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Figure 1: Given an initial Voronoi diagram with 1000 generators clustered at Bunny’s left ear, the intrinsic CVT (iCVT) algorithm iteratively
improves the quality of the diagram by moving the generator of each Voronoi cell to its Riemannian center. After 1853 iterations, the algorithm
gets stuck in a local optimal solution with energy F = 4.218E-3. Although for each Voronoi cell, the generator coincides with the mass
center, one can clearly see that the Voronoi cells are not uniform. As an evolution-driven optimization method, manifold DE is insensitive
to initialization, and is able to compute the global minimizer (in a probability close to 1) of the CVT energy F = 3.692E-3. Both visual
checking and the cell energy histogram show that our result is more regular than that of the iCVT, since all Voronoi cells are of similar sizes
and shapes. See also the accompanying video.

Abstract

Computing centroidal Voronoi tessellations (CVT) has many ap-
plications in computer graphics. The existing methods, such as
the Lloyd algorithm and the quasi-Newton solver, are efficient and
easy to implement; however, they compute only the local optimal
solutions due to the highly non-linear nature of the CVT energy.
This paper presents a novel method, called manifold differential
evolution (MDE), for computing globally optimal geodesic CVT
energy on triangle meshes. Formulating the mutation operator us-
ing discrete geodesics, MDE naturally extends the powerful dif-
ferential evolution framework from Euclidean spaces to manifold
domains. Under mild assumptions, we show that MDE has a prov-
able probabilistic convergence to the global optimum. Experiments
on a wide range of 3D models show that MDE consistently out-
performs the existing methods by producing results with lower en-
ergy. Thanks to its intrinsic and global nature, MDE is insensitive
to initialization and mesh tessellation. Moreover, it is able to han-
dle multiply-connected Voronoi cells, which are challenging to the
existing geodesic CVT methods.

Keywords: centroidal Voronoi tessellation, geodesic Voronoi dia-
gram, differential evolution, global optimization, discrete geodesic
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1 Introduction

A centroidal Voronoi tessellation (CVT) [Du et al. 1999] is a special
Voronoi diagram of a given set such that the associated generating
points are centers of mass (with respect to a given density func-
tion) of the corresponding Voronoi regions. As a powerful compu-
tational tool, CVT in Euclidean spaces has been extensively studied
in the last decade (e.g., [Liu et al. 2009; Lévy and Liu 2010; Leung
et al. 2015; Yan and Wonka 2016]). However, little progress was
reported to geodesic CVT (GCVT) — the manifold counterpart —
due to the fundamental differences of geometry and topology be-
tween Euclidean spaces and manifolds.

It is well known that Voronoi cells in Rn are
simply connected, convex regions, whereas
Voronoi cells on surfaces may have non-
trivial topologies (see the right inset). In
Euclidean spaces, the center of mass c of
a Voronoi cell Ω is defined as the integral
of the weighted position coordinates of the
points in Ω, i.e., c =

∫
x∈Ω ρ(x)xdx∫
x∈Ω ρ(x)dx

, where ρ
is the density function. Since Ω is convex, c is guaranteed to be in
the cell Ω. Unfortunately, the Euclidean center of mass of a curved
patch is not always in it. Du et al. [2003] suggested using the con-
strained mass center, which is defined by projecting the Euclidean
mass center onto the surface. However, such a center is not unique
in general. Since the conventional center-based definition cannot be
trivially extended to manifolds, GCVT is defined as a minimizer of
the GCVT energy (see Section 4.1).

To compute a reasonable approximation of GCVT, most of the
existing methods (e.g., [Yan et al. 2009]) repeatedly compute re-
stricted CVT (RCVT), defined as the intersection between a 3D
Euclidean CVT and the input surface. Although it is conceptually
simple and highly efficient, RCVT often produces poor results on
models with rich geometric details and it is not able to eliminate
topological ambiguity (e.g., parts that are geometrically close but
topologically far away are often taken as one part) due to its ex-
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trinsic nature. Wang et al. [2015] proposed an intrinsic method
to approximate GCVT on triangle meshes. Their idea is to replace
each extrinsic Euclidean center of mass by the intrinsic Riemannian
center of mass, defined as the weighted average of the corners of a
Voronoi cell. Riemannian centers are a good approximation of cen-
ters of mass only if Voronoi cells are simply connected and fairly
regular. Otherwise, Riemannian centers may not exist or be far from
centers of mass. It is also known that the CVT energy is highly
non-linear [Lu et al. 2012], hence the commonly used methods,
such as Lloyd’s algorithm [Du et al. 1999] and the quasi-Newton
solver [Liu et al. 2009], are inevitably stuck to local optima.

This paper aims at computing the globally optimized GCVT on ar-
bitrary manifold triangle meshes. Towards this goal, we develop a
differential evolution (DE) based method to minimize the GCVT
energy. The reason that we adopt DE is that DE is designed for
global optimization over continuous spaces and it performs very
well in many real-world applications [Das and Suganthan 2011].
However, all the existing DE solvers [Das et al. 2016] work only
for Euclidean spaces, since the mutation operator — a critical oper-
ation to increase the diversity of the population, thereby increasing
the probability of obtaining the global optimal solution — is heav-
ily built upon a global coordinate system, which is not available to
manifolds with non-trivial topology. To tackle this challenge, we
elegantly formulate the mutation operator as the initial value and
boundary value problems of discrete geodesics, and solve them ef-
ficiently using exact discrete geodesic algorithms. Thanks to its in-
trinsic and global nature, our method is insensitive to initialization
and it is able to handle multiply-connected Voronoi cells, which are
challenging to all existing geodesic CVT methods.

2 Related Work

2.1 Centroidal Voronoi Tessellation

Let S = (si)
m
i=1 be a set of distinct sites in a connected compact

region Ω ⊂ R2. The Voronoi region Ωi of si is

Ωi = {x ∈ Ω | ||x− si|| ≤ ||x− sj ||, ∀i 6= j},

where ‖ · ‖ is the Euclidean norm. Let the domain Ω be endowed
with a C2-continuous density function ρ(x) > 0. Du et al. [1999]
defined an energy functional on Ω with respect to the Voronoi tes-
sellation

F (S) =

m∑
i=1

∫
Ωi

ρ(x)||x− si||2dσ ,
m∑
i=1

Fi, (1)

where the term Fi expresses the compactness (or inertia momen-
tum) of the Voronoi cell Ωi associated with the generator si. The
Voronoi tessellation

⋃
Ωi is called a centroidal Voronoi tessellation

if each site si coincides with the centroid ci of its Voronoi cell,

si = ci

(
=

∫
Ωi
ρ(x)xdσ∫

Ωi
ρ(x)dσ

)
, (2)

which is a necessary condition of the minimizer of F (S).

Lloyd’s algorithm [Lloyd 1982] iteratively moves the generator of
a Voronoi cell to its mass center. Although it is easy to imple-
ment, Lloyd’s algorithm has only a linear convergence rate. Liu et
al. [2009] proved that the CVT energy function is almost C2 con-
tinuous everywhere, hence one can minimize the CVT energy using
the Newton or quasi-Newton method with better convergence rate.

Although it is fairly simple to construct Voronoi diagrams in Eu-
clidean spaces (especially in R2 and R3), computing Voronoi dia-
grams on curved surfaces is technically challenging [Liu et al. 2011;

Liu 2015]. Some researchers [Alliez et al. 2003; Alliez et al. 2005;
Rong et al. 2011a; Rong et al. 2011b] suggested using global pa-
rameterization so that Voronoi diagrams can be computed by scal-
ing the Voronoi cells on the parametric domain. However, global
parameterizations are computationally expensive and may suffer
from serious numerical issues for models with complicated geome-
try and/or topology.

Rather than directly constructing the CVT on the input surface, Yan
et al. [2009] proposed a different approach that repeatedly com-
putes restricted Voronoi diagrams (RVD), defined as the intersec-
tion between the input mesh and a Voronoi diagram in R3. The
RVD method is highly efficient and also flexible for computing
CVTs with non-constant density functions. However, it may pro-
duce Voronoi regions that are disconnected. Such an issue can be
fixed by localized RVD [Yan et al. 2014]. As extrinsic methods,
RVD and its variants cannot deal with topology ambiguity.

Based on the Monte Carlo with minimization (MCM) framework,
Lu et al. [2012] developed a global optimization method to com-
pute Euclidean CVT. Their method transforms a continuous global
optimization problem into a discrete one by confining the search-
ing space only at those local minimizers of the objective function.
In each iteration, MCM applies a Monte Carlo sampling that could
jump out of the current local minimizer. Then it applies a local
solver (e.g., the L-BFGS method [Liu et al. 2009]) to obtain a new
local minimizer. The algorithm repeats this iterative procedure until
the result cannot be improved. Although their method works well
in Euclidean spaces, it lacks a theoretical guarantee of convergence.
Moreover, it requires a local solver to compute local optimal solu-
tions. To extend MCM to manifold domains, one has to borrow an
intrinsic CVT method (e.g., [Wang et al. 2015]), which, however,
is not able to cannot handle multiply-connected Voronoi cells as
mentioned above.

2.2 Global Optimization

There are two classes of global optimization methods, namely, de-
terministic methods and stochastic methods. Deterministic meth-
ods are suitable for functions that are convex/concave, or can be
expressed as differences of convex functions or as a networking
problem [Horst et al. 2000]. These methods also assume smooth-
ness of the objective function and the availability of its derivatives.
Unfortunately, the CVT energy, even in Euclidean spaces, is highly
nonlinear. In curved spaces where geodesic distances are involved,
it is not likely possible to obtain the derivatives. Hence, determin-
istic methods do not work for our application scenario.

In past few decades, stochastic methods have been extensively stud-
ied and applied to solve global optimization problems. Classic
stochastic methods include Monte Carlo algorithms, simulated an-
nealing, ant colony optimization, particle swarm optimization and
evolutionary algorithms. Among them, evolutionary algorithms are
popular due to their ability to generate an improved solution from a
set of correlated sub-optimal solutions.

Examples of evolutionary algorithms include genetic algorithms,
evolutionary programming, evolution strategies, genetic program-
ming, and differential evolution [Boender and Romeijn 1995; En-
gelbrecht 2006]. Each method has its own merits and limitations.
Genetic algorithms and simulated annealing are designed for com-
binatorial optimizations, i.e., the search space is discrete, and evolu-
tionary algorithms can minimize continuous functions with or with-
out derivatives. Differential evolution (DE), which is a competitive
form of evolutionary computing, has proven to be a powerful tool
for solving real-valued functions, due to its simplicity, robustness
and better convergence rate compared with other evolutionary al-
gorithms [Vesterstrom and Thomsen 2004; Qu et al. 2016].
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Figure 2: Illustration of a typical DE iteration on a real-valued bivariate function f(x1, x2). The red curves are the iso-value lines of the
function f . Each agent is a 2D vector, hence can be visualized as a point. (a) shows six agents (black dots) in the i-th population. (b) To find
the competitor for agent Xi,0, we pick three arbitrary agents from the population Xi, and compute the difference between the second and
third agents. (c) Adding the scaled difference vector to the first agent, we obtain the mutative agent Vi,0. (d) Generate the competitor Ui,0 by
binary crossover of Xi,0 and Vi,0. In this 2D case, U0,0 = (x1(V0,0), x2(X0,0)). (e) If f(Ui,0) < f(Xi,0), set the survivor Xi+1,0 = Ui,0
for the (i+ 1)-th population, otherwise reject Ui,0.

3 Preliminaries on Differential Evolution

Consider a real-valued objective function f(X) : Ω ⊂ RD → R,
whose search domain Ω is non-empty and bounded in RD . Denote
X = (x1, x2, · · · , xD) the variable, where xi ∈ R.

As a population-based real parameter optimization algorithm, dif-
ferential evolution (DE) starts from a randomly chosen population
of Np D-dimensional vectors that sample the objective function,
then iteratively searches for a global optimal solution in Ω. In each
iteration, DE performs a sequence of operations, including muta-
tion, crossover and selection (Figure 2). The algorithm terminates
when the user-specified stopping criteria are met.

Let us denote the k-th population by Xk = {Xk,j}Npj=1, where
Xk,j = {xk,j,i}Di=1 is the j-th vector. Each vector Xk,j is called
an agent.

Initialization. DE begins with a randomly initialized population
X0, where the Np agents {Xk,j} are uniformly randomized in the
domain Ω. When the lower boundXmin = (x1,min, · · · , xD,min)
and upper bound Xmax = (x1,max, · · · , xD,max) of Ω are avail-
able, one can simply generate the initial population X0 as

x0,j,i = xi,min + randj,i[0, 1] · (xi,max − xi,min),
i = 1, 2, · · · , D, j = 1, 2, · · · , Np (3)

where randj,i[0, 1] generates a uniformly distributed random num-
ber in [0, 1] and is instantiated independently for each (j, i).

Mutation. Mutation in biology is a sudden change in the gene char-
acteristics of a chromosome. In the DE setting, mutation perturbs
the variable vectors with the scaled difference of two randomly se-
lected agents. Let k denote the current iteration count. For each
agentXk,j , j = 1, · · · , Np, three other agentsXk,rand1,Xk,rand2
and Xk,rand3 are sampled randomly from Xk, where the indices
rand1, rand2 and rand3 are distinct and they are not equal to j.
We compute the mutative agent by adding to the third agent a scaled
difference between the first two agents

Vk,j = Xk,rand1 + λ(Xk,rand2 −Xk,rand3) (4)

where the scalar λ is usually set λ ∈ [0.4, 1].

Crossover. To enhance the diversity of the population, a binomial
crossover builds a competitor Uk,j = {uk,j,i}Di=1 by copying ele-
ments from the original and the mutative agents:

uk,j,i =

{
vk,j,i, if (randk,j,i[0, 1] ≤ Cr or i = irand)
xk,j,i, otherwise

(5)

where Cr ∈ [0, 1] is the crossover rate and irand is a random index
ranging in [1, D] to ensure that Uk,j gets at least one element from
Vk,j .

Selection. For each agent Xk,j and its competitor Uk,j in the k-th
generation, the selection operation chooses a survivor Xk+1,j for
the next generation:

Xk+1,j =

{
Uk,j , if f(Uk,j) ≤ f(Xk,j)
Xk,j , otherwise (6)

Note that the population size is a constant over generations.

Termination conditions. DE terminates when one of the following
conditions is met: (1) the iteration count exceeds a user-specified
threshold; (2) the current solution does not improve; and (3) a pre-
scribed objective function value is obtained.

It is worth noting that there are many variants of DE, which dif-
fer in the way of crossover. The aforementioned DE is the canon-
ical DE/rand/1/bin algorithm. For a C2 continuous objec-
tive function possessing a single global optimum (regardless of
the number of local optima), Ghosh et al. [2012] proved that
DE/rand/1/bin decreases the objective function monotonically
and the convergence is guaranteed. In practice, DE/rand/1/bin
also works very well for functions with multiple global optima by
finding one of them [Price et al. 2005]. We refer readers to the two
recent surveys [Das and Suganthan 2011; Das et al. 2016] of DE
and its popular variants.

In the evolution strategies theory, the explorative power of an evo-
lution algorithm is determined by its population diversity. Za-
harie [2001] showed that the expected population variance in
DE/rand/1/bin is greater than those of other evolution algo-
rithms, justifying the good performance of the DE algorithms.

4 Overview

4.1 Problem Statement

Let M be a 2-manifold mesh. Consider a set G = {gi}mi=1 of
generators onM . For generator gi, the geodesic Voronoi cellC(gi)
is defined as

C(gi) = {x ∈M : d(x, gi) ≤ d(x, gj),∀j 6= i} (7)

where d(p, q) is the geodesic distance between p and q on M . The
geodesic Voronoi tessellation T (G) of G on M is the union of all
geodesic Voronoi cells T (G) = ∪mi=1C(gi). We then define the
GCVT energy as

F (G) =

m∑
i=1

∫
x∈C(gi)

d2(x, gi)dx. (8)
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Figure 3: Illustration of a typical iteration of MDE on a unit sphere. Each agent has four generators.

Since M is compact, one can show that F (G) is continuous and
has at least one global minimum via a simple adaption of Lemma
3.4 in [Du et al. 1999] and Theorem 1.13 in [Horst et al. 2000].
A geodesic Voronoi diagram is a GCVT if it minimizes the above
GCVT energy.

In a special caseM ⊂ R2, F (G) is the Euclidean CVT energy with
a constant density ρ(x) ≡ 1 in Eqn. (1). Although extending the
energy functional from Euclidean spaces to manifolds is trivial, to
our knowledge, no one has ever defined it and tackled this problem
before.

4.2 Technical Challenges

Since the CVT energy function is highly nonlinear, so is the GCVT
energy. Therefore, the conventional local minimization methods,
such as Lloyd’s algorithm and the quasi-Newton solver, inevitably
get stuck to local optimal solutions. As mentioned above, differ-
ential evolution is a powerful computational framework for global
optimization of real-valued continuous functions. However, it is
highly non-trivial to apply the classic DE/rand/1/bin algorithm
to the GCVT problem due to the following reasons.

• For a conventional real-valued function, the order of the vari-
ables (x1, x2, · · · , xD) does matter, since swapping xi and
xj usually produces a new function. However, the variables
in the CVT energy are orderless, due to the combinatorial na-
ture of the Voronoi diagram, i.e., the area integral is performed
separately on each Voronoi cell. The orderless property brings
a serious issue to differential evolution. Given two agents with
exactly the same set of generators but in different order, DE
may consider them as two distinct agents. However, they pro-
duce the same Voronoi diagram, hence the same energy.

• Among the three major operations in a DE iteration, mutation
is heavily built upon a global coordinate system, which is only
available to Euclidean domains. Moreover, due to the lack of
a closed-form of geodesic distances, evaluating the integral is
technically challenging.

To our knowledge, all the existing DE algorithms work only for
domains in Euclidean spaces.

4.3 Key Ideas

We propose two techniques to tackle the above-mentioned chal-
lenges.

• To assign a reasonable order to the generators in an agent, we
propose an agent matching operator.

• To eliminate the use of global coordinate system, we re-
formulate the mutation operator using discrete geodesics.
Specifically, the difference between two generator sets is to
solve the boundary value problem of geodesic, i.e., finding the
shortest path between two generators, each of which belongs
to a generator set. Adding the difference to the third genera-
tor set is equivalent to the initial value problem of geodesic,
which computes the unique geodesic, given an initial point
and velocity.

We call our method manifold differential evolution (MDE) due to
its intrinsic and coordinate-free nature.

5 Manifold Differential Evolution

This section presents the algorithmic details of MDE and Appendix
proves its probabilistic convergence under some assumptions. We
outline the pseudocode of MDE in Algorithm 1 and illustrate a typ-
ical iteration in Figure 3. In MDE, an agent in a population Xk is
denoted as Gk,j , i.e., Xk = {Gk,j}Npj=1.

5.1 Generator Operations

Recall that each element in an agent Gk,j = {gk,j,i}Di=1 is a gen-
erator, i.e., a point on the mesh M . Let us denote by γ(x, y) the
geodesic path between two points x, y ∈ M . We define the gener-
ator subtraction (or GS) operator 	(y, x) : M ×M → Tx(M),
which takes two points x and y as input and produces a tangent
vector at x, whose magnitude is the length of γ(x, y) and whose
direction is the starting tangent direction of γ(x, y) (Figure 4(a)).

We then define the generator addition (or GA) operator ⊕ :
T (M)×M →M , which takes a tangent vector ~v at x and a point
y as input and produces a point z, which is computed as follows
(Figure 4(b)):

• Step 1: parallel transport the tangent vector ~v from x to y
along the geodesic γ(x, y); the transported tangent vector is
denoted by ~v′;

• Step 2: compute a geodesic path γ′ using the initial point y
and the initial tangent direction ~v′; the length of γ′ equals the
length of ~v.
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Algorithm 1 Manifold DE for minimizing the GCVT energy

Input: A 2-manifold triangle mesh M , the number m of genera-
tors in an agent and the population size Np

Output: The generators that minimize the GCVT energy function
1: Initialize the first population X0 of Np agents and set i = 0
2: while the termination criterion is not met do
3: Gi+1 = ∅
4: for each agent Gi,j ∈ Xi do
5: Generate a mutative agent G′i,j
6: Generate a trial agent G′′i,j
7: if F (G′′i,j) < F (Gi,j) then
8: Add the survivor G′′i,j to Gi+1

9: else
10: Reject the trial G′′i,j
11: for each generator gi,j,k ∈ Gi,j do
12: if the Voronoi cell is simply connected then
13: Move gi,j,k to its Riemannian center
14: end if
15: end for
16: Add Gi,j to Xi+1

17: end if
18: end for
19: i++
20: end while

• Step 3: return the endpoint of γ′.

Let ~vx and ~vy be the unit tangent vectors of γ(x, y) at the endpoints
x and y, respectively. As shown in [Mitchell et al. 1987], a discrete
geodesic path γ is an alternating sequence of vertices and (possibly
empty) edge sequences such that the unfolded image of the path
along any edge sequence is a straight line segment and the angle
of γ passing through a vertex is greater than or equal to π. Then
the parallel transport in Step 1 is simply implemented by finding a
vector ~v′ ∈ Ty(M) that preserves the angle ~vx · ~v = ~vy · ~v′.

Let a, b and c be distinct points on M and λ ∈ R a non-zero scalar.
The generator operators ⊕ and 	 have the following properties:

• Identity: (a	 b)⊕ b = a.

• The triangle rule property: (c	a)⊕a = (c	b)⊕((b	a)⊕a).

The triangle rule property shows that with GA operator, the tangent
vector c 	 a at a behaves like a Euclidean vector −→ac and −→ac =−→
ab +

−→
bc.

Figure 4 illustrates the GS and GA operators on a curved surface.
When M ⊂ R2 is a planar mesh, ⊕ and 	 are simply vector addi-
tion and subtraction.

x y(x, y)

v = y  x

x

y
v’

’

v 

v yz =

(a) Generator subtraction (b) Generator addition

Figure 4: Generator operations. (a) GS takes two points as input
and returns a tangent vector at the second point. y	 x is a tangent
vector ~v ∈ Tx(M). (b) GA takes a tangent vector ~v ∈ Tx(M)
at x and a point y ∈ M as input, and returns a point z ∈ M
on the surface. We parallel transport ~v to point y along geodesic
γ(x, y), and then compute a geodesic γ′ using the point y and the
transported tangent direction. The result z is a point on γ′ such
that d(y, z) = ‖~v‖.
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Figure 5: Agent matching. (a) Consider two agents G =
{g1, g2, g3, g4} and G′ = {g′1, g′2, g′3, g′4}, the initial matching
(gi, g

′
i) has a high cost, due to the long geodesic distances be-

tween the paired generators. (b) Solving the minimum-weight per-
fect matching problem, we obtain a permutation σ = (4, 1, 2, 3),
leading to the matching with minimum cost.

5.2 Agent Operations

We define the agent matching (or AM) operator to align two agents
G = {gi}mi=1 and G′ = {g′i}mi=1. We build a complete bipartite
graph Km,m with vertex set V (Km,m) = G ∪G′. The weight for
an edge e(gi, g′j), ∀gi ∈ G and ∀g′j ∈ G′, is the geodesic distance
between gi and g′j on M . We assign orders to the generators in
agents G and G′ by finding a perfect matching in Km,m with the
minimum sum of edge costs. We solve the minimum-weight perfect
matching problem using the Hungarian algorithm [Korte and Vygen
2006] in O(m3) time (Figure 5). The perfect matching is denoted
by a permutation σ such that gσ(i) ∈ G is mapped to g′i ∈ G′,
i = 1, 2, · · · ,m.

By applying the GS operator to the matched agents G and G′, we
define agent subtraction (AS) as.

G	G′ = {gσ(i) 	 g′i}mi=1 (9)

Let D denote the subtraction of two agents, say G′ and G′′. Then
for an arbitrary third agent G′′′, we define the agent addition (AA)
operator as

D ⊕G′′′ = {di ⊕ g′′′i }mi=1 (10)

We abuse the notations by using 	 and ⊕ for both agent and gen-
erator subtraction/addition.

Armed with the AM, AS and AA operators, we can formulate the
manifold mutation operator in a similar way as the Euclidean setting
except that vector difference and vector addition are replaced by
agent subtraction and agent addition.

5.3 Algorithm

MDE starts by sampling the objective function (Eq. (8)) at an initial
population of Np agents (each agent is a generator set). Denote
the population at the kth generation as Xk = {Gk,j}Npj=1, where
Gk,j = {gk,j,i}mi=1 is the jth agent and gk,j,i is the ith generator
in Gk,j .

We outline the MDE algorithm in the pseudocode of Algorithm 1.
We present the details of initialization, mutation, crossover, selec-
tion and termination conditions, in this subsection. We prove the
probabilistic convergence in Appendix.

Initialization. For each agent G0,j of the first generation X0, we
randomly select m vertices as its generators.

Mutation. For each agent Gk,j in the current generation Xk, three
other agents Gk,rand1, Gk,rand2 and Gk,rand3 are randomly sam-
pled from Xk, where rand1, rand2 and rand3 are three distinct
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Np
Fertility model Decocube model

Cr = 0.6 Cr = 0.7 Cr = 0.8 Cr = 0.9 Cr = 1.0 Cr = 0.6 Cr = 0.7 Cr = 0.8 Cr = 0.9 Cr = 1.0

2006.690E-3 (5.48)6.690E-3 (5.38)6.690E-3 (5.52)6.690E-3 (5.31)6.690E-3 (5.44) 7.219E-2 (7.87) 7.219E-2 (7.99) 7.219E-2 (7.98) 7.219E-2 (7.93) 7.219E-2 (7.95)
2506.691E-3 (7.04)6.690E-3 (7.01)6.690E-3 (7.17)6.690E-3 (6.95)6.690E-3 (7.07)7.219E-2 (10.60)7.218E-2 (10.44)7.219E-2 (10.70)7.219E-2 (10.70)7.219E-2 (10.34)
3006.691E-3 (9.58)6.690E-3 (9.71)6.691E-3 (9.64)6.691E-3 (9.69)6.689E-3 (9.61)7.218E-2 (15.09)7.219E-2 (15.26)7.219E-2 (15.25)7.219E-2 (15.14)7.219E-2 (15.26)

Table 1: The GCVT energy and running time (hours in brackets) of MDE under different parameter settings.

Models Number of Mean (standard deviation) of the CVT energy per Voronoi cell Time (sec.)
in R2 generators L-BFGS MCM MDE r1 r2 L-BFGS MCM MDE

Pentagon 500 3.788E-6 (3.1E-7) 3.678E-6 (3.5E-7) 3.663E-6 (2.7E-7) 3.41% 0.40% 0.61 116.99 39.74
Hexagon 500 4.481E-6 (3.9E-7) 4.384E-6 (3.6E-7) 4.360E-6 (2.1E-7) 2.36% 0.54% 0.70 140.43 45.11
Heptagon 500 4.981E-6 (4.2E-7) 4.860E-6 (4.1E-7) 4.847E-6 (3.3E-7) 2.76% 0.28% 0.90 157.36 70.03
Decagon 500 5.765E-6 (4.9E-7) 5.608E-6 (4.7E-7) 5.602E-6 (4.3E-7) 2.91% 0.10% 0.94 181.22 133.33
Dumbbell 200 6.473E-8 (1.6E-8) 5.837E-8 (6.2E-9) 5.815E-8 (5.4E-9) 11.32% 0.38% 1.19 233.23 222.49

Models Number of The mean (standard deviation) of the GCVT energy per Voronoi cell Time (sec.)
in R3 vertices iCVT MCM-iCVT MDE r1 r2 iCVT MCM MDE

Armadillo 172,974 7.489E-6 (7.2E-6) 7.313E-6 (1.6E-6) 7.218E-6 (1.0E-6) 3.77% 1.32% 33,677 74,970 106,471
Knot 80,000 1.506E-5 (3.6E-3) 1.322E-5 (3.2E-3) 1.310E-5 (8.1E-4) 14.93% 0.91% 21,060 277,415 31,124

Bunny 72,020 1.799E-5 (1.1E-5) 1.600E-5 (3.6E-6) 1.575E-5 (1.7E-6) 14.24% 1.62% 11,686 222,604 50,586
Decocube 60,198 7.344E-5 (6.5E-5) 7.307E-5 (1.5E-5) 7.219E-5 (8.8E-6) 1.73% 1.23% 10,872 177,101 28,559

Sphere 32,594 2.592E-5 (4.8E-6) 2.566E-5 (3.2E-6) 2.557E-5 (2.9E-6) 1.37% 0.35% 2,359 81,459 7,745
Fertility 29,994 6.975E-6 (3.0E-6) 6.776E-6 (1.3E-6) 6.690E-6 (7.9E-7) 4.26% 1.28% 2,632 83,135 19,119

Table 2: The mean and standard deviation of the CVT/GCVT energies per Voronoi cell. The 2D and 3D models are scaled into a unit square
and a unit cube respectively. The ratios r1 = F (L-BFGS/iCV T )−F (MDE)

F (MDE)
× 100% and r2 = F (MCM)−F (MDE)

F (MDE)
× 100% measure the

improvement of MDE in terms of the energy. We use 1000 generators for all 3D models.

integers and are not equal to j. A mutative agent is computed as

G′k,j = λ(Gk,rand2 	Gk,rand3)⊕Gk,rand1 (11)

where λ is a scalar parameter.

Crossover. a binomial crossover is used to build a competitor G′′k,j
by copying elements from original and mutative agents:

g′′k,j,i =

{
g′k,j,i, if (randk,j,i[0, 1] ≤ Cr or i = irand)
gk,j,i, otherwise

(12)
where the crossover rate Cr is a scalar parameter.

Selection. Each agentGk,j in the current generation has a offspring
Gk+1,j in the next generation by the selection operator:

Gk+1,j =

{
G′′k,j , if f(G′′k,j) ≤ f(Gk,j)
T (Gk,j), otherwise (13)

where T (Gk,j) performs as follows: for each generator gk,j,i, if its
Voronoi cell is simply connected, gk,j,i is moved to its Riemannian
center; otherwise, it remains unchanged.

Termination conditions. The MDE algorithm is terminated if the
relative change ok−ok+1

ok
does not exceed a threshold τ in contigu-

ous nt iterations, where ok is the population’s best objective func-
tion value at generation k, τ and nt are two scalar parameters.

6 Experimental Results

Implementation. We adopted the FWP-MMP algorithm [Xu et al.
2015] to compute the exact discrete geodesic paths and mea-
sure geodesic distances on triangle meshes, Cheng et al. [2016]’s
method to solve the initial value problem, and the adaptive cubature
algorithm [Berntsen and Espelid 1992] to evaluate the area integral
on triangle meshes. For each triangle, we used a symmetric quadra-
ture rule of polynomial degree 5 with 7 points [Wandzurat and Xiao
2003]. Computational results show that this simple quadrature pro-
duces high-quality results, which are almost identical to those com-
puted by a highly-accurate-but-more-expensive quadrature of poly-
nomial degree 30 with 175 points. The timings were measured on a
PC with Intel(R) Core(TM) i7-2600 3.40GHz CPU and 8GB RAM.

Time complexity. Note that the agent matching operation and
computing the exact geodesic between two points take O(m3)
and O(n2 logn) time, where m and n are numbers of genera-
tors and mesh vertices, respectively. Therefore, MDE runs in
O(NpK(m3 + mn2 logn) time, where Np is population size and
K is iteration number.

Parameter setting. There are five parameters in Algorithm 1, i.e.,
the population size Np, the mutation ratio λ in the mutation equa-
tion (11), the crossover rate Cr in equation (12), the termination
threshold τ , and the maximal iteration count nt. Since the vari-
ables of our objective function are highly dependent, we choose a
high crossover rate Cr = 0.9 to encourage population diversity
and set λ = 0.8, which is proportional to Cr . In addition, we
set Np = 200, τ = 1% and nt = 5 in termination condition.
It is worth noting that MDE is insensitive to parameters and does
not require fine tuning: through extensive evaluation, we observe
that the GCVT energies are highly consistent when Cr ∈ [0.6, 1.0]
and Np ∈ [200, 300]. See two examples in Table 1. We also
observe that the running time increases significantly when Np be-
comes larger.

Comparisons on 2D Euclidean domains. The MCM algorithm
[Lu et al. 2012] is a global optimization method for CVT in Eu-
clidean spaces, which adopt the L-BFGS method [Liu et al. 2009]
as the local solver. Note that in R2, the agent operations in MDE
are the conventional vector operations and geodesic distances be-
come Euclidean distances. As shown in Table 2, MDE consistently
outperforms MCM in terms of runtime performance and CVT en-
ergies. The cell energy histogram also shows that the MDE results
are more regular than those of MCM (see Figure 6).

Comparisons on 3D meshes. To evaluate our algorithm, we com-
pare to two state-of-the-art methods, the iCVT algorithm [Wang
et al. 2015] and the MCM algorithm [Lu et al. 2012]. Note that
the original MCM algorithm was designed for computing Euclidean
CVTs. We extend it to manifold domains by using iCVT as its local
solver. Although MCM is a global optimization method, it lacks a
theoretical guarantee of finding the global optimal solution. As Ta-
ble 2 reports, MDE consistently outperforms MCM and iCVT in
terms of energy. The small standard deviation of Voronoi cell areas
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Initial L-BFGS MCM MDE
generators 6.473E-8 5.837E-8 5.815E-8
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Figure 6: 2D Euclidean result. Since the initial seeds are clustered,
the L-BFGS method gets stuck in a local optimal solution. Both the
MCM method and the MDE method are insensitive to initialization.
The cell energy histogram shows that the MDE result is more regu-
lar than that of MCM. See the accompanying video.

Model
Standard deviation of Voronoi cell areas

iCVT MCM-iCVT MDE
Armadillo 1.346E-3 7.507E-4 4.697E-4

Knot 3.619E-3 1.104E-3 8.061E-4
Bunny 3.718E-3 1.108E-3 5.664E-4

Decocube 8.746E-3 2.191E-3 1.325E-3
Sphere 1.183E-3 8.198E-4 7.292E-4
Fertility 1.366E-3 6.109E-4 3.921E-4

Table 3: Among the three methods, MDE produces GCVTs with the
least standard deviation of Voronoi cell areas, justifying the better
quality.

justifies that our results are more regular than those of MCM and
iCVT. See the statistics in Table 3 and visual results in Figure 7.
Moreover, in most cases, we observe that MDE runs significantly
faster than MCM. We also observe that iCVT often fails on models
with tubular parts, since the Voronoi cells are not simply connected
especially when there are only a few generators(see Figure 8).

Robustness. We tested MDE on meshes with both regular and ir-
regular triangulations and measured the GCVT quality by its dual
Delaunay triangulation. Following [Yan et al. 2009], we define the
anisotropy Q(t) of a triangle t as Q(t) = 6√

3

S
ph

, where S is the
area of t, p is the radius of the inscribed circle of t and h is the
longest side of t. Let Qave(M) and Qmin(M) denote the average
and minimumQ(t) of the input meshM . Qave = 1 for completely
regular triangulations and Qave � 1 for meshes with highly irreg-
ular triangulations. We also added Gaussian noise by perturbing
each vertex’s position along its normal direction. The perturbation
is a random number in [−2%, 2%] multiplying the diagonal length
of the mesh’s bounding box. As Table 4 and Figure 10 show, MDE
is robust to noise and insensitive to mesh triangulation.

Discussion. In our current implementation, we adopt the MMP
algorithm [Mitchell et al. 1987; Xu et al. 2015] for computing dis-
crete geodesics, which play a critical role in agent addition and sub-
traction. As an exact algorithm, it is able to measure geodesic dis-
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Figure 7: Comparison on 3D models. Both visual checking and
statistics show that the MDE results are of better quality than those
of iCVT and MCM-iCVT. Images are rendered in high-resolution,
allowing for close-up examination.

tances between any pair of points (not necessarily mesh vertices),
and works for meshes of arbitrary triangulation. Such a feature
is not available to the existing approximate algorithms (e.g., the
fast marching method [Kimmel and Sethian 1998] and the heat
method [Crane et al. 2013]), which compute geodesic distances
on mesh vertices only. To compute Voronoi edges (i.e., bisectors),
these algorithms apply linear interpolation to mesh edges, thereby
producing at most 1 bisector across a mesh edge. However, for
models with a high degree of anisotropy, it is common that multiple
Voronoi edges cross a mesh edge (see Figure 9). We would like to
also point out that the price to pay for the accuracy and robustness
of MDE is the high computational cost. In the future, we will adopt
faster geodesic algorithms, such as the SVG method [Ying et al.
2013] and the parallel Chen-Han algorithm [Ying et al. 2014], to
improve the performance of MDE.

(a) A random initialization (b) MDE result

Figure 8: Given the initialization in (a), the iCVT method can-
not proceed due to multiply-connected Voronoi cells (pointed by
arrows). MDE can deal with such issues easily and produce high-
quality GCVT.
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Model
Number of Number of

Type
Mesh quality Quality of dual Delaunay meshMCV T

vertices generators Qmin(M) Qave(M) Qmin(MCV T ) Qave(MCV T ) θmin θmin,ave

Kitten 21,920 1,000
Regular 0.147 0.788 0.643 0.921 39.48◦ 53.61◦

Irregular 0.001 0.380 0.485 0.894 30.46◦ 51.69◦

Noisy 0.108 0.800 0.579 0.891 33.84◦ 51.39◦

Bunny 25,002 1,000
Regular 0.107 0.791 0.608 0.918 33.65◦ 53.26◦

Irregular 0.001 0.359 0.384 0.883 23.06◦ 50.80◦

Noisy 0.038 0.778 0.537 0.887 32.50◦ 51.02◦

Eight 16,174 1,000
Regular 0.648 0.900 0.613 0.918 33.72◦ 53.48◦

Irregular 0.001 0.412 0.313 0.889 20.04◦ 51.20◦

Noisy 0.564 0.889 0.594 0.898 35.85◦ 51.69◦

Table 4: MDE is robust to noise and insensitive to mesh triangulation. The quality is measured by the Delaunay triangulations dual to the
GCVTs shown in Figure 10. θmin (resp. θmin,ave) are the smallest (resp. mean) angle of the minimal angles of all triangles in MCV T .

Figure 9: Using exact geodesic algorithm, MDE works well on
meshes with high degree of anisotropy.

7 Conclusion

In this paper, we extended the powerful differential evolution (DE)
framework to manifold domains and applied it to minimize the
GCVT energy. We proposed three manifold-based agent oper-
ations, namely agent matching, agent subtraction and agent ad-
dition, and then formulated the crossover operator using discrete
geodesics. We showed that MDE has a provable probabilistic con-
vergence to the global optimum. Computational results showed that
MDE outperforms the existing global CVT methods in terms of
both runtime performance and quality. Moreover, MDE is able to
handle multiply-connected Voronoi cells, which are challenging to
the Riemannian center-based method.
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ALLIEZ, P., DE VERDIÈRE, É. C., DEVILLERS, O., AND ISEN-
BURG, M. 2003. Isotropic surface remeshing. In Shape Model-
ing International, 49–58.
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A Probabilistic Convergence

The population at the k-th generation Xk consists of Np agents
{Gk,j}Npj=1, in which each Gk,j is regarded as an instantiation of a
random variable Gk,j .

Lemma 1 In the population at any kth generation, k ≥ 1, the ran-
dom variables Gk,1,Gk,2, · · · ,Gk,Np are mutually independent.

Proof. First, each agent in the initial population is randomly se-
lected from mesh vertices. So the random variables in the initial
population are mutually independent. Secondly, we prove Lemma
1 by induction.

Assume that Gk,1,Gk,2, · · · ,Gk,Np are mutually independent.
To create an instantiation of Gk+1,j , we only need to know four
instantiations Gk,j , Gk,rand1, Gk,rand2, Gk,rand3 and Gk,rand4
at kth generation (ref. Eqs. (11-13)). In other words, the creation
of Gk+1,j does not need any information from Gk+1,j′ , j′ 6= j.
Therefore, Gk+1,1,Gk+1,2, · · · ,Gk+1,Np are mutually indepen-
dent. �

Let α be a curve passing through a point p ∈M and denote the unit
tangent vector of α at p as tp. At any point p ∈ M , a local Frenet
frame {tp, np, bp} exists, where tp is a unit tangent vector at p, n
is the unit normal vector at p and bp = tp × np. The tangent plane
to M at p is spanned by any two independent tangent vectors at p
and is denoted as Tp(M). Given any nonzero vector v ∈ Tp(M),
there exists a unique parameterized geodesic γ : (−ε, ε) → M ,
with γ(0) = p and γ′(0) = v. The exponential map expp(v) : v ∈
Tp(M) → M at p maps every nonzero v ∈ Tp(M) to a point q
on M in two steps: (1) find the unique geodesic γ, with γ(0) = p
and γ′(0) = v/|v|, and (2) find q on γ with d(p, q) = |v|. A local
area on M is called a normal neighborhood Np of p ∈M , if Np is
the image Np = expp(U) of a neighborhood U ⊂ Tp(M) around
p restricted to which expp is a diffeomorphism. On M a vertex at
which the sum of surrounding angles is larger than 2π is called a
saddle vertex.

Lemma 2 For any point p ∈M , let rp be the maximal radius such
that the geodesic disk Dp = {q ∈ M : d(p, q) ≤ rp} centered at
p does not contain any saddle vertices and is homeomorphic to a
planar disk. Dp is a normal neighborhood of p.

Proof. Mitchell et al. [1987] showed that except for its two end-
points, a geodesic path on M can pass one or several mesh vertices
if and only if these mesh vertices are saddle. Since Dp is homeo-
morphic to a planar disk, for every point q ∈ Dp, there is a unique
geodesic in Dp connecting p and q. That completes the proof. �

Let g1 and g2 be two generators on M and d = g1 	 g2 as defined
in Section 5.1. If g1 ∈ Dg2 , both points g1 and g2 can be inversely
mapped by expg2 to two unique vectors v(g1) and v(g2) in the
tangent space Tg2(M), in which v(g2) is a zero vector 0. We regard
that v(gi), i = 1, 2, is an instantiation of a random variable v(gi),
and d is an instantiation of a random variable d = vg1−(−vg2) =
vg1 + vg2 . All these random variables v(g1), v(g2) and d are
defined in R2 and their probability density functions are denoted as
fv(g1)(v(g1)), fv(g2)(v(g2)) and fd(d).

Let D = G 	 G′ = {gσ(i) 	 g′i}mi=1 = {di}mi=1 as defined in
Eq. (9). We pack all m 2-dimensional vectors {v(gσ(i))}mi=1 into a
vector in R2m and denote it as V (G). Similarly, V (G′) is a vector
in R2m by packing {v(g′i)}mi=1. Let V (G) and V (G′) be instan-
tiations of random variables V(G) and V(G′), respectively. Each
di is an instantiation of a random variable di = vgσ(i)

+ vg′i . By
packing m 2-dimensional vectors {di}mi=1, we regard D is an in-
stantiation of a random variable D = V(G) + V(G′) defined in

R2m. Denote the probability density functions of V(G), V(G′)
and D as fV(G)(V (G)), fV(G′)(V (G′)) and fD(D), respectively.

Let G′′′ = D ⊕ G′′ = {di ⊕ g′′i }mi=1 = {g′′′i }mi=1 as defined
in Eq. (10). Each point/generator g′′i can be inversely mapped by
expg′′i as the zero vector ṽ(g′′i ) = 0 in the tangent space Tg′′i (M).

Let Ṽ (G′′) be a vector in R2m by packing m 2-dimensional zero
vectors {ṽ(g′′i )}mi=1, which is an instantiation of a random variable
Ṽ(G′′). If g′′′i ∈ Dg′′i , i = 1, 2, · · · ,m,G′′′ can be regarded as an

instantiation of a random variable Ṽ(G′′′) = D + Ṽ(G′′) defined
in R2m, whose probability density function is fṼ(G′′′)(Ṽ (G′′′)).

Lemma 3 Let r = min{rp : ∀p ∈ M} and D̃p = {q ∈ M :
d(p, q) ≤ r}. Let G = (Gk,j1 	Gk,j2)⊕Gk,j3 , j1 6= j2, j1 6= j3
and j2 6= j3. If gk,j1,σ(i) ∈ D̃gk,j2,i , i = 1, 2, · · · ,m, where σ(i)
is the permutation defined by agent matching in Section 5.2, then
fṼ(G)(Ṽ (G)) = fV(Gk,j1 )(V (Gk,j1)) ∗ fV(Gk,j2 )(V (Gk,j2)) ∗
fṼ(Gk,j3 )(Ṽ (Gk,j3)), where ∗ is the 2m-dimensional linear con-
volution operation.

Proof. First, we have fd(d) = fv(g1)(v(g1)) ∗ fv(g2)(v(g2)) [Pa-
poulis 1991], where ∗ is the 2-dimensional linear convolution oper-
ation, because:

• g1 and g2 are two independent random variables of generators
g1 and g2 respectively, and g1 ∈ Dg2 ,

• d = g1 	 g2 and d = vg1 + vg2 is a function of two random
variables g1 and g2 in R2.

Secondly, D = Gk,j1 	 Gk,j2 = {gk,j1,σ(i) 	 gk,j2,i}mi=1 =
{di}mi=1 and D = V(Gk,j1) + V(Gk,j2). Since Gk,j1 and Gk,j2

are independent, v(gk,j1,σ(i)) and v(gk,j2,i) are independent, i =
1, 2, · · · ,m. Then we have fD(D) = fV(Gk,j1 )(V (Gk,j1)) ∗
fV(Gk,j2 )(V (Gk,j2)).

Thirdly, since Gk,j1 , Gk,j2 and Gk,j3 are mutually independent,
D and Ṽ(Gk,j3) are independent. Since gk,j1,σ(i) ∈ D̃gk,j2,i ,
i = 1, 2, · · · ,m, the length of tangent vectors di = gk,j1,σ(i) 	
gk,j2,i is no larger than r. Therefore, gi = di ⊕ gk,j3,i satisfies
gi ∈ D̃gk,j3,i , i = 1, 2, · · · ,m. Then we have fṼ(G)(Ṽ (G)) =

fD(D) ∗ fṼ(Gk,j3 )(Ṽ (Gk,j3)). That completes the proof. �

Liu et al. [2009] showed that the objective function F (G) in Eq. (1)
is C2 in a convex region in R2 if the density function ρ(x) is C2.
When we examine their proof, it is also applicable to the domain of
a compact manifold M . Therefore if ρ(x) is C2 on M , then F (G)
is C2 on M .

Theorem 1 [Ghosh et al. 2012] If the objective function F (G) in
Eq. (8) is C2 and has a unique global minimum Gopt on M , and if
gk,j1,σ(i) ∈ Dgk,j2,i , ∀k, j1, j2, i, j1 6= j2, then fGk,j (Gopt) > 0

for all k > 0 and all j = 1, 2, · · · , Np. Furthermore, fGk,j (Gk,j)
converges to δ(D̃opt) as k →∞, where D̃opt is a 2m-dimensional
vector by packingm two-dimensional vectors in {d̃i}mi=1 = Gk,j	
Gopt and δ is the 2m-dimensional Dirac delta function which is
zero everywhere except at the place where the agent Gk,j is exactly
the same as the global optimal solution Gopt.

Theorem 1 requires that gk,j1,σ(i) ∈ Dgk,j2,i , ∀k, j1, j2, i, j1 6=
j2. This condition is not always satisfied in Algorithm 1. But in our
experiments, Algorithm 1 works quite well even without explicitly
guaranteeing this condition.
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