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Fig. 1. Frying an egg on a hot pan, achieved by enabling the diffusion of phases but disabling the diffusion of concentrations.

We introduce a unified particle framework which integrates the phase-field
method with multi-material simulation to allow modeling of both liquids
and solids, as well as phase transitions between them. A simple elasto-
plastic model is used to capture the behavior of various kinds of solids,
including deformable bodies, granular materials, and cohesive soils. States of
matter or phases, particularly liquids and solids, are modeled using the non-
conservative Allen-Cahn equation. In contrast, materials—made of different
substances—are advected by the conservative Cahn-Hilliard equation. The
distributions of phases and materials are represented by a phase variable and
a concentration variable, respectively, allowing us to represent commonly
observed fluid-solid interactions. Our multi-phase, multi-material system
is governed by a unified Helmholtz free energy density. This framework
provides the first method in computer graphics capable of modeling a con-
tinuous interface between phases. It is versatile and can be readily used in
many scenarios that are challenging to simulate. Examples are provided to
demonstrate the capabilities and effectiveness of this approach.
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1 INTRODUCTION
Physically-based simulation of fluids and solids has recently gained
much attention in computer graphics, as it is central to reproducing
realistic visual effects for a wide range of real-world phenomena.
Researchers have developed physically-based modeling techniques
using various grid- or particle-based frameworks. The smoothed-
particle hydrodynamics (SPH) method [Monaghan 1992] is widely
used as a particle-based method due to its mass-conservation prop-
erty, and its flexibility in handling topological changes. The SPH
method has been widely used to simulate fluid flow [Müller et al.
2003], and it has been further adapted to simulate the dynamics of
both deformable bodies [Gerszewski et al. 2009; Müller et al. 2004]
and granular materials [Alduán and Otaduy 2011].
Since multiple fluids and solids often co-exist in the real world,

multi-material methods have also been introduced. Previous work
can be broadly divided into two categories: methods handling fluid-
solid interaction, and those only handling multiple fluids. Many
approaches for fluid-solid interaction have been proposed, covering
fluid to rigid solid coupling [Akinci et al. 2012], fluids interacting
with elastoplastic objects [Keiser et al. 2005; Solenthaler et al. 2007],
fluids interacting with granular materials [Lenaerts and Dutré 2009],
and fluids in porous materials [Lenaerts et al. 2008]. In other cases,
the entire system may comprise different miscible or immiscible
fluids. Solenthaler and Pajarola [2008] simulated fluids using density
contrast. By adopting the concept of volume fraction [Müller et al.
2005], Ren et al. [2014] and Yang et al. [2015] managed to capture a
wide range of multi-fluid flow phenomena with rich visual effects,
using a mixture model and Helmholtz free energy. They focused
on interactions between multiple fluids, and solids were not con-
sidered. Yan et al. [2016] extended the multi-fluid SPH framework
to incorporate solids, achieving impressive results. However, their
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method is based on drift velocity, which requires small time steps,
and cannot easily or intuitively capture the evolution of phenomena
based on energy considerations [Yang et al. 2015]. Furthermore,
it cannot simulate phase-change phenomena such as melting and
solidification.
Phase transitions are commonly observed in the physical world,

such as dissolving, melting and solidification. Previous particle-
based simulation methods model this process mainly using either a
concentration criterion [Yan et al. 2016] or a temperature criterion
[Stomakhin et al. 2014], so that a given particle changes its phase if
its concentration or temperature exceeds a pre-defined threshold.
Although this approach is straightforward and easy-to-implement,
it suffers from two problems. First, the criteria are inconsistent: it
is problematic to model phase change phenomena involving both
concentration- and temperature-related variables. Secondly, the
interfaces between phases are discontinuous, as a given particle can
only be in a single phase. To address these problems, we represent
the phase separately using an extra variable to describe it. This
phase variable is governed by a unified energy density function
related to both concentration and temperature.

In computer graphics, the terms ‘fluid’, ‘phase’ and ‘material’ have
been widely used, but not always consistently or accurately. We
formally define them here: fluids are substances with zero shear
modulus; phases are states of substances, and materials are different
kinds of substances (which may exist in any state or phase). For
simplicity, we only consider the three most commonly observed
phases of matter, i.e., solid, liquid and gas, and largely focus on the
first two for demonstration of concepts in this paper.

Our approach significantly extends the energy-based multi-fluid
approach proposed by Yang et al. [2015] to represent ‘solid’ phases,
enabling modeling of a variety of fluid-solid interactions. We treat
phases andmaterials independently, thereby the unifiedmulti-material
simulation framework can model a much wider range of real-world
phenomena. It is straightforward to describe the state of a particle
with a phase variable and a concentration variable. For simplicity,
we assume that the phase variable acts on the whole particle which
can be composed of multiple materials.
In summary, the main contributions of this work are as follows:

• A simple elastoplastic model is introduced to simulate vari-
ous solids, including deformable objects, granular materials,
and cohesive soils. It is capable of capturing a variety of
solid phenomena that have been largely ignored in the lit-
erature, such as collapsing granular columns with varying
aspect ratios, landslides, and dry/wet sand.

• By treating materials and phases separately, a much wider
range of challenging real-world phenomena involving mul-
tiple materials and phases can be simulated, including com-
plex fluid-solid interactions, such as dissolving, melting.

• Our phase-field method defines the phase boundary using
a phase variable, providing a continuous interface between
phases.

• A unified Helmholtz free-energy density for both the non-
conservative Allen-Cahn equation and the conservative
Cahn-Hilliard equation is proposed to guide the evolution
of concentrations and phases, respectively.

2 RELATED WORK
In computer graphics, multi-material fluid simulation has been ex-
tensively investigated during the last decade. Again, here we classify
multi-material fluid simulations as those involving only liquids, and
those involving solids and liquids. We start by introducing particle-
based solid simulation, then providing an overview of the relevant
works closest to this paper.

2.1 Solid Simulation
In computer graphics, particle-based methods are commonly used
to simulate fluids [Monaghan 1992; Müller et al. 2003]; they also
work well for simulating solid materials, including rigid objects,
deformable bodies, and granular materials. Gray et al. [2001] simu-
lated elastic objects using a linear model by defining the artificial
stress based on the signs of the principal stresses. Although this
gave plausible results, their model suffers from accumulated nu-
merical error. To capture the dynamics of truly elastic materials
or large elastic deformations, researchers later developed a variety
of solutions, such as storing the initial state [Müller et al. 2004],
calculating the deformation gradient tensor [Gerszewski et al. 2009],
adopting an implicit framework [Zhou et al. 2013], or use of ‘embed-
ded space’ [Jones et al. 2014]. Müller et al. [2004] animated elastic,
plastic, and melting objects using a physical model derived from
continuum mechanics. This method needs to store the initial state
in order to calculate stress. Gerszewski et al. [2009] proposed a new
way to compute the deformation gradient, avoiding the need to
store the initial rest configuration. Zhou et al. [2013] extended this
work, using an implicit numerical integrator to achieve more stable
simulation of elastoplastic materials. Jones et al. [2014] introduced
embedded space—the least-squares best fit of the material’s rest state
in 3D—and used it to handle extreme elastic and plastic deforma-
tions. Jiang et al. [2015a] animated deformable objects, as well as
collision handling, using an affine particle-in-cell method (APIC)
with a Lagrangian force model.

Zhu and Bridson [2005] adopted an existing fluid solver for simu-
lating granular materials, decomposing the spatial domain according
to the strain rate tensor. Bell et al. [2005] used non-spherical parti-
cles to represent discrete elements of simulated materials, such as
sand and rigid bodies. Narain et al. [2010] solved both the internal
pressure and frictional stresses in granular materials, achieving two-
way coupling between granular materials and solid bodies. Using
a friction and cohesion model, Alduán and Otaduy [2011] simu-
lated granular flows in a predictive-corrective incompressible SPH
(PCISPH) framework [Solenthaler and Pajarola 2009]; this work was
extended by Ihmsen et al. [2012], using a two-scale framework to
simulate granular materials with high-quality visual detail. Recently,
the material point method (MPM) has gained popularity as a hybrid
method to capture a variety of fluid and solid phenomena. Klár
et al. [2016] recreated a wide range of visual sand phenomena by
combining Drucker-Prager plastic flow and Hencky-strain-based
hyperelasticity. Daviet et al. [2016] presented a continuum-based
method for simulating non-smooth viscoplastic granular rheology
using a material point method.
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2.2 Multi-Fluid Simulation
A multi-fluid system is composed of more than one miscible or im-
miscible fluids. Particle-based multi-fluid simulations have attracted
much attention in the last decade. To simulate immiscible fluids,
Solenthaler and Pajarola [2008] derived a modified density calcula-
tion method to deal with density contrast more precisely. Peer et
al. [2015] incorporated this approach into an implicit incompress-
ible SPH (IISPH) [Ihmsen et al. 2014a] to model multiphase highly
viscous fluids. Macklin et al. [2014] simulated immiscible fluids
with a density ratio using position based dynamics, capturing the
Rayleigh-Taylor instability. For miscible fluids, the volume fraction
[Müller et al. 2005] is widely used to represent the spatial distribu-
tion of different components. Liu et al. [2011] integrated the volume
fraction with an SPH solver and mixed components using concen-
tration differences. To capture the underlying interactions between
components due to flow motions and force distributions, Ren et al.
[2014] took the drift velocity into consideration. By doing so, they
could simulate a wide range of multi-fluid phenomena, including
mixing/unmixing of miscible and immiscible fluids, and chemical
reactions. Park et al. [2008] showed that energy can be used to drive
multi-fluid simulations, and adopted the Cahn-Hilliard equation
to handle both miscible and immiscible fluids using a lattice Boltz-
mann method (LBM). Their approach was later extended by Yang
et al. [2015], who achieved impressive results for problems such as
extraction (i.e. separating a substance from a mixture) and mixing
of an egg yolk and egg white. All these multi-fluid simulations only
consider fluids, but do not model fluid-solid interactions.

2.3 Fluid-Solid Interactions
Fluid-solid interactions have attracted much attention in computer
animation. Commonly observed fluid-solid interactions fall into
four categories: fluid-solid coupling, solid wetting, phase transitions
between solid and fluid, and dissolving of solids.
Solenthaler et al. [2007] used a unified particle model to han-

dle the interactions between fluids and various solids including
deformable bodies. Ihmsen et al. [2010] focused on rigid-fluid cou-
plings and showed that adaptive timesteps are required for boundary
handling in a PCISPH framework. Akinci et al. [2012] proposed a
versatile SPH-based approach for two-way fluid-solid coupling us-
ing per-particle volume correction. More recently, Shao et al. [2015]
combined PCISPH and geometric lattice shape matching to achieve
two-way fluid-solid coupling with large time steps.

For solid wetting, previous methods mainly focus on porous ma-
terials. Lenaerts et al. [2008] succeeded in capturing a fluid flowing
through a porous deformable material; the porous flow is governed
by Darcy’s Law. This work was later extended to simulate interac-
tions between sand and fluids by using a unified SPH framework
[Lenaerts and Dutré 2009]. Recently, Tampubolon et al. [2017] pre-
sented a multi-species model to capture the interactions between
porous sand and water, using a continuum mixture theory where
species individually obey conservative equations and are coupled
through a momentum exchange term.

Phase transitions are highly correlated with temperature or inter-
nal energy. SPH has been widely used to simulate melting objects
[Becker et al. 2009; Chang et al. 2009; Keiser et al. 2005; Müller et al.

Fig. 2. Particle views of a landslide coloured according to total deviatoric
plastic strain, for different Young’s modulus and Poisson ratio. These lead
to different failure patterns.

2004]. Keiser et al. [2005] animated solids and fluids, as well as phase
transitions, by combining the equations of solid mechanics with
the Navier-Stokes equations. Stomakhin et al. [2014] introduced
a dilational /deviatoric splitting of the constitutive model for heat
transport, melting and solidifying materials. However, dissolving of
solids, which also involves a phase change, is largely overlooked by
such methods.

Dissolving of soluble materials is commonly observed in daily life.
Jiang et al. [2015b] proposed an energy-based method for real-time
simulation of such phenomena. Yan et al. [2016] extended the work
of Ren et al. [2014] tomodel solid phases. The distribution and shapes
of both fluids and solids are uniformly represented by their volume
fraction function and are governed by the conservation of mass
and momentum within different phases. The approach impressively
captures various fluid-solid interactions, but it cannot capture the
evolution of phenomena based on energy, or provide flexible fluid
control. Furthermore, it cannot model phase-change phenomena
such as melting and solidification.

In such work, solid particles are insoluble in fluid-solid coupling
scenarios. It is also possible to model solid wetting by considering
wettable solid particles to be slightly soluble while they remain in a
solid state, rather than by considering them to be porous materials
[Lenaerts et al. 2008]. To simulate pure phase transitions, particles
only change their states of matter. When solids dissolve, the solid
particles change phase in the liquid.

These four categories cover a wide range of real-world phenom-
ena, and almost all phenomena modeled by previous research. In
contrast to the previous work, we adopt a concentration variable
and a phase variable to describe the separate evolution of materials
and phases, allowing us to handle all four categories of interaction
(see Table 1 later) together in a versatile way. While many previous
works have considered multi-material simulations for solids and
liquids, none can handle all four types of interaction simultaneously.

3 SOLID MECHANICS
As a basis for our approach, we first introduce an elastoplastic
model for particle-based solid simulation. To solve the problem of
inconsistent pressure forces when handling interactions, we treat
the hydrostatic pressure of solids in a similar way to that of fluids. To
allow realistic simulation of granular materials, we adopt a tension
cracking treatment and a stress scaling-back procedure to handle
the numerical errors in computational plasticity. This elastoplastic
model underpins the solid simulations in our approach, allowing
modeling of deformable bodies, wet and dry granular materials,
cohesive soils, and various interactions.
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Fig. 3. A particle view demonstrating the benefit of using Jaumann stress
rate. Left: with it, particles belonging to an elastic cube stay attached during
rotation. Right: without it, particles at the corner detach as the cube rotates.

Fig. 4. Deformable jelly. Left: a purely elastic jelly. Middle and Right: plastic
jellies, with different degrees of plasticity.

3.1 Constitutive Model
The momentum equation for solids can be expressed as:

Du

Dt
=

1
ρ
∇ · σ + fext, (1)

where D/Dt = ∂/∂t + u · ∇ is the substantial derivative, u is the
velocity, ρ is the density, fext is the external force, and σ is the
Cauchy stress tensor of the solid, which is normally divided into
two parts in SPH: hydrostatic pressure p and deviatoric shear stress
s , i.e., σ = −pδ + s . We rewrite Equation (1) as:

Du

Dt
=

1
ρ
(−∇p + ∇ · s ) + fext. (2)

For consistency, the hydrostatic pressure is determined for both flu-
ids and solids using Tait’s equation [Becker and Teschner 2007]. To
determine s , the Drucker-Prager model is adopted in our work. The
yield condition f and plastic potential function д are respectively
given by:

f =
1
√
2
S − 3αp − γ , (3)

д =
1
√
2
S − 3βp, (4)

where S = | |s | |; α and γ are Drucker-Prager’s constants, which
are related to ϕ (internal friction) and the Coulomb constant kc
(cohesion); the latter can be treated as a function of the accumulated
plastic strain to handle plastic hardening and softening. For simplic-
ity, we just set kc to a constant. β has a similar expression to α and
is related to the dilation angleψ of materials such as soils. The yield
condition determines where plastic deformation occurs; the plastic
potential function is used to obtain the degree of plasticity (see the
Appendix A). For simplicity, we formulate the deviatoric shear rate
ṡ as in the works of Bui et al. [2008] and Chen et al. [2012]:

ṡ = 2G
(
ė − λ̇

s
√
2S

)
, (5)

(see the Appendix A for the derivation) where ‘˙’ denotes the deriva-
tive with respect to time,G is the shear modulus, ϵ̇ = (∇u +∇uT )/2
denotes the total strain rate tensor, and ė = ϵ̇ − Tr(ϵ̇ )/3δ is the
deviatoric shear strain rate tensor. The scalar function λ̇ denotes
the rate of change of the plastic multiplier λ, and is given by:

λ̇ =




1
G + 9Kαβ

(√2G
S

s : ė + 3KαTr(ϵ̇ )
)
, f > 0

0, f ≤ 0
, (6)

where K is the bulk modulus. The shear and bulk moduli are related
to the Young’s modulus E and Poisson ratio v by:

K =
E

3(1 − 2v )
, G =

E

2(1 +v )
. (7)

In our implementations, the deviatoric shear stress s in Equation (2)
is obtained by integrating its time derivative ṡ in Equation (5). We
use the leapfrog algorithm for numerical integration; s and S on the
right-hand side of Equations (5) and (6) are obtained at the half-time
step.

In this work, we use a fixed coordinate system and integrate the
stress rate. As a result, the rotation of a material introduces changes
in Cauchy stress. To eliminate this consequence, an extra stress rate,
invariant with respect to material rotation, is employed to describe
the material response. The Jaumann stress rate is implemented,
and works well for small strains and large material rotations (see
Figure 3).

˙s J = ṡ + s · ω̇ − ω̇ · s, (8)
where ω̇ = (∇u − ∇uT )/2 denotes the spin rate tensor; subscript J
denotes the Jaumann rate.
Jaumann stress rate is a so-called objective stress rate, aiming to

eliminate the mechanical response of a material with respect to the
frame of reference. It has been previously used in the graphics com-
munity occasionally, e.g. by Yan et al. [2016]. They simply employ
such a term, but did not illustrate how it benefits simulation; our
examples do so. As illustrated in Figure 3 (and the supplementary
video), the rotation of a deformable cube introduces extra changes
of the Cauchy stress tensor due to the fixed frame of reference,
which however should not be part of the mechanical response of a
material, resulting in particles at the corner detaching. By adopting
the Jaumann stress rate, this issue could be largely prevented.

To smoothly approximate the Mohr-Coulomb hexagon on the de-
viatoric stress plane (π plane), several strategies have been proposed
to determine the Drucker-Prager cone parameters [Wang and Sitar
2004] (see the Appendix B). In 3D, the parameters are determined
by [Chen et al. 2012]:

α =
2 sinϕ

√
3(3 − sinϕ)

, β =
2 sinψ

√
3(3 − sinψ )

, γ =
6kc cosϕ
√
3(3 − sinϕ)

.

ψ is set to 0 in our examples. The implementation is given in Algo-
rithm 1 later.

3.2 Granular Materials
The proposed elastoplastic model can be used to capture the dynam-
ics of purely elastic objects or plastic ones, depending on whether
or not the Drucker-Prager yield criterion is satisfied (see Figure 4).
This model is also capable of simulating granular materials [Bui et al.
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Fig. 5. Comparison with an MPM-based solution by revisiting [Zhu and
Bridson 2005]’s column collapse. The friction angle is 20◦; 8000 particles
were used in both cases. Our SPH-based approach is about 4 times faster
than the MPM-based one. Left: MPM solution achieves 22 fps. Right: SPH-
solution achieves 80 fps. Without treating tension cracking or using stress
scaling-back, the collapse of the sand pile exhibits cohesive behavior.

3p

S/
√
2

Tension cracking

Stress path without scaling

Yield surface

γ/α

α

Elastic region

Inaccessible region

A

B

C

D

E

Fig. 6. 2D illustration of the Drucker-Prager yield criterion and numerical
errors in computational plasticity.

2008; Chen et al. 2012]. However, the granular materials directly
simulated by this model are cohesive (even if the cohesion kc is set
to 0), acting like wet sands (see Figure 5). We have implemented
this model using SPH and MPM [Sulsky et al. 1995], using CUDA;
our observation is that an SPH-based approach is around 4 times
faster than the MPM-based one. See Figure 5.
We have introduced an elastic-perfectly plastic model. Theoret-

ically, the stress state should not lie outside the yield surface (the
inaccessible region in Figure 6) when plastic deformation occurs.
However, due to numerical errors during computation, the stress
state may leave the elastic region as shown in Figure 6. In this case, a
return mapping algorithm is usually used to numerically return the
stress state to the yield surface [Bui et al. 2008; Chen and Mizuno
1990]. We consider two kinds of errors.

Tension cracking treatment: if the stress state moves beyond
the apex of the yield surface (point E in Figure 6), a numerical error
known as tension cracking occurs [Chen and Mizuno 1990]. This
error shares some similarities with SPH tensile instability, resulting
in unrealistic fracturing or particle clumps. Following Chen and
Mizuno [1990], if the stress state exceeds the apex of the yield
surface, it should satisfy the condition below:

3αp + γ < 0. (9)

To avoid tension cracking, it is crucial to shift the hydrostatic pres-
sure to the apex of the yield surface, so the treatment is as follows:

σ̃yy = σyy + (p +
γ

3
), (10)

where y ∈ {1, 2, 3}. If the cohesion coefficient kc is set to 0, γ equals
0. In this case, the condition in Equation (9) is satisfied only if the
hydrostatic pressure p is negative. The treatment in Equation (10)
ensures the pressure is non-negative, which also solves the SPH
tensile instability problem.

Stress-scaling back procedure: when plastic deformation oc-
curs, numerical errors during computation may lead to a stress state
far from the yield surface (the path AB in Figure 6). In such circum-
stances, a stress rescaling procedure may be used with the help of
a scaling factor r [Bui et al. 2008]. For the Drucker-Prager yield
criterion, this scaling factor is given by:

r =
√
2
3αp + γ

S
. (11)

Accordingly, using the Drucker-Prager yield criterion, when the
stress state exceeds the yield surface, it corresponds to the following
condition:

3αp + γ <
1
√
2
S . (12)

The scaling factor r acts on the deviatoric shear stress components
and the hydrostatic pressure is left unchanged, so:

s̃ = rs . (13)

We have discussed two kinds of errors as well as their return map-
ping algorithms (Equations (10) and (13)). Since the leapfrog algo-
rithm is used in this work, the above return mapping algorithms
are applied during the half-time step.
We have modeled granular materials using the proposed elasto-

plastic model in conjunction with the return mapping algorithms,
achieving plausible visual results. Our model can simulate the col-
lapses of dry granular columns with different friction angles; see
Figures 7b–7d. It can further capture the varying patternswhen gran-
ular columns with different aspect ratios collapse. When H/R = 2.0,
the entire column starts to flow immediately. At first, the upper free
surface of the column remains undeformed and horizontal, but later,
the top deforms to form a dome: see Figure 7d. When H/R = 0.9, a
circular area in the upper surface of the column is preserved undis-
turbed: see Figure 7g. Figure 7 shows collapsing granular columns
with varying friction angles and aspect ratios. We also demonstrate
the benefit of incorporating the tension cracking treatment: see
Figure 7e. Without this term, the sand forms clumps and exhibits
cohesive behavior.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Sand collapses. (a) initial dry granular column with aspect ratio H /R = 2.0, for (b)–(e). (b)–(d) final states of collapse for friction angles ϕ of 20◦, 30◦,
and 40◦. (e) final states of collapse without tension cracking treatment for a friction angle ϕ of 40◦. (f) initial dry granular column for (g) with aspect ratio
H /R = 0.9. (g) final state of the collapse with friction angle of 40◦.

4 PHASE-FIELD MULTI-MATERIAL SIMULATION
In this section, we first review the energy-driven multi-fluid simula-
tion proposed by Yang et al. [2015], and then show how to extend
this framework to handle other phases.

4.1 Phase-Field Method
The phase-field model was established mainly for solving interface
problems. The method has been used to describe solidification pro-
cesses, as well as microstructure evolution at the interfaces of solids
and liquids. Yang et al. [2015] used the Cahn-Hilliard equation [Cahn
and Hilliard 1958] to calculate the changes in the fraction of each
material. The rate of change of each material is given by:

Dc

Dt
= ∇ · (LCH∇µ ), (14)

where c represents the concentration of the material (we use mass
fraction like Yang et al.), LCH denotes its degenerate mobility, and µ
is its chemical potential, related to the Ginzburg-Landau free energy
density. The latter is composed of a bulk part and an interface part,
and can be expressed as:

µ =
∂F

∂c
− ξ 2∆c, (15)

where F is the Helmholtz free energy density, and ξ is associated
with diffuse interfaces; it introduces an internal length scale (inter-
face thickness). Yang et al. [2015] integrated their model into the
position-based fluids approach, achieving real-time performance.

As explained in Section 1, we introduce an extra phase variable η
to handle multiple phases consistently and continuously. η is used
to describe the current state of each particle in a continuous manner.
For example, we may take the value one to mean solid and zero for
liquid; across an interface, the value varies smoothly from one to
zero. The introduced phase variableη is considered as the proportion
of a state. Unlike the concentrations of materials, the phase-field
variables are not conserved. Real-world phenomena evolve from
high-energy states to low-energy states. We assume the system
locally tends to minimize energy and to conserve concentrations of
materials at the same time. Therefore, we represent the evolution
of the phase variable using:

Dη

Dt
= LAC (ξ

2∆η −
∂F

∂η
), (16)

where LAC is the mobility. For simplicity, we adopt the same ξ as
in the Cahn-Hilliard equation. This is known as the Allen-Cahn

equation [Allen and Cahn 1972], which appears to have not been
previously used in computer graphics.

4.2 Governing Equations
We make use of the momentum equation for motion, the Cahn-
Hilliard equation for the evolution of the concentration variable,
and the Allen-Cahn equation for the evolution of the phase variable.
We assume the system hasM materials with N possible phases.

Du

Dt
=

1
ρ
(−∇p + ∇ · s ) + fext, (17)

Dcm
Dt
= ∇ · (LCH∇µm ), (18)

µm =
∂F

∂cm
− ξ 2∆cm , (19)

Dηk
Dt
= LAC (ξ

2∆ηk −
∂F

∂ηk
), (20)

where s is the deviatoric stress for a solid (see Section 3) or the
viscosity tensor for a fluid (when Equation (17) becomes the Navier-
Stokes equation). cm and ηk are respectively the m-th material’s
concentration and the k-th phase of a given particle. For simplicity,
we set ξ = 0.01 regardless of the type of the material or the state
of phase. LCH ,LAC are both material dependent. However, unlike
density and viscosity, the values of LCH ,LAC are set constant during
simulation for simplicity. The external force fext includes gravity,
as well as interactive forces between materials [Yang et al. 2015],
etc. For a consistent labeling convention, we use subscripts k, l to
represent phases,m for materials, and i, j for particles.

The concentrations of the materials and the phase variables must
satisfy the constraints:

M−1∑
m=0

cm = 1,
N−1∑
k=0

ηk = 1, cm ,ηk ∈ [0, 1]. (21)

To meet the constraints, we adopt a post-correction process, as
do Ren et al. [2014], Yang et al. [2015] and Yan et al. [2016]. For
simplicity, we use c , η to represent the vector of materials and
phases of a given particle in the rest of this paper. They are vectors
of three elements, whose entries with indices 0, 1, 2 represent the
proportions of solid, liquid and gas respectively. Since we focus on
the first two phases, η2 is always 0 in this work.
Temperature is important when simulating phenomena involv-

ing phase change. To model heat flow, we use a similar evolution
equation to that used by Stomakhin et al. [2014], adding an extra
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source term for the phase transition:

CH
dT

dt
+ Z

dη

dt
= ∇ · (CT∇T ), (22)

where CH is the heat capacity per unit volume, Z is the latent
heat per unit volume, and CT is the thermal conductivity. For each
particle at a given time, the phase change is considered to occur
between two phases, e.g., phase k, l (in this work, solid and liquid);
the η in Equation (22) can be either ηk or ηl , while Z should change
its sign accordingly.

Every particle is considered to (potentially) be composed of mul-
tiple materials and multiple phases, but unlike Ren et al. [2014] and
Yan et al. [2016], we simply take it as a whole. We thus compute
aggregate values for every particle at the beginning of each time
step, for each of the required quantities: density, viscosity, heat ca-
pacity per unit volume, latent heat per unit volume, and thermal
conductivity. For simplicity, we use weighted averages:

A =
M−1∑
m=0

cmAm , (23)

B =
N−1∑
k=0

ηkBk , (24)

wherem and k are respectively the material and phase indices. A
and B are continuous variables; the former is mainly influenced by
the type of the material, and the latter by the state of the phase,
respectively. In this paper, only the deviatoric stress is of the latter
type.

4.3 Unified Helmholtz Free Energy Density
As explained in Section 4.2, the evolutions of c and η are driven
by the Helmholtz free energy density F . In contrast to the work of
Yang et al. [2015], our Helmholtz free energy density works on both
c and η. We thus call it the unified Helmholtz free energy density. It
plays a key role in guiding phase-field multi-material simulations.
The unified Helmholtz free energy density must be related to

both the concentration fraction c and phase fraction η. Since phase
change typically depends on temperature, it must be taken into
consideration. Garcke et al. [2004] defined the bulk free energies for
individual phases. Since our simulations involve multiple phases,
with the help of the interpolating function q, we define the final free
energy function for phase-field multi-material simulation to be:

F =
N−1∑

k,l=0,k<l

M−1∑
m=0

(
cm (Zk,l )m

T − (T̃k,l )m

(T̃k,l )m

(
q(ηk ) − q(ηl )

))

+

M−1∑
m=0

( RG
VM

Tcm ln(cm )
)
−CVT

(
ln(T ) − 1

)
,

(25)

where (Zk,l )m and (T̃k,l )m are respectively the latent heat per unit
volume and the phase transition temperature of the pure materialm
when a phase transition occurs from phase k to phase l . (Zk,l )m =
−(Zl,k )m , (T̃k,l )m = (T̃l,k )m for simplicity. CV is the specific heat,
which is assumed to be independent of c and η. The molar volume
VM is taken to be a constant. RG is the gas constant. If cm is smaller
than a threshold (10−4 in our examples), the particle is considered
to be free of them-th material. q is a monotone function on [0, 1]

used for interpolation, satisfying q(0) = 0 and q(1) = 1; it is chosen
according to the situation. For example, if we use q(ηk ) = η2k (3 −
2ηk ),k ∈ {0, 1, 2}, it satisfies q′(0) = q′(1) = 0, which ensures
that the minima of the free energy are at ηk = 0 and ηk = 1 (i.e.
pure phase states) regardless of the temperature. However, when
simulating a single material’s phase transition, the phase-change
process will not be triggered if only one phase exists in the initial
stage. We then instead use q(ηk ) = ηk .
The proposed model can be used to capture simulations with

multiple phases including solid, liquid and gas. In this paper, we
simply focus on two-phase examples involving solid and liquid.
If additional constraints are introduced [Macklin et al. 2014], our
approach can be extended to consider gaseous phase, which is not
themain focus of this work. Thus,N in Equation (25) is set to 2 in our
examples. Then only (Z0,1)m and (T0,1)m appear in Equation (25),
to model phase change between liquid and solid.

4.4 Continuous Interfaces between Phases
Materials in different phases obey different physical laws. For in-
stance, in Equation (17), s denotes the deviatoric stress for solids, but
the viscosity tensor for fluids. To obtain this value, the velocity gra-
dient is needed. When calculating the velocity gradient in standard
SPH, only neighboring particles in the same state are taken into
consideration. This is problematic if particles have mixed phase. To
calculate the aggregate deviatoric stress, deviatoric stresses for both
liquid and solid phases are needed. Each depends on its own veloc-
ity gradient, while the particle only has a bulk velocity. To address
this issue, previous works simply set each particle to a particular
phase according to its concentration fraction, temperature and so
on. However, we adopt a continuous phase interface: a particle at
the interface can be in multiple phases. We resolve this issue by
computing the velocity gradient for phase k of particle i as follows:

(∇ui )k =
∑
j
Vj

(ηk )i + (ηk )j

2
(uj −ui )∇Wi j , (26)

whereWi j is a symmetric kernel function; we use a spiky kernel
for gradient calculation following the work by Müller et al. [2003].
Vj is the volume of the neighboring particle j. (ηk )i denotes the
k-th phase variable for particle i . As we only consider solids and
liquids, we use (∇ui )k to calculate the appropriate tensor for phasek .
Finally, as we assume that the deviatoric stress is mainly influenced
by phase, we use Equation (24) to obtain the aggregate deviatoric
stress. The whole process is summarised in Algorithm 1.

The use of continuous interfaces is of benefit in the implementa-
tion of a multi-phase, multi-material framework, as no extra param-
eter is needed to label the phase (solid, liquid or gas). This feature
also avoids the computational effort needed to update such labels.
The phases of particles can be mixed, thereby closer to real physical
behavior. Although existing methods can produce similar visual ef-
fects, our method offers a unified treatment to seamlessly and easily
handle multi-phase, multi-material simulations including transitions
between phases.
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Algorithm 1: Aggregate Deviatoric Stress Computation

Input: η, u , s from the last step
Output: s for the current step
1: for all particles do
2: for all phases k do
3: compute (∇u )k according to Equation (26)
4: compute sk using (∇u )k : if phase k is solid, use Equation (5), if

liquid, use the standard viscosity tensor
5: end for
6: compute aggregate s using Equation (24)
7: end for

Algorithm 2: Simulation Loop for Multi-Phase, Multi-Material Modeling
Framework
1: for all particles do
2: compute aggregate values using Equation (23)
3: end for
4: for all particles do
5: compute thermal diffusion according to Equation (22), and update

the temperature
6: compute pressure using Tait’s equation
7: end for
8: for all particles do
9: update c and η using the Cahn-Hillard Equation (18) and the

Allen-Cahn Equation (20) respectively
10: end for
11: for all particles do
12: compute pressure force using standard SPH approach
13: compute deviatoric stress using Algorithm 1
14: compute artificial viscosity using Equation (27) and stress

following [Monaghan 2000]
15: compute external forces
16: end for
17: for all particles do
18: advance the particle
19: end for

4.5 Artificial Viscosity and Stress
When simulating solids including deformable bodies and granular
materials using particle-based methods, physical oscillations are
often observed due to instability of the numerical solutions. They
appear mostly in the initial stages of simulation, particularly if the
Courant–Friedrichs–Lewy (CFL) condition is not satisfied (e.g., a
particle travels more than a certain fraction of its support radius
in one time step). To improve numerical stability and to damp out
undesirable oscillations, a dissipative term may be introduced into
the pressure term, as suggested by Yan et al. [2016], who pointed
out that viscosity plays an important role in preventing particle
penetration. We therefore also apply an artificial viscosity term to
handle fluid-solid coupling. This term is given by:

Πi j =




νi j
−acsΩi j + bΩ

2
i j

ρi j
δ , vi j · xi j < 0

0, vi j · xi j ≥ 0
, (27)

where i , j are particle indices, Ωi j = hvi j · xi j/( |xi j |2 + 0.01h2),
xi j = xi − x j ,vi j = vi −vj , a, b are viscosity coefficients, cs is the

Fig. 8. Concentration and phase evolution. Water is poured onto two piles of
soluble and insoluble grains. The water particles are invisible. Left: diffusion
state of concentration at some given time (colors: blue: water, red: soluble
granular material, white: insoluble but wettable granular material). Right:
diffusion state of phase at the same time (color: blue: liquid, red: solid).

Table 1. Controlling concentration and phase evolution for various phenom-
ena.

Phenomena Concentration Evolution Phase Evolution

Solid-Fluid Coupling ✗ ✗

Phase Transition ✗ ✓

Wetting ✓ ✗

Dissolving ✓ ✓

speed of sound, and νi j , ρi j are respectively the average viscosity
coefficient and density of particles i and j. We precompute the
aggregate viscosity and density of every particle at the beginning
of every step, to avoid treating miscible and immiscible particles in
different ways [Ren et al. 2014; Yan et al. 2016].

Tensile instability is commonly observed in SPH simulations for
both liquids and solids. We overcome this problem by using the
artificial stress term derived by Monaghan [2000].
The final SPH formulation for the momentum equation in con-

junction with the artificial viscosity and stress of particle i is given
by:

Dui
Dt
=
∑
j

(σi
ρ2i
+
σj

ρ2j
− Πi j + (Ri + Rj )

)
∇Wi j + ( fext)i , (28)

where Ri is the artificial stress of particle i . We adopt the approx-
imations of spatial derivatives for SPH simulations suggested by
Ihmsen et al. [2014b].

4.6 Overall Algorithm
Pulling all of the above ideas together, the main loop of our simula-
tion approach is as given in Algorithm 2.

5 APPLICATIONS
We have proposed use of a concentration variable c and a phase
variable η to describe how concentration and phase evolve sep-
arately. Table 1 shows how these may be controlled to simulate
various challenging real-world phenomena. For instance, to capture
phase transitions such as melting and solidification, we enable the
evolution of phase, while not allowing concentrations to evolve (i.e.
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Table 2. Performance; particle numbers change in some examples as water
is added; our method is about 3 times faster than [Yan et al. 2016]

Example materials phases particles ms/step

Deformable Jelly 1 1 50k 9.6

Dry Sand (H/R = 0.9) 1 1 48k 10.2

Dry Sand (H/R = 2.0) 1 1 100k 15.0

Butter Bunny 1 2 276k 24.1

Egg 2 2 180k 20.8

Dissolving Bunny (our method) 2 2 110k–260k 36.2

Dissolving Bunny ([Yan et al. 2016]) 2 2 110k–260k 96.4

Soluble/wettable Granules 3 2 200k–400k 46.4

Bubble Tea 4 2 320k–600k 61.0

we set the mobility to 0). We enable both concentration and phase
to evolve when simulating solid dissolution.

To simulate phase-change phenomena, we set the original phase
to 0, and the target phase to 1. The temperature T in Equation (25)
triggers the evolution of phase. For cases including solid wetting
and dissolution, the temperature does not play a key role, so we set
it to a constant. The evolution of concentration occurs at interfaces
according to the Cahn-Hillard equation (18). We set the monotone
function q(ηk ) in Equation (25) to η2k (3 − 2ηk ), so the evolution of
phase starts at the interfaces of phases thanks to the Laplacian term
in Equation (20) (The SPH formulation of the Laplacian operator
contains a gradient term [Ihmsen et al. 2014b]). To capture phe-
nomena like dissolution of solids, the evolution of concentration
interacts with the evolution of phase, and both only occur at inter-
faces. Figure 8 shows a snapshot of the differences in concentration
and phase evolution in the same scenario as Figure 11 at a given
time.
Decoupling the concentration and the phase leads to a straight-

forward and flexible approach to capture a variety of multi-material
and multi-phase interactions as illustrated in Table 1.

6 RESULTS

6.1 Examples
In this section, we present various examples to demonstrate the
range of simulations that our method can handle; supplementary
videos are also provided. Key parameters used in the simulations
are given here; further details of parameters can be found in the
supplementary material.
Deformable Jelly: the proposed elastoplasticmodel can simulate

both purely elastic and plastic object behavior, as shown in Figure 4.
An elastic jelly (left) and two plastic jellies (middle and right) are
dropped onto a plane. The elastic jelly rebounds and recovers its
shape, while the plastic jellies deform irreversibly with different
degrees of plasticity.
Dry and Wet Sand: Figures 5 and 7 shows that our elastoplastic

model is capable of simulating both dry, non-cohesive sand, and
cohesive, wet sand by choosing whether to use return mapping
algorithms or not. Our SPH-based approach is about 4 times faster
than the MPM-based one. Our method can simulate the collapses

of dry granular columns with different angles (see Figures 7b–7d).
We also demonstrate that the behavior of the collapse of an initially
vertical cylinder of granular materials depends on the aspect ratio
H/R, where H and R are its initial height and radius respectively
[Lube et al. 2004] (see Figures 7d and 7g).

Melting and Solidification: our multi-phase, multi-material
model can be used to capture a wide range of phase-changing phe-
nomena including melting and solidification. Figure 10 presents the
melting of a butter bunny on a hot pan. The simulation involves
one material (butter) with two phases (solid and liquid). We cap-
ture melting by enabling diffusion of the phase variable. Since the
initial conditions are single-phase, we set the monotone function
q(ηk ) = ηk . Figure 1 demonstrates the frying of an egg. This is
a two-material (egg white and egg yolk) system with two phases
(solid and liquid). The egg white and egg yolk do not mix in this
case, so any given particle contains only one material. We initialize
the egg white and the egg yolk with different values of thermal
conductivity to ensure different speeds of spread of phase change
[Yang et al. 2016, 2017].

Dissolving Bunny: Figure 9 demonstrates the dissolution pro-
cess of a bunny. We also provides a comparison with results by Yan
et al. [2016] (see the supplementary video). Our method achieves
comparable results and is about 3 times faster (see Table 2), as we
avoid the use of computationally expensive drift velocity and an
hypoplastic model.

Soluble and Wettable Granular Materials: Figure 11 shows
advantages of ourmodel over previousmethods. Two piles of soluble
coffee granules and sands interact with water from above poured
onto them. To simulate soluble coffee granules, we enable diffusion
of both concentration and phase variables, but to simulate insoluble
sand grains, we disable the diffusion of the phase variable. (The
density ratio of granular material to water is 2 : 1 in each case).
Here, we assume the wettable sand and water slightly mix with each
other until reaching a saturation point: we assume a sand particle
can contain at most 5% water.

Bubble Tea: to demonstrate challenging real-world phenom-
ena with multiple materials and phases, as shown in Figure 12, we
simulate the making of bubble tea, a drink that contains soluble
coffee granules, wettable elastoplastic tapioca pearls, and two liq-
uids (water and milk). Our method can capture a variety of complex
interactions in a versatile way. (The density ratios of coffee granules
vs. tapioca pearls vs. water vs. milk are 2 : 1.5 : 1 : 1). In this
scenario, we use particle boundary; to prevent particle penetration,
larger viscosity and artificial viscosity are adopted. We add vorticity
confinement [Fedkiw et al. 2001; Macklin and Müller 2013] to make
the fluid less viscous.
We implemented our algorithm using CUDA on an NVIDIA

GeForce GTX1080 11GB GPU and 8 Intel Core i7-3770 CPUs; the
CPUs are relatively unimportant. Performance for the examples
described above is given in Table 2. The particle numbers shown
include both fluid and boundary particles. The timings presented
are averaged running times over the entire simulations. The time
step is set to around 10−3 s, which is sufficient to achieve stable
simulation and prevent particle penetration.
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Fig. 9. Soluble bunny. A deformable bunny dissolves in the water pouring from the pipe, coloring the water red.

Fig. 10. Melting a butter bunny on a hotplate. Phenomena such as wave-like spread and free sliding behavior of the unmelted butter can be observed.

Fig. 11. Soluble and wettable granular materials. Piles of coffee granules (brown) and sands (yellow) interact with water poured from above onto them. Left: the
sand is merely wettable if phase evolution is disabled. Right: the coffee granules dissolve, achieved by enabling the evolution of both phase and concentration.

Fig. 12. Making of Bubble Tea. A granular coffee column collapses in the goblet, then dissolves in water (pouring from right) and milk (pouring from left).

6.2 Discussion
Yang et al. [2015] also adopted the Cahn-Hilliard equation. Their
work focused on interactions among multiple fluids; no solids are
considered. Furthermore, they proposed a user-defined Helmholtz
free energy density function to artistically control the interactions;
while in this paper, a unified Helmholtz free energy density function

is introduced to drive the evolutions of both concentration and
phase.

Although our examples show some similarities with those of Yan
et al. [2016], the methods used to produce the results are completely
different. Yan et al. use drift velocity to capture the diffusion of con-
centration; thus, in every particle, each concentration has its own
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velocity. Our method however uses a unified energy to drive the dif-
fusion of both concentration and phase. Every particle is considered
as a whole; each concentration within a single particle shares the
same velocity. Our method is much simpler to implement and is also
more efficient, overall being about 3 times faster than Yan et al.’s
method (see Table 2). Furthermore, Yan et al. use an elastoplastic
model to simulate deformable bodies and a hypoplastic model for
granular materials, which adds complexity. By improving the elasto-
plastic model to make it capable of modeling granular materials,
we are able to use a single general formulation for both cases. The
proposed method models landslides with different failure patterns
as well as collapsing granular columns with varying aspect ratios,
which have been largely overlooked in the graphics community. All
the multi-material, multi-phase examples presented could not pre-
viously be achieved in such a straightforward, easy-to-implement,
fast and unified way.

7 CONCLUSION AND FUTURE WORK
We have extended the energy-based multi-fluid model [Yang et al.
2015] to simulate a wider range of multi-phase, multi-material sys-
tem including both liquids and solids, by incorporating the phase-
field method. Our proposed method can distinguish between phases
and materials, and treats them independently. By doing so, it be-
comes simpler to capture challenging real-world phenomena involv-
ing multiple materials and multiple phases. Our examples demon-
strate the effectiveness of the proposed unified simulation frame-
work.

We use a linear elastoplastic model, as it is simple and versatile,
and enables modeling of a large variety of solid behavior, including
deformable bodies, granular materials, and cohesive soils. How-
ever, when animating purely elastic objects, this model is unstable
to capture large elastic deformation using SPH, due to numerical
error of stress-rate accumulation, as simulation continues. In our
experiments, smaller time steps can ensure longer time of stable
simulations, but it cannot solve the problem. More investigation is
needed to address this issue.

The proposed model is in principle capable of capturing gaseous
phenomena. However, special techniques are needed for smoke
simulation in current SPH based solvers [Macklin et al. 2014; Ren
et al. 2015, 2014], and these are not compatible with the governing
equations for liquids or solids, making it tricky to incorporate smoke
within our new framework. Since only two phases, e.g., liquid and
solid are considered in this work, it is possible to use a single value of
η (see explanations in Section 4.1) rather than a vectorη to represent
the state of materials. We use the vector of phase η to leave room
for future extensions.
In this work, we have adopted the simplifying assumption that

the phase variable acts on the whole particle. For instance, suppose
a given particle is determined as 50% material A and 50% material B,
and as 50% solid and 50% liquid; we do not distinguish how much
of A or B is solid or liquid, but just describe this mixed particle as
50% solid and 50% liquid overall. Our experiments show that this
simplification (compared to strictly using a separate phase variable
for each material) does not prevent us from capturing many com-
monly observed real-world phenomena. However, phenomena with
multiple phases and multiple materials are actually more complex.

For instance, the given particle above could be that all material A is
solid and all material B is liquid, or vice versa, or various combina-
tions in between. In the future, we hope to investigate the degree to
which it is beneficial to use a more precise representation.

Crystallization is also commonly observed in daily life, e.g. in
ice formation on a window. The process of crystal growth involves
both concentration and phase evolution, so in principle, is within
the scope of our model. Further effort is needed in future to capture
this phenomenon.
We use the weakly compressible SPH (WCSPH) in our work, as

it can readily integrate into our method. However, it suffers from
compressibility compared with the MPM solver (see Figure 5 and
the supplementary video). The position based fluids (PBF) [Mack-
lin and Müller 2013] and MPM have gained popularity in recent
years. It would be promising to integrate our method to these two
frameworks.
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A DERIVATION OF THE ELASTOPLASTIC MODEL
In this work, we adopt an elastic-perfectly plastic model. The total
strain rate tensor ϵ̇ is commonly composed of two parts, i.e., elastic
strain rate ϵ̇e and plastic strain rate ϵ̇p :

ϵ̇ = ϵ̇e + ϵ̇p . (29)

The generalized Hooke’s law states that:

σ̇ =De : ϵ̇e =De : (ϵ̇ − ϵ̇p ). (30)

whereDe is the fourth-order elasticity tensor, which can be formu-
lated as:

D
e = 2GT + Kδ ⊗ δ , (31)

where T = I − 1
3δ ⊗ δ , is the fourth-order deviatoric tensor. The

plastic potential function д specifies the direction to which the plas-
tic strain develops. The plastic strain rate tensor may be computed
by using the plastic flow rule:

ϵ̇p = λ̇
∂д

∂σ
. (32)

Thus, substituting Equation (32) into Equation (30) gives:

σ̇ =De :
(
ϵ̇ − λ̇

∂д

∂σ

)
. (33)

During the plastic flow, the stress state must remain on the yield
surface (see Figure 6). Thus, the consistency condition must be
satisfied:

d f =
∂ f

∂σ
: σ̇ = 0. (34)

This equation ensures that the new stress state σ + dσ still satisfies
the yield criterion after loading:

f (σ + dσ ) = f (σ ) + d f = f (σ ). (35)
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We use N andQ to represent the partial derivatives of f and д (see
Equations (3) and (4)) with respect to σ for convenience:

N :=
∂ f

∂σ
=

1
√
2S

s + αδ , Q :=
∂д

∂σ
=

1
√
2S

s + βδ . (36)

Substituting Equation (33) into Equation (34) gives:

N :
(
D

e :
(
ϵ̇ − λ̇Q

))
= 0, (37)

and thus:

λ̇ =
N :De : ϵ̇
N :De : Q

=
1

G + 9Kαβ

(√2G
S

s : ė + 3Kα Tr(ϵ̇ )
)

(38)

Substituting Equation (38) into Equation (33), it gives:

σ̇ = 2Gė + K Tr(ϵ̇ )δ − λ̇
(√2G

S
s + 3Kβδ

)
. (39)

The deviatoric part of σ̇ is as follows:

ṡ = 2Gė − λ̇
√
2G
S

s . (40)

B DRUCKER-PRAGER APPROXIMATIONS
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σ2σ3
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Fig. 13. Drucker-Prager approximations.

The Drucker-Prager yield criterion is a pressure-dependent model
to estimate the stress state for determining whether a material has
failed or undergone irreversible plastic deformation. The Drucker-
Prager yield surface is a smooth version of the Mohr-Coulomb yield
surface. A variety of Drucker-Prager approximations have been
proposed to match the Mohr-Coulomb yield surface as shown in
Figure 13.

• Compression cone: matching Mohr-Coulomb yield sur-
face in triaxial compression;

• Extension cone: matching Mohr-Coulomb yield surface
in triaxial extension;

• Internal cone: inscribed inside Mohr-Coulomb yield sur-
face;

• Compromise cone: an average between extension and
compression approximations.

Table 3 summarizes determination of model parameters with
respect to friction angle ϕ, cohesive coefficient kc , and dilatancy
angleψ [Wang and Sitar 2004].

Table 3. Model parameter determination.

D-P approximation α β γ

Compression Cone 2 sinϕ
√
3(3−sinϕ )

2 sinψ
√
3(3−sinψ )

6kc cosϕ√
3(3−sinϕ )

Compromise Cone 2 sinϕ
3
√
3

2 sinψ
3
√
3

6kc cosϕ
3
√
3

Extension Cone 2 sinϕ
√
3(3+sinϕ )

2 sinψ
√
3(3+sinψ )

6kc cosϕ√
3(3+sinϕ )

Internal Cone sinϕ
√
3(3+sin2 ϕ )1/2

sinψ
√
3(3+sin2ψ )1/2

3kc cosϕ√
3(3+sin2 ϕ )1/2

Experiments show that different failure patterns arise using dif-
ferent approximations [Schwiger 1994]. The appropriate choice of
approximation is application-dependent. When using an elastoplas-
tic model, elastic and plastic deformations often co-occur. In this
work, we use the compression cone model, as small elastic deforma-
tion can be ignored in comparison with plastic deformation when
simulating granular materials.
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