si.
An approximation of G(ω) reconstructed from the coeffi-

cients can be formulated as

G(ω) ≈
∑

i

ciBi(ω),

which approximates the spherical function well by designing
a partition of the sphere specific to G(ω) (i.e., defining a set
of SPCBFs {Bi(ω)} specific to G(ω)).

4

C. Properties

All-frequency. Given a spherical function to be encoded,
a partition of the sphere S (i.e., the locations and shapes
of the subregions) can be optimized to fit the function well.
The spatial localization property of SPCBFs allows both
high-frequency and low-frequency signals to be represented
effectively using only a small number of coefficients.

Rotation. SPCBFs support efficient rotation. Rotating func-
tions represented with SPCBFs can be equivalently done by
rotating the partitioned subregions. Formally, given a spherical
function in SPCBF representation G(ω) ≈ ∑

i ciBi(ω), the
reconstruction function G′(ω) rotated by R can be represented
by

R(G(ω))≈R(
∑

i

ciBi(ω))=
∑

i

ciR(Bi(ω))=
∑

i

ciB
′
i(ω),

where {B′
i(ω)} are the SPCBFs defined over the partition

rotated by R. Once the SPCBFs are rotated, we propose to
use the precomputed SAT/VDT, making the re-projection of
BRDF/visiblity to the rotated SPCBFs efficient.

Multiple Product. Unlike the SH or wavelet basis,
which needs different methods to compute dot product and
triple/multiple product, SPCBFs support a uniform scheme
to compute them. This is because SPCBFs not only are
orthogonal, implying

∫
Bi(ω)Bj(ω)dω = 0, for any i �= j,

but also satisfy
∫

Bi1(ω)Bi2(ω) · · ·Bil
(ω)dω = 0, l ≥ 3,

when there exists ij �= ik.
Formally, given a set of spherical functions G1(ω), G2(ω),

. . ., Gm(ω), m ≥ 2 and their representations in the same set
of SPCBFs {Bi(ω)}:

Gj(ω) ≈
∑

i

cj,iBi(ω), 1 ≤ j ≤ m,

the integral of the function products can be approximated by∫
G1(ω)G2(ω)...Gm(ω)dω ≈

∑
i

|Si| c1,ic2,i...cm,i. (3)

In other words, the integration of the product of multiple
functions reduces to a multiple product of their coefficients.

IV. OVERVIEW

Without considering inter-reflection, the rendering equation
for environment map illumination of static scenes [19] is
formulated as

E(x, ω0) =
∫

S

L(ω)ρ(x, ω, ω0)V (x, ω)dω,

where E(x, ω0) is the outgoing radiance at a point x of the
scene to be illuminated in direction ω0, L(ω) is the incident
radiance in direction ω, and ρ and V denote the 4D BRDF
function and the self-visibility function at x, respectively. By
incorporating occluder visibility, Zhou et al. [4] present a
shadow field framework for rendering of dynamic scenes. The
new rendering equation becomes

E(x, ω0)=
∫

S

L(ω)ρ(x, ω, ω0)V (x, ω)
∏
j

VOj (x, ω)dω, (4)

where VOj is the occluder-visibility function for an opaque
object j at location x.

* *

* *

Fig. 2. SPCBF approximation of light (top row), BRDF (middle row), and
visibility (bottom row) functions. The left column shows the original functions
and the right column shows the corresponding SPCBF representations.

A. PRT Representation in SPCBFs

We approximate the light, BRDF, self-visibility and
occluder-visibility functions using the same set of SPCBFs.
Because the environment light is distant and thus the same
for all vertices of a scene, we define the partition {S i} of
the sphere S, and thus SPCBFs {Bi(ω)}, according to the
environment map. With this basis, the integrands in Equation 4
can be approximated as follows (see a 1D illustration in
Figure 2):

L(ω) ≈ ∑
i

liBi(ω),

ρ(x, ω, ωo) ≈
∑
i

ρx,ωo,iBi(ω),

V (x, ω) ≈ ∑
i

vx,iBi(ω),

VOj (x, ω) ≈ ∑
i

vOj ,x,iBi(ω),

where li, ρx,ωo,i, vx,i, and vOj ,x,i are the coefficients of the
light, BRDF, self-visibility and occluder-visibility functions in
SPCBFs, respectively. Using the multiple product integration
equation of SPCBFs (Equation 3), the rendering integration for
dynamic scenes in Equation 4 reduces to a multiple product
between light, BRDF, self visibility and occluder visibility
coefficients

E(x, ω0) ≈
∑

i

|Si| (liρx,ωo,ivx,i

∏
j

vOj ,x,i). (5)

B. Precomputation

When the environment map needs rotated, we correspond-
ingly rotate the partition, implying that the light coefficients
li remain unchanged (see the rotation property of SPCBFs in
Section III). However, as the coefficients li, ρx,ωo,i, vx,i and
vOj ,x,i are defined over the same partition of the environment
map, the BRDF and visibility coefficients have to be recom-
puted when the SPCBFs are rotated caused by the rotation
of the partition. The re-computation of these coefficients is
very time-consuming, requiring us to seek a precomputation

5

Fig. 3. We define a mapping fx from the hemisphere determined by the
local frame at a vertex x to the 2D parameter plane. Then we approximate
a subregion Si by the preimage of an axis-aligned rectangular region Ri in
the parameter domain under fx.

method. Naive precomputation of these coefficients for all
the possible rotations of the partition is infeasible due to the
unwieldy size of the data sets.

Computing the coefficient with respect to Bi(ω) for a
specific function is equivalent to integrating that function
over Si (Equation 2). Therefore, to make the precomputation
storage-affordable, we employ SAT for BRDF pre-integration
and employ visibility distance table (VDT) for visibility pre-
integration. The efficient rotatability of SPCBFs allows us to
precompute VDT in the local frame at each vertex and a global
BRDF SAT, which leads to more compact storage.

Rather than directly store the coefficients, SAT and VDT
employ lookups to compute them. To fast evaluate the coef-
ficients by simple lookups (Equation 1), we parameterize S i

and fit the preimage of Si in the parameter domain, Ci, with
an axis-aligned rectangle Ri (Figure 3). Let fx : ω → p be a
mapping from the hemisphere determined by the local frame at
a given object vertex x to the 2D parameter plane (Figure 3),
where ω is a 3D direction in the global frame and p is a
2D point in the parameter domain. Since the partition allows
rotations of any angle, to reduce the fitting error between R i

and Ci = fx(Si), intuitively, we prefer Si and Ri of aspect
ratio equal to 1. Therefore, we use an axis-aligned square R i

to compute the coefficients corresponding to S i. Let ci be the
centroid of Si. For a given object vertex x, Ri is then identified
as an axis-aligned square Rx(ci, ri), whose respective center
and size are fx(ci) and

√
2ri. Note that we use a unique pair

of parameters 〈ci, ri〉 to represent each subregion Si.
In summary, the tasks done in the precomputation stage are

as follows:

1) Given an environment map, we simultaneously compute
the partition of the illumination sphere and the parame-
ters 〈ci, ri〉 for each subregion Si through a bottom-up
optimization algorithm to make two sources of errors
tractable (Section V-A). The light coefficients li are also
computed using Equation 2 during the optimization.

2) We precompute VDT for visibility (Section V-C) in the
local frame at each vertex and a global SAT for BRDF
(Section V-B).

C. Run-Time Rendering

During run-time rendering, the following steps are per-
formed:

1) When the environment light rotates, we keep r i and
li unchanged, and rotate ci according to the rotation
transformation of the environment light. Let c ′

i be the
resulting direction by rotating ci.

2) At each vertex x, we compute ρx,ωo,i for each subregion
Si by fast lookup of SAT (Section V-B), and compute
vx,i and vOj ,x,i by fast lookup of VDT (Section V-C)
using the axis-aligned square Rx(c′i, ri)1.

3) We sum the multiple products of li, ρx,ωo,i, vx,i and
vOj ,x,i over all the subregions to approximate the out-
going radiance B(x, ω0) at point x in direction ω0

(Equation 5).

V. ALGORITHM

We give the details of the SPCBF-based PRT rendering
algorithm in this section. We first describe an approach to
partition an environment map (Section V-A). We then explain
how to precompute and run-time look up SAT for BRDF
(Section V-B) and VDT for visibility (Section V-C).

A. Environment Map Partitioning for SPCBF Construction

Our PRT rendering algorithm involves two approximation
steps: the approximation of the rendering integral by a multiple
product of the integrands in SPCBFs and the approximate
representation of each subregion S i with 〈ci, ri〉. The ap-
proximation errors of both steps are highly dependent on
the partition of the environment map. In this subsection, we
first define two metrics (i.e., ξi and ηi) to measure these
two sources of approximation errors for a given subregion
Si. We then present a bottom-up algorithm to partition the
environment map under the guidance of these error metrics.

According to the definition of SPCBFs, we associate
each subregion Si with an SPCBF Bi(ω). The light coef-
ficient corresponding to Bi(ω) is then computed as li =

1
|Si|

∫
Si

L(ω)dω. We use the variance σ2
i of the light intensity

within Si to measure the approximation error of representing
the light function with an SPCF liBi(ω) within Si.

Since the BRDF and visibility functions are dependent on
rotation of the partition, and thus are not fixed with respect
to Si, we cannot give an exact representation to measure the
approximation errors of BRDF and visibility caused by SPCBF
representations. Fortunately, what we really care for is largely
the expected approximation error of representing the rendering
integral with a multiple product of the integrands in SPCBFs,
rather than the representation error of each integrand. Clearly,
to reduce the expected approximation error, we need to restrict
subregions with high intensity light to small areas while al-
lowing subregions with low intensity light to have large areas,
that is, we prefer small values of |Si|li. Therefore, we use the
following metric to measure the expected approximation error
of representing the rendering integral with a multiple product
of the coefficients in SPCBFs:

ξi = |Si| li σ2
i .

1The coefficients computed by looking up SAT or VDT are essentially only
the approximate coefficients under the original set of SPCBFs.

6

In a sense, our strategy is similar to the strategy of sampling
environment map based on importance proposed by Agarwal
et al. [6].

Now we explain how to define a metric ηi to measure the
fitting error of representing the shape of the subregion S i with
〈ci, ri〉. We set ci as the centroid of Si and aim to find an
optimal value of ri that results in the minimum fitting error.
Let Ui = ∪x∈Ωf−1

x (Rx(ci, ri)) denote the union of the preim-
ages of the axis-aligned squares Rx(ci, ri) at every position
x of a model surface Ω under the mapping fx. Intuitively, Ui

is the circular region covered when rotating a rectangle-like
shape around the center ci. For a direction ω within Ui, the
probability that ω is covered by f −1

x (Rx(ci, ri)) at a certain
position x, denoted by αi(ω), is different. Specifically, the
probability αi(ω) is only related to the distance between ω
and ci and can be approximated as

αi(ω)≈
⎧⎨
⎩

1, ratio(ω) < ratio0
ratio(ω)−ratio0
ratio1−ratio0

, ratio0 < ratio(ω) < ratio1

0, ratio(ω) > ratio1

where ratio(ω) = |ω − ci|/ri, and ratio0 and ratio1 are
the minimum and maximum values of ratio(ω) among all
x ∈ Ui, respectively2. Due to the different covering probability
αi(ω) within Ui, using only the boundaries of Si and Ui

are not sufficient to define the approximation error η i of
representing Si with 〈ci, ri〉. Therefore, we propose to define
ηi by minimizing the area difference between U i and Si

weighted by the covering probability α i(ω) in a least-squares
sense:

ηi = min
ri

∫
Si

αi(ω) (Ti(ω)−1)2+(1 − αi(ω)) T 2
i (ω) dω,

where Si = Si∪Ui, and Ti(ω) = 1 if ω ∈ Si, and 0 otherwise.
We iterate over a finite number of possible values to find the
optimal value of ri.

We aim to find a partition of the environment map that
minimizes

∑
i ξiη

t
i , where t is a scalar to control the relative

importance of ξi and ηi for guiding the partitioning (experi-
ments show that t = 0.5 gives best results). An ideal partition
would have the subregions all having equal energy and each
having a corresponding axis-aligned square in the parameter
domain. This minimization problem is solved by a bottom-up
algorithm. Considering each pixel in the initial environment
map as a subregion, we iteratively merge the subregions under
the guidance of ξi and ηi. For each iteration, we select two
connected subregions and merge them into one subregion. The
selection criterion is that, among all the candidate subregion
pairs, the newly merged subregion introduces the least change
to the current overall error

∑
i ξiη

t
i . Each iteration decreases

the number of the current subregions by one. Therefore, after
thousands of iteration steps, we obtain a prescribed number
of subregions. This procedure takes about 30 seconds for a
6×32×32 environment map. The pseudo-code of environment
map partitioning is listed in Algorithm 1.

2ratio0 =
√

2/2 and ratio1 = 2 in our adopted hemisphere parametriza-
tion method (Section VI-A).

Fig. 4. Examples of environment map partition. Left column: the original
environment maps. Right column: the partitioned subregions bounded by green
lines.

Input: An environment map with m pixels.
Output: A set of subregions S = {si|0 ≤ i < k} where k

is the prescribed number of subregions.
Set S = {si|0 ≤ i < m} where subregion si only consists1
of the i-th pixel of the environment map;
while m > k do2

Declare error array error[m];3
Declare index array index[m];4
for i← 0 to m do5

if si has no neighbor then6
error[i]←∞;7
index[i]← −1;8

else9
/* find min error during merging

si and sk */
k ← arg mink{ξi,kηt

i,k|k ∈ neighbor(i)};10

error[i]← ξi,kηt
i,k;11

index[i]← k;12
end13

end14
sj ← subregion with mini error[i];15
if index[j] = −1 then break;16
sj ← sj ∪ sindex[j];17
sindex[j] ← sm−1;18
m← m− 1;19

end20

Algorithm 1: Pseudo-code of environment map parti-
tioning.

Figure 4 shows two examples of partitioning environment
light maps. Note that the regions with high-intensity light have
dense distribution of subregions. This effect is very similar to

7

the importance sampling strategy [6]. In our experiments, we
found that 20 ∼ 40 subregions are enough to give compelling
rendering results for most kinds of environment maps.

Besides distant environment maps, our method can also
handle local lights by employing the source radiance field
(SRF) of shadow field framework [4]. At each sample point
around a local light, we partition the recorded radiance map
from that local light to a set of subregions and associate each
subregion with 〈ci, ri〉. The remaining tasks are similar to what
we do for rendering under environment maps.

B. BRDF SAT Precomputation and Run-Time Lookup

According to Equation 2, computing the BRDF coefficient
ρx,ω0,i at a point x is equivalent to integrating the BRDF func-
tion ρ(x, ω, ω0) over subregion Si (Figure 3 left). Equivalently,
the integral can be evaluated over the corresponding region
Ci in the 2D parameter domain (Figure 3 right). In addition,
as BRDF is a function of both incoming light direction ω
and outgoing view direction ω0 relative to a local orientation
at x, BRDF at the local frame of every vertex is the same.
Therefore, the evaluation of ρx,ω0,i in the local frame at x can
be formulated as

ρx,ω0,i =
1

|Si|
∫

Si

ρ(x, ω, ω0)dω =
1

|Ci|
∫

Ci

ρ(p, ω′
0)dp,

where ω′
0 denotes the view direction ω0 rotated to the local

frame at x. We approximate the integral 1
|Ci|

∫
Ci

ρ(p, ω′
0)dp

using the SAT technique as explained below.
In the precomputation step, for each view direction ω ′

0, we
pre-integrate the SAT of the BRDF function as

SAT (u, v, ω′
0) =

∫
R(u,v)

ρ(p, ω′
0)dp,

where (u, v) is a point in the parameter domain corresponding
to a light direction in the global frame, and R(u, v) is a
rectangle determined by points (0, 0) and (u, v) (Figure 1).

Unlike previous related methods [3], [4], [15], which define
the BRDF in the global frame and require 6D BRDF data
storage, our method only needs a global 3D or 4D BRDF
SAT, since SAT (u, v, ω′

0) is the same in the local frame at
any vertex x of a scene. For an anisotropic BRDF, we have
to tabulate the view direction ω ′

0 over the whole hemisphere
which is 2D, so the global BRDF SAT is 4D. For an isotropic
BRDF, we only need to tabulate the polar angle of the view
direction ω′

0, therefore the whole SAT is 3D.
The coefficient ρx,ω0,i can be approximately evaluated by

the following formula:

ρx,ω0,i =
1

|Ci|
∫

Ci

ρ(p, ω′
0)dp ≈ 1

|Ri|
∫

Ri

ρ(p, ω′
0)dp,

where Ri = Rx(ci, ri) is the axis-aligned square associated
with Si in the local parameter domain at x. Therefore, during
run-time rendering, ρx,ω0,i (the integral

∫
Ri

ρ(p, ω′
0)dp over

Ri) can be efficiently computed by using only four lookups
of the SAT (Equation 1).

Because we compute and store the BRDF SAT indepen-
dently of a scene to be rendered, we achieve the following
benefits. First, we can on-the-fly swap or edit the BRDF

of a model. For analytic BRDFs, given the new parameters,
the BRDF SAT data (a 3D/4D table) can be regenerated
on the fly, achieving interactive editing of BRDF. Second,
under the assumption that visibility integrals are ignored for
local shading, our method can easily handle local deformable
shading effects, as the BRDF integral is computed in local
frame.

C. Visibility VDT Precomputation and Run-Time Lookup

Similar to the BRDF integral, the SAT technique is directly
applicable to the fast approximation of the visibility integrals.
However, noticing that visibility data are binary, we propose a
more efficient method to approximate the visibility integrals,
called visibility distance table (VDT). In this subsection, we
first present the idea of approximating the integral of a general
visibility function over a square in the parameter domain using
VDT, and then explain how to use the VDT technique to ap-
proximate the self-visibility and occluder-visibility coefficients
efficiently.

Given a 2D visibility map v(p) (Figure 5 left), which is a
function of point p in the hemisphere parametrization domain,
the VDT (Figure 5 right) is defined as follows

V DT (p) = d(p) sign(p),

where d(p) is the nearest distance from point p to the binary-
change boundary of v(p), and sign(p) = 1 if v(p) = 1, and
−1 otherwise. We use the method proposed by Danielsson [20]
to compute d(p). We propose to approximate the integral of
v(p) over the square R(q, r), which is centered at q and of
size

√
2r, as

1
|R(q, r)|

∫
R(q,r)

v(p)dp ≈ min(1, max(0, F (q, r)), (6)

where F (q, r) =
√

2V DT (q)+r
2r approximates the percentage of

points with value 1 in the integral square R(q, r).
VDT has several advantages. First, only one lookup is

needed for visibility integral approximation, which is four
times faster than the lookup of SAT. Second, unlike SAT, VDT
has no precision problem when used in graphics hardware.
Third, VDT is a continuous signal, which can be compressed
more efficiently while giving fewer artifacts. However, using
VDT to look up an integral is only accurate when the visibility
boundary is a straight line (see a comparison example in
Figure 10). Nevertheless, our experiments show that rendering
results are acceptable in most cases.

1) Self Visibility: Similar to the evaluation of the BRDF
coefficients, the self-visibility coefficient vx,i can be approx-
imated by an integral over the square R i = Rx(ci, si) in the
2D parameter plane of the hemisphere in the local frame at x:

vx,i =
1

|Si|
∫

Si

V (x, ω)dω ≈ 1
|Ri|

∫
Ri

V (x, p)dp,

In the precomputation step, we ray-trace to compute the
visibility map V (x, p) at each vertex x in its local frame, and
generate the corresponding visibility distance table V DT (x, p)
(i.e. per-vertex 2D VDT). We call all these tables collec-
tively as the self-visibility distance field (SVDF). During run-
time rendering, we compute the approximation of vx,i (i.e.,

8

0
d(q)

q
r

R(q,r)

Fig. 5. Visibility Distance Table (VDT) definition. Left: a visibility map.
Right: the corresponding VDT. The distance is normalized.

1
|Ri|

∫
Ri

V (x, p)dp) by Equation 6 through one lookup of
V DT (x, p).

2) Occluder Visibility: We employ the shadow field frame-
work [4] to handle dynamic-scene rendering. Similar to the
approximation of the self-visibility coefficients, we approxi-
mately compute the occluder-visibility coefficient vOj ,x,i using
the following formula:

vOj ,x,i =
1
|Si|

∫
Si

VOj (x, ω)dω≈ 1
|Ri|

∫
Ri

VOj (x, p)dp.

In the precomputation step, we compute and store 2D
visibility data for each sampled point in the 3D surrounding
space of an object using the sampling method of object
occlusion field (OOF) [4]. As our rendering framework utilizes
SPCBFs instead of the SH or wavelet basis used by Zhou et
al. [4], our method differs from theirs in the following aspects.
First, at each sampled point x around an object Oj , we capture
the visibility map only on the hemisphere defined by the
direction from x to the center of Oj , rather than the visibility
map in the global frame. Second, we store a VDT instead of a
visibility map at each sampled point. The VDTs at all sampled
points are collectively referred to as the occluder visibility
distance field (OVDF). In the rendering step, we approximate
each occluder integral on the VDTs of the sampled points
using Equation 6. Similar to [4], the VDT at an intermediate
point is approximated by a trililnear interpolation of the eight
nearest samples.

VI. IMPLEMENTATION

We have implemented our rendering algorithm on graphics
hardware. This section presents the implementation details,
including hemisphere parametrization, data compression and
the shader program in GPU.

A. Hemisphere Parametrization

We use a variant of the Lambert equal-area parametrization
method mentioned in [21] to parameterize a unit hemisphere,
which is originally used for building an area-preserving map-
ping between a unit sphere and a unit disk. Specifically, we
define a one-to-one mapping from a unit hemisphere to a unit
disk through the following mapping function

(u, v) = f(x, y, z) = (x/
√

1 − z, y/
√

1 − z).

For the convenience of sampling and storage, we extend the
unit disk to a 2× 2 square (Figure 6 left). For BRDF and self

Fig. 6. Modified Lambert equal-area parametrization.

visibility functions, the extended region is valued by 0. For
occluder visibility function, the extended region is valued by
1.

We have also tested cube map parametrization and hemi-
sphere parametrization [22], but we find that the Lambert
equal-area parametrization gives the least distortion. The cube
map parametrization is not area-preserving, and the size of
a region changes when mapping from a sphere to a cube
map, leading to noises. The hemisphere parametrization in [22]
produces artifacts when a region crosses the diagonal of the
unit disk.

B. Data Compression

Let ω0 and ω denote the view and light directions respec-
tively, and let θ0 denote the polar angle of the view direction
ω0. For an isotropic BRDF ρ(ω, θ0), we sample ω at 32× 32
directions of the hemisphere parametrization, and θ0 at 32
angles. For an anisotropic BRDF ρ(ω, ω0), we sample both ω
and ω0 at 32 × 32 directions. As there is only one globally
stored BRDF SAT, no compression is needed.

The 4D Self-Visibility Distance Field (SVDF) is precom-
puted with a sampling rate of 32 × 32 × N , where 32 × 32
is the size of the VDT at each vertex, and N is the number
of vertices in the scene. The 5D Occluder Visibility Distance
Field (OVDF) is precomputed at 32×32× (6×32×32)×16,
where 32×32 is the VDT size, (6×32×32)×16 is because,
like OOF in [4], we use a cube sampling of 6 × 32 × 32 to
sample the space around each object on 16 different concentric
spheres, with radii ranging from 0.4r to 6r, where r is the
radius of the bounding sphere. As a result, the data of the
SVDF for a 40k vertex mesh is about 160M (32FP), and the
data of the OVDF is about 384M. Both of them need to be
compressed before putting into the GPU.

For SVDF compression, we use the Clustered PCA (CPCA)
method [7]. Taking a 40K vertex model for example, with 256
clusters and 8 eigen-vectors for each cluster, a compression
ratio of about 1 : 17(9M) gives a good result.

We compress OVDF as follows. For each concentric sam-
pling sphere (using cube map sampling), we split all the six
faces of the cube map into 2 × 2 segments, and obtain 24
segments on each sphere, like in [9]. We use 16 concentric
sampling spheres, resulting in a total of 24 × 16 = 384
segments. Each segment is compressed using PCA. With 8
eigen-vectors per segment, a compression ratio of about 1 :
26(15M) gives a good result.

We pack BRDF, SVDF and OVDF data into textures to
load into the GPU. For higher accuracy, we use 16FP textures
instead of 8BP. For BRDFs, we pack both isotropic and

9

O1

Si

O0

O4

O3O2

Fig. 7. Occluder culling. For subregion Si, to process object O0, only
occluder O2 needs to be considered, while O1, O3, O4 can be ignored.

anisotropic BRDFs into 3D textures3. For the compressed
SVDF and OVDF, we pack the eigen-values and the cluster
indices of the vertices into 2D textures. Eigen-vectors of SVDF
and OVDF are packed into 2D and 3D textures, respectively.

We use one more texture to store 〈ci, ri〉 associated with
each partitioned subregion, which is updated after the rotation
of the environment light in each frame.

C. Shader Program in GPU

Although our algorithm is a per-vertex rendering method,
we utilize the render-to-vertex-array technique and perform
the rendering process in two steps. In the first step, we pack
the object vertices into a 2D rectangle, with each vertex
corresponding to one pixel in the rectangle, and use a pixel
shader program to calculate the color for each pixel and render
the rectangle to a frame buffer object (FBO). The color is
copied from the FBO to the vertex array using the OpenGL
extension pixel buffer object (PBO). In this step, the vertex
attributes are needed for color calculation at each vertex, so
we pack the positions, normals and tangents of the vertices
into a 2D texture. In the second step, we use the OpenGL
extension vertex buffer object (VBO) to render the scene using
the color calculated in the first step. The pseudo-code of the
pixel shader is shown in Algorithm 2.

In the shader program, several textures are looked up for
each vertex, namely, attribute texture, BRDF texture, eigen-
value, cluster index and eigen-vector textures of SVDF and
OVDF. As a result, texture fetching is the bottleneck. We use
occluder culling to accelerate it (as shown in Figure 7). To
do this, we perform multi-pass rendering in the first step, with
one pass for each subregion. The resulting images of each pass
are blended together to generate a final image. Then, before
each pass, we determine the occluders that can be neglected in
that pass using CPU, and only send the remaining occluders
to the GPU.

VII. ERROR ANALYSIS

A. Errors in SPCBF-Based PRT Representation

Previous all-frequency PRT frameworks choose a basis
separately for each integrand (i.e., the light, BRDF and visi-
bility functions), guaranteeing that the representation of each

3Specifically, we pack 4D anisotropic BRDF of resolution 32×32×32×32
to a 3D texture of size (4 × 32) × (8 × 32) × 32.

foreach object vertex x do1
Initialize color Bx ← 0;2
foreach subregion Si associated with 〈ci, ri〉 and light3
coefficient li do

c′i ← the corresponding direction of ci in x’s local4
frame;
ω′ ← the corresponding direction of ω in x’s local5
frame;
Look up SVDF with (c′i, ri) to get self-visibility6
integral Vs;
Look up BRDF SAT with (c′i, ri) and ω′ to get7
BRDF integral B;
T ← |Si| li Vs

r2
i

B
r2

i
;8

foreach occluder Oj do9
Let p be the corresponding position of x in the10
local space of Oj ;
c′′i ← the corresponding direction of ci in p’s11
local frame;
Look up OVDF with (c′′i , ri) and p to get12
occluder visibility integral VOj ;

T ← T
VOj

r2
i

;13
end14
Bx ← Bx + T ;15

end16
Assign color Bx to vertex x;17

end18

Algorithm 2: Pseudo-code of pixel shading program.

function in its own basis has a low error rate. In contrast, our
method determines a basis according to the environment map
and represents both the BRDF and visibility functions in the
same basis as the light function. Since the light-driven basis
is not optimized based on the BRDF and visibility signals, the
representation error of BRDF or visibility might be large.

We show that the potential large errors in the BRDF and
visibility representations are effectively suppressed in the
multiple product computation (Equation 5). If the partition of
the environment map is dense enough, all the representation
errors of light, BRDF and visibility in SPCBFs should be
small. For a specific SPCBF Bi(ω), the representation error
of BRDF or visibility corresponding to Bi(ω) is likely to
be large only when the corresponding subregion S i is large.
However, since we design an error metric that is similar to
an importance sampling strategy [6] to guide the environment
map partitioning (Section V-A), the subregions with large areas
must have low light intensity. Therefore, after multiplying the
light, BRDF and visibility representations together, the low
light intensity value (approaching zero) significantly weakens
the errors introduced by the BRDF and visibility representa-
tions.

We have tested a variety of rendering scenarios to investigate
how the representation error of BRDF or visibility is related to
the sizes of the subregions. All the experiments demonstrate
that although the representation error of each term is possibly
large, the errors in the final multiple product are always very
small (see statistical data in Table II and an example of light,
self-visibility and BRDF representations in SPCBFs shown in
Figure 8, with errors corresponding to the underlined row in
Table II). We use the Sum of Squared Difference (SSD) error
to measure the error between an approximation representation

10

Fig. 8. Top row: the light (Uffizi Gallery environment map), self-visibility and
BRDF functions (from left to right). Bottom row: the corresponding SPCBF
representations.

Light Visibility BRDF Total
Uffizi Gallery 1.43% 20.97% 14.31% 0.04%

1.43% 26.80% 17.87% 0.12%
1.43% 21.42% 23.89% 1.04%
1.43% 34.67% 21.02% 1.05%
1.43% 45.37% 15.88% 0.69%

Campus 10.89% 22.57% 19.57% 0.36%
10.89% 16.86% 15.73% 0.15%
10.89% 24.03% 20.96% 1.14%
10.89% 18.43% 28.03% 0.05%

TABLE II

REPRESENTATION ERRORS OF LIGHT, SELF-VISIBILITY, AND BRDF

FUNCTIONS IN SPCBFS AND ERRORS IN THE FINAL MULTIPLE PRODUCTS.

and its corresponding ground truth.

B. Errors in SAT and VDT Lookup

During run-time rendering, we use the parameter 〈c i, ri〉
associated with each subregion Si to fast look up SAT (VDT)
for the computation of the corresponding coefficient of BRDF
(visibility). The approximation error introduced in this step
is guaranteed to be negligible when Si is small enough,
because we exploit the mismatch error metric of Rx(ci, ri) and
Ci = fx(Si) to guide the partition of the environment map.
By experiments, we found that the SSD error in the BRDF or
visibility coefficient computed through lookups, which is due
to both the mismatch between the square Rx(ci, ri) and Ci

and the variance of BRDF or visibility in Si, is almost linearly
proportional to the region size of S i (Figure 9). Therefore, the
errors in the SAT and VDT lookups are also suppressed when
computing the multiple product of light, BRDF, and visibility
coefficients, because for each subregion, the light intensity is
roughly inversely proportional to its region size.

Figure 10 illustrates a comparison example between us-
ing SAT and VDT for computing the visibility coefficients.
Compared with the ground truth (obtained by ray tracing),

0 0.2 0.4 0.6 0.8
0

0.005

0.01

0.015

0.02

0.025

0.03

Self Visibility

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5
x 10

−3

Phong BRDF
Ward Isotropic BRDF

Fig. 9. Relationship between the SSD errors (y-axis) of the self-visibility
(left) and BRDF (right) coefficients of a subregion Si computed through
SAT/VDT lookups and the region size of Si (x-axis) is almost linear.

the rendering results with either SAT or VDT have only
small SSD errors. VDT approximation leads to slightly larger
errors, since the assumption that visibility boundaries are
straight is not always fully satisfied, causing more black
shadows. As expected, VDT approximation gives less artifacts
than SAT approximation when the compression ratio becomes
higher, since VDT is more suitable for compression due to its
continuous representation.

C. Errors in Rendered Images

In Figures 11 and 12, we compare the proposed PRT
rendering results with the ground truth and the results of the
area-weighted wavelet method [2] for both Kitchen and Grace
Cathedral environment maps. 20, 30, 60, 100 SPCBFs are used
in our method, and 20, 30, 60, 100 wavelet terms (for each
of R, G, B channels) are used in the wavelet method [2]. L2

errors are measured for both methods. From the figures, we can
see that the rendering error of our method under all-frequency
environment lighting is small. Results with 100 SPCBFs are
almost as accurate as the ground truth; with 30 SPCBFs, the
accuracy is as that of wavelets with 100 terms per channel.
Note that, under the same number of basis functions, our
method is faster than the methods based on Wavelets for the
computation of multiple products but needs more storage (to
store SAT and VDT).

VIII. RESULTS AND DISCUSSIONS

The performance of different scenes is shown in Table III.
We have applied occluder culling to dynamic scenes. The
performance is reported on a Pentium IV 3.2GHz PC with
a Nvidia GeForce 7800GT 256MB graphics card. Interactive
frame rates are achieved for large dynamic scenes under all-
frequency environment lighting, and real-time frame rates are
achieved for static scenes under all-frequency environment
lighting, which is much faster than previous methods.

Figure 13 compares the results of SVDF under different
levels of compression, while Figure 14 compares the results
of OVDF under different levels of compression. Figure 15 and
16 show some rendering results of the robot scene and the
kitchen scene. Figure 17 shows rendering results of different
BRDFs; we use the BRDFs from [23]. Figure 18 shows results
of local light illumination and local deformable shading.

Limitations. Since an optimization process is needed to find
a set of SPCBFs for a given environment light, which typically

11

Fig. 10. Comparison between using SAT and VDT for computing the visibility coefficients. All the scenes are rendered under rectangle-shaped area lights
of solid angle = π/36. Left four sub-figures: top row (left: error = 0.02%, right: error = 0.01%) and bottom row (left: error = 0.30%, right: error = 0.13%)
are results using SAT and VDT, respectively. Note the difference in the casted shadows (of the stems of the plant or of the teapot handle and spout) on the
ground plane. The artifacts arose because the assumption that visibility boundary is a straight line does not hold here. Right four sub-figures: top row are
rendered using SAT with compression rate 1:14 (left) and 1:29 (right); bottom row are rendered using VDT with compression rate 1:14 (left) and 1:29 (right).

Reference Image

W(20): 1.59%

SPCBF(20): 0.41%

W(30): 1.37% W(60): 1.01%

SPCBF(100): 0.07% SPCBF(60): 0.11% SPCBF(30): 0.35%

W(100): 0.64%

Fig. 11. Rendering of a Buddha scene in Kitchen. Note the difference in the shadow boundaries.

Reference Image

W(20): 1.17%

SPCBF(20): 0.69%

W(30): 0.82% W(60): 0.36%

SPCBF(100): 0.02% SPCBF(60): 0.03% SPCBF(30): 0.49%

W(100): 0.28%

Fig. 12. Rendering of a teapot scene in Grace Cathedral. Note the difference in the glossy area and the shadow boundaries.

takes about 30 seconds with our unoptimized implementation,
real-time replacement of environment maps is not allowed,
The method based on SRBFs [5] shares the same limitation.
Furthermore, our method cannot handle some situations where

the BRDF has more details in a large partitioned region of
the environment map, since BRDF is represented with the
SPCBFs optimized for the light. Lastly, our current framework
does not allow indirect lighting, because supporting varying

12

Scene Vertices FPS Num. of SPCBFs
Robot 60k 10.8 30
Kitchen 80k 9.9 30
Buddha (static scene) 45k 27 30

TABLE III

PERFORMANCE RESULTS.

viewing directions and dynamic scenes requires a 4D transport
matrix at each vertex, making precomputation not memory
affordable. Unlike the original PRT method proposed by Sloan
et al. [1], many following techniques [3]–[5] also sacrifice
indirect lighting for more new effects.

IX. CONCLUSION AND FUTURE WORK

In this paper, we present a new basis function SPCBF for
PRT, which is able to represent all-frequency signals, and
support efficient rotation and efficient multiple product. By
precomputing the light coefficients and run-time computing the
BRDF and visibility coefficients, the proposed PRT framework
in SPCBFs supports a variety of rendering effects.

In our current implementation, we use SAT and VDT to fast
approximate the coefficients of BRDF and visibility, respec-
tively. This step inevitably introduces approximation errors
and involves large size precomputation storage (per-vertex 2D
VDT). We are seeking new fast integration techniques which
are more precise and need less storage.

There exists a number of interesting directions for further
investigation. First, the proposed method is limited to direct
lighting. As future work, we would like to incorporate indirect
lighting and inter-reflection into our framework. Second, we
would also like to extend our current material representation,
4D BRDF, to higher dimensional materials, like spatial variant
BRDF and BTF. Third, we will explore other compression
techniques (e.g., tensor approximation techniques [5]) rather
than CPCA to compress the visibility data.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable comments. We would also like to thank Xi Wang for
a lot of useful discussions and suggestions. This work was
partly supported by the National Basic Research Project of
China (Project Number 2006CB303106), Specialized Research
Fund for the Doctoral Program of Higher Education (Project
Number 20060003057) and the National High Technology
Research and Development Program of China (Project Num-
ber 2007AA01Z336). This work was also supported by the
Research Grant Council of the Hong Kong Special Adminis-
trative Region, China (Project No. 619905).

REFERENCES

[1] P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments,”
ACM Transaction on Graphics, vol. 21, no. 3, pp. 527–536, 2002.

[2] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency shadows using
non-linear wavelet lighting approximation,” ACM Trans. Graph., vol. 22,
no. 3, pp. 376–381, 2003.

[3] ——, “Triple product wavelet integrals for all-frequency relighting,”
ACM Trans. Graph., vol. 23, no. 3, pp. 477–487, 2004.

[4] K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum, “Precomputed shadow
fields for dynamic scenes,” ACM Trans. Graph., vol. 24, no. 3, pp. 1196–
1201, 2005.

[5] Y. Tsai and Z. Shih, “All-frequency precomputed radiance transfer using
spherical radial basis functions and clustered tensor approximation,”
ACM Transactions on Graphics, vol. 25, no. 3, pp. 967–976, 2006.

[6] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen, “Struc-
tured importance sampling of environment maps,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 605–612, 2003.

[7] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder, “Clustered principal compo-
nents for precomputed radiance transfer,” ACM Trans. Graph., vol. 22,
no. 3, pp. 382–391, 2003.

[8] P.-P. J. Sloan, X. Liu, H.-Y. Shum, and J. Snyder, “Bi-scale radiance
transfer.” ACM Trans. Graph., vol. 22, no. 3, pp. 370–375, 2003.

[9] X. Liu, P.-P. J. Sloan, H.-Y. Shum, and J. Snyder, “All-frequency pre-
computed radiance transfer for glossy objects.” in Rendering Techniques,
2004, pp. 337–344.

[10] R. Wang, J. Tran, and D. P. Luebke, “All-frequency relighting of
non-diffuse objects using separable brdf approximation.” in Rendering
Techniques, 2004, pp. 345–354.

[11] R. Wang, R. Ng, D. Luebke, and G. Humphreys, “Efficient wavelet
rotation for environment map rendering.” in Eurographics Symposium
on Rendering (EGSR), 2006.

[12] P. Green, J. Kautz, W. Matusik, and F. Durand, “View-dependent
precomputed light transport using nonlinear Gaussian function approxi-
mations,” in Symposium on Interactive 3D Graphics and Games, 2006,
pp. 7–14.

[13] K. Xu, Y. Gao, Y. Li, T. Ju, and S.-M. Hu, “Real-time homogenous
translucent material editing,” in Eurographics, 2007.

[14] C. Mei, J. Shi, and F. Wu, “Rendering with spherical radiance transport
maps.” Comput. Graph. Forum, vol. 23, no. 3, pp. 281–290, 2004.

[15] W. Sun and A. Mukherjee, “Generalized wavelet product integral for
rendering dynamic glossy objects,” ACM Trans. Graph., vol. 25, no. 3,
pp. 955–966, 2006.

[16] J. Kautz, J. Lehtinen, and P.-P. Sloan, “Precomputed radiance transfer:
Theory and practice,” in ACM SIGGRAPH Course Notes, 2005.

[17] F. C. Crow, “Summed-area tables for texture mapping,” in SIGGRAPH
’84, 1984, pp. 207–212.

[18] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra, “Fast
summed-area table generation and its applications,” Computer Graphics
Forum, vol. 24, no. 3, pp. 547–555, 2005.

[19] J. T. Kajiya, “The rendering equation,” in SIGGRAPH ’86, 1986, pp.
143–150.

[20] P.-E. Danielsson, “Euclidean distance mapping.” in Computer Graphics
and Image Processing, 1980, pp. 227–248.

[21] J. Snyder and D. Mitchell, “Sampling-efficient mapping of spherical
images,” Microsoft Techical Report, 2001.

[22] X. Liu, Y. Hu, J. Zhang, X. Tong, B. Guo, and H.-Y. Shum, “Synthesis
and rendering of bidirectional texture functions on arbitrary surfaces.”
IEEE Trans. Vis. Comput. Graph., vol. 10, no. 3, pp. 278–289, 2004.

[23] A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of brdf
models.” in Rendering Techniques, 2005, pp. 117–126.

13

Uncompressed 256 clusters, 16 eigen-vectors 256 clusters, 8 eigen-vectors 128 clusters, 8 eigen-vectors

Fig. 13. Self visibility distance field (SVDF) compression result. From left to right: uncompressed, using 256 clusters and 16 eigen-vectors, using 256
clusters and 8 eigen-vectors, using 128 clusters and 8 eigen-vectors.

Kun Xu is a PhD student in Department of Com-
puter Science and Technology at Tsinghua Univer-
sity. Before that, he received his bachelor’s degree in
Computer Science at Tsinghua University in 2005.
His research interests include real-time rendering
and appearance modeling.

Yun-Tao Jia is currently a Ph.D candidate in com-
puter science in University of Illinois at Urbana-
Champaign. His current research interests include
global illumination, GPU rendering and graph vi-
sualization. He obtained his master and bachelor
degrees from Tsinghua University in 2006 and 2004
respectively.

Hongbo Fu received the BS degree in information
science from Peking University, China, in 2002 and
the PhD degree in computer science and engineering
from the Hong Kong University of Science and
Technology in 2007. He is currently a postdoc-
torate research fellow in the University of British
Columbia. His primary research interests fall in
the field of computer graphics with an emphasis
on digital geometry processing, character animation,
and hairstyle synthesis and analysis.

Shi-Min Hu is currently a professor of computer
science at Tsinghua University. His research in-
terests include digital geometry processing, video-
based rendering, rendering, computer animation, and
computer-aided geometric design. He obtained his
Ph.D. in 1996 from Zhejiang University. He is on
the editorial boards of Computer Aided Design.

Chiew-Lan Tai received the BSc degree in math-
ematics from the University of Malaya, the MSc
degree in computer and information sciences from
the National University of Singapore, and the DSc
degree in information science from the University
of Tokyo. She is an associate professor of computer
science at the Hong Kong University of Science and
Technology. Her research interests include geometric
modeling and processing, computer graphics, and
reconstruction from architecture drawings.

14

Uncompressed 16 eigen-vectors 8 eigen-vectors 4 eigen-vectors

Fig. 14. Occluder visibility distance field (OVDF) compression result. From left to right: uncompressed, using 16 eigen-vectors, using 8 eigen-vectors, using
4 eigen-vectors.

Fig. 15. Rendering results of the robot scene under dynamic environment map and changing view. The robot is composed of 12 components.

Fig. 16. Rendering results of the kitchen scene under dynamic environment map and changing view. The scene is composed of 5 components.

Fig. 17. Rendering results of different BRDFs. From left to right, the BRDF models we used are: steel Phong, bronze Cook-Torrance, metal Ward Isotropic,
steel Ward Anisotropic.

Fig. 18. Local light illumination and local deformable shading. The left two figures illustrate the kitchen scene under a local light source. The right two
figures show local deformable shading under environment map.

