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Figure 1: Large-scale image extrapolation in three directions: up, left and right.

Abstract

Filling a small hole in an image with plausible content is well
studied. Extrapolating an image to give a distinctly larger one is
much more challenging—a significant amount of additional con-
tent is needed which matches the original image, especially near
its boundaries. We propose a data-driven approach to this problem.
Given a source image, and the amount and direction(s) in which it is
to be extrapolated, our system determines visually consistent con-
tent for the extrapolated regions using library images. As well as
considering low-level matching, we achieve consistency at a higher
level by using graph proxies for regions of source and library im-
ages. Treating images as graphs allows us to find candidates for
image extrapolation in a feasible time. Consistency of subgraphs
in source and library images is used to find good candidates for the
additional content; these are then further filtered. Region bound-
ary curves are aligned to ensure consistency where image parts are
joined using a photomontage method. We demonstrate the power
of our method in image editing applications.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; K.7.m [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications
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1 Introduction

Can computers plausibly greatly extend the content of an image
outside its existing boundaries? Although for human-beings this
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seems an easy task because of abundant experience, it is not trivial
for computers. Extrapolating image contents has recently gained
attention in computer graphics and computational photography—it
can be one way of creating novel images. The task can be classified
into two categories according to the amount of extrapolation de-
sired: slightly extending images can be useful in such applications
as panorama construction, when small additions may be needed to
make the panorama rectangular after image stitching [Kopf et al.
2012]. Such a task has much in common with image inpainting,
or gap filling, which has been extensively researched over the last
decade. Typically, patch-based or diffusion-based approaches are
used [Criminisi et al. 2003; Levin et al. 2003; Wexler et al. 2007;
Barnes et al. 2009; Darabi et al. 2012]. A more challenging, and
much less studied task is to extrapolate an image by a large amount
(e.g. to double its size). This problem cannot be easily solved us-
ing such image inpainting or completion methods. Simply reusing
large portions of content may lead to implausible repetitions, while
incrementally constructing new content from smaller pieces of ex-
isting content can lead to unnatural structures or blurring.

Existing data-driven approaches [Sivic et al. 2008; Kaneva et al.
2010] can extrapolate an original image in one direction if pro-
vided with abundant material. However, structural inconsistencies
typically arise at the joints. We propose a different data-driven ap-
proach to large-scale extrapolation which outperforms such meth-
ods. To find possible image content to augment the source image,
we search a library of other images rather than reusing portions of
the original image. By careful selection of what is to be added, we
are able to produce plausible results with content relevant to, but
not present in, the original image. We formulate the image extrap-
olation problem in terms of graph matching and graph stitching.
Both the original image and the library images are represented us-
ing planar graphs, whose nodes represent semantically meaning-
ful regions, while edges indicate region adjacency relationships.
Matching subgraphs from the original image graph with ones for
library images lets us find related content; forming a larger graph
containing portions of both the original image graph and library
image graphs allows us to generate a larger picture than either.

Our graph-based method thus has three main elements, graph build-
ing, subgraph matching, and graph stitching. Graphs are built for
both library images and the input image, using image segmentation
to generate regions. Each graph node records information repre-
senting its region. Next, a graph matching technique is used to seek
candidate images for use for extrapolation, having a suitable sub-
graph in common with the particular boundary of the source image
that we wish to extrapolate. An efficient and robust graph matching
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approach is used, taking into account both region consistency and
contextual constraints. The K images which match best are shown
to the user, who can select which one(s) to use to provide candi-
date components for extrapolation. Finally, candidate components
from these different chosen images are automatically aligned and
stitched along the original image boundary with color adjustment,
ensuring that there is a good match at the boundary.

We show the success of our methodology in image editing appli-
cations. The primary use is for image extrapolation. Given an
original image, our system can return several alternative extrapo-
lation results, in a direction and to a size specified by the user (e.g.
see Figure 1). We demonstrate our system using outdoor scenes,
including natural scenes and typical snapshots. This is a diverse
class of images, but also restricted enough that a moderate size of
database suffices to provide suitable extrapolation content. Other
well-defined classes of images could also be used, assuming that a
sufficiently rich library of relevant images could be collected, but
the class should not be overly broad, to prevent the size of the li-
brary from causing the search to become unacceptably slow. We
have also tested our algorithm extensively on images from an image
completion dataset [Hays and Efros 2007] as well as other images.

We also show how the flexible abstract representation of images
in our method makes it useful for other tasks such as panorama
generation and image completion.

This work addresses large-scale image extrapolation, which is a
challenging problem. Our major contributions are:

� A data-driven method for large-scale image extrapolation
which outperforms existing methods in terms of preserving
visual structure of images while introducing interesting scene
contents.

� A graph-based image representation which balances high
level structures and low level visual features. Its usefulness
for image extrapolation is clearly demonstrated in this paper,
but it is a general model which can be used in other image
processing applications too.

� A novel image extrapolation operation which integrates rigid
transformation with local seam carving. This technique is ef-
fective for pairwise region alignment.

2 Previous Work

We now review previous works related to ours in terms of method-
ology and application.

Compact image representation. Many previous works have con-
sidered how to leverage well-designed data-structures for effective
representation and efficient computation in such tasks as image
editing and recognition. The well-known bag-of-words model was
introduced into object retrieval by Sivic et al. [2003], and has been
widely used for many computer vision tasks. In particular, many
works have improved upon this approach as a means of image sum-
marization [Li and Perona 2005; Lazebnik et al. 2006; Yang and
Li 2012]. These works seek powerful local features as a basis for
accurate object retrieval and recognition. The lack of global struc-
ture limits use of these local features in image editing applications
due to the lack of higher-level semantics. As an alternative to local
features, global image descriptors such as Tiny Images [Torralba
et al. 2008] and GIST features [Oliva and Torralba 2001] are typ-
ical encoding tools used for scene recognition. In image editing
applications, such features provide visual cues for matching similar
images globally, but are weaker at addressing local semantics. This
is because only the presence or absence of features is considered,
not the contexts of different image parts.

Application specific graph-based representations are extensively
used in image and video analysis [Baeza-Yates and Valiente 2000;
Hlaoui and Wang 2002; Hu et al. 2013b], shape matching [Zhou and
De la Torre 2012], object recognition [Malisiewicz and Efros 2009;
Lee and Grauman 2010] and scene parsing [Tighe and Lazebnik
2013], both to improve accuracy and to accelerate some matching
process. Graph matching algorithms can either consider topolog-
ically exact matching, which requires one-to-one correspondence
between two graphs, or inexact matching, when certain topological
differences are allowable [Conte et al. 2004]. Our graph matching
algorithm is used to find suitable image candidates that provide ap-
propriate additional content for image extrapolation. For efficiency,
exact topological matches are sought, following which labels as-
signed to graph nodes indicating content and properties of the re-
gions are used to further constrain the matching process.

Object recognition and scene parsing methods utilize contextual re-
lationships to identify objects or label pixels in an image. Mal-
isiewicz and Efros [2009] build a graph to represent relationships
between visual objects, which is then used for object inference.
This method however requires manual image segmentation. Lee
and Grauman [2010] use known visual categories to help find new
categories; labeled images are required for training. Tighe and
Lazebnik [2013] label image pixels using Markov random field in-
ferencing. Such methods cannot be used alone for image extrapo-
lation because it requires compatibility of appearance, not just se-
mantics, of image parts. Unlike these methods, our method builds a
graph for each image without manual segmentation or labeling, for
use for matching and stitching. A recent image representation using
a graph-based model was proposed by Hu et al. [2013b], to assist
semantically meaningful image editing. Their method constructs
a hierarchical graph model for an image by extracting a represen-
tative patch for each homogeneous region. When the user indi-
cates a region for editing, patches associated with regions adjacent
to the one specified provide contextual information which informs
the library search for suitable new or replacement content. Note
that graph matching in this work is restricted to pairwise match-
ing of graph nodes which represent image regions. However, while
their graph-based description can efficiently match a single pair of
nodes, it cannot readily be extended to matching (sub-)graphs, as
needed by our approach to image extrapolation. Furthermore, their
exhaustive graph matching procedure requires the computation of
low-level image features during the comparison, which would be
too costly. It is also insufficient to only consider patch appearances
in terms of local features—as demonstrated in examples later, tex-
tures and geometric information must also be considered for good
extrapolation results. Unlike their method, our approach predeter-
mines labels which compactly represent the content and properties
of the regions in library images. The labels are derived by feature-
based clustering.

Data-driven image processing. Data-driven image processing
takes advantage of image data usually selected by keyword search
from the Internet or some other large collection. The data-
driven pipeline typically involves finding relevant images from the
database, user selection of candidates, aligning candidates with the
source image, and synthesis of new image data. It has proven
successful for e.g. object and scene recognition [Torralba et al.
2008], image completion [Hays and Efros 2007], exploring visual
space [Sivic et al. 2008; Kaneva et al. 2010], scene parsing [Liu
et al. 2009], image montage [Chen et al. 2009; Chen et al. 2013] and
image enhancement [Dale et al. 2009; Chia et al. 2011; HaCohen
et al. 2013; Shih et al. 2013]. A comprehensive summarization of
data-driven approaches can be found in [Hu et al. 2013a]. The ref-
erence image data can be used in a variety of ways. However, such
online data collections contain many unsuitable images in addition
to the suitable ones, and must be carefully indexed for efficient and
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Figure 2: System pipeline.

effective retrieval.

Depending on the approach to retrieval, methods can be classified
into two groups. Data-driven image editing can use millions of im-
ages directly without any filtering process [Hays and Efros 2007;
Dale et al. 2009; Johnson et al. 2011]. Such methods seek images
that are visual similar and show the same kind of scene. Hays and
Efros [2007] discover relevant image contents to fill holes in a copy-
and-paste manner. Dale et al. [2009] indirectly use information
provided by retrieved candidates to provide appearance cues such
as color for enhancement. Cg2Real [Johnson et al. 2011] makes
computer generated images more natural by synthesizing color and
texture from real images. The success of such work is built on the
assumption that one or more perfect images exist within the mil-
lions of images present, providing a solution to the problem at hand.
To avoid looking for a needle in a haystack, global or local image
descriptors are used to compare features between source and library
images in a linear scan; the best K candidates are used for image
editing. Unlike such approaches, we do not assume that the library
contains any single image which is globally a good match to the
source image. Instead, we use the information distributed in avail-
able library images, with more than one potentially providing some
partial match to the source image. By analyzing image structure
both in terms of large scale content and low-level features, much
less data has to be processed to find images providing suitable con-
tent for extrapolation.

A second class of approach carefully filters out irrelevant images
step by step [Chen et al. 2009; Chia et al. 2011]. At each step, un-
desirable images are discarded, leaving a smaller and smaller set of
candidate images until a tractable set remains. Sketch2Photo [Chen
et al. 2009] uses saliency, contour consistency and content consis-
tency criteria to find foreground objects that are then merged with
background images to make a photo montage. Chia et al. [2011] use
a similar approach to retrieve images for colorization. Our graph-
matching process is also a cascading filtering procedure that con-
siders high-level structure as well as low-level image features such
as color, texture and shape of image regions near the extrapolating
boundaries, to ensure natural extrapolation.

Image extrapolation. While image interpolation is well-studied,
extrapolation is much more challenging. Kopf et al. [2012] use
a patch-based method derived from [Wexler et al. 2007; Barnes
et al. 2009] to synthesize image content outside irregular bound-
aries of a panorama. Their method leads to undesirable results such
as blur or repeating elements when extrapolating to larger unknown
regions. The Deep Photo system [Kopf et al. 2008] synthesizes a
new view for a geo-tagged source image using existing 3D models
and texture synthesis. It requires additional geographic information

and georeferenced models, which limits its application. The Infi-
nite Images system [Sivic et al. 2008; Kaneva et al. 2010] does not
need real 3D locations, and creates and explores a large photore-
alistic virtual space using global image matching and transforma-
tion. Their system however may not preserve content consistency
(e.g. salient curves) well at the joints when a good global match
is not found. Zhang et al. [2013] address the problem of extrapo-
lation in the particular case of panorama images. Given a source
image to extrapolate, a guiding panorama image and strict regis-
tration between the source image and regions of interest (ROI) in
the panorama, their method can generate a new panorama whose
contents come from the source image. The method relies on good
registration and the presence of repetitive patterns in the guiding
panorama. Jia et al. [2008] stitch images sharing identical content
by deforming structures, guided by 2D feature detection. To stitch
image regions which do not overlap, Poleg et al. [2012] use an in-
painting method that iteratively expands the image regions until all
gaps are filled. Later work by Huang et al. [2013] stitches image
fragments together by registering extracted curves and filling the
gaps. In our approach, images to be stitched are automatically iden-
tified from the library, guaranteeing one-to-one correspondence of
region boundary curves describing the spatial layout of regions. No
extra registration step is required.

We focus on a general and challenging task: given an input image,
we wish to extrapolate it significantly to give a larger image. A
data-driven approach is essential as visual cues are lacking for the
areas to be added, and the real world is structured in a variety of
ways. Our method can produce variations by introducing interest-
ing, novel and meaningful content, which would be very difficult
or impossible to achieve if only content from the original image
were to be used. The closest work to ours is that in [Sivic et al.
2008; Kaneva et al. 2010], which can also generate new content be-
yond the original image boundary. Unlike that work, our approach
leverages graph matching and region boundary curve alignment to
provide more flexible and accurate image composition, as we show
in a comparison in Section 6.

3 Overview

Our problem is to automatically extrapolate a source image, signif-
icantly enlarging its dimensions in one or more directions. The im-
age contents in the new areas must be both plausible and correctly
integrated with the original. Formally, we define the problem as
follows: given an input source image I with original dimensions D
and user indicated extrapolation direction(s) (up, down, left, right)
and amount(s), the aim is to create an output target image I ′ with



dimensions D′ (for example, twice as big as D) such that I � I ′.

The critical issues are to provide meaningful contents for I ′ given
the contents of I , and to integrate I ′nI with I so that the final result
I ′ is visually plausible without obvious joins or breaks in struc-
ture. To address these issues, we use a library-based data-driven
method, rather than only using data from the original image. Every
image is represented by a hierarchy of planar graphs, allowing us
to simplify the extrapolation problem to one of graph matching and
graph stitching. Each graph node represents an image region having
homogeneous color and texture. The use of a hierarchy improves
matching reliability and allows us to cope with varying segmenta-
tion granularity. By using an efficient graph matching approach,
our matching method can obtain candidate image parts in less than
5 seconds from a medium sized library used in our experiments.

Our pipeline is illustrated in Figure 2. Off-line data processing is
used to gather and index information about the library images L.
An on-line process then uses this information, together with an
analysis of the input image, to extrapolate it. In off-line process-
ing, the library images are first segmented in a coarse-to-fine man-
ner into regions representing semantically meaningful areas such
as sky, a building, grass, etc. Then color, texture and geometry
features are extracted for each region, giving a feature vector de-
scribing that region. To allow efficient and meaningful matching,
features for all regions in the library are clustered, and a label asso-
ciated with each cluster. Each region is then assigned the label of
the nearest cluster based on the distance from the cluster center in
the feature space; indexes are used later to quickly find images with
regions belonging to appropriate clusters. Lastly, a planar graph is
constructed for every segmentation result; nodes represent regions,
and edges join adjacent regions.

The on-line process consists of feature extraction, graph construc-
tion, matching and extrapolation steps. The input image is first
segmented in the same way as the library images. Each region
is then assigned multiple labels corresponding to several of the
nearest cluster centers. Using multiple labels allows more flexi-
ble candidate matching and is more robust against inaccurate label
assignment. Next, the region graph of the source image is con-
structed. When extrapolating images in a particular direction indi-
cated by the user input, subgraph matching is performed between
the source image and the library images to find suitable image re-
gions. The subgraph of nodes meeting the extrapolation boundary
of the source image must match a subgraph (not necessarily at the
boundary) of a single library image, where matching requires the
graphs to have identical connectivity, and some label of each node
of the source subgraph must match the label of the corresponding
candidate graph node. Once images have been found with matched
subgraphs, further content compatibility is considered using region
content consistency, described in detail later. The top candidate im-
ages are shown to the user, who then simply selects which ones to
use to provide image components. Our system then automatically
aligns the appropriate components to provide good boundary agree-
ment by first finding and applying an optimal global transformation,
and then improving it using local warping. Finally, the images are
stitched with the help of color correction to generate the output im-
age.

4 Preprocessing of Library Images

As noted earlier, our method requires a reasonably large library of
images as a data source for extrapolation. We now explain how
this library is preprocessed. To compactly represent the structure
of images, we first use a segmentation algorithm [Arbelaez et al.
2011] to segment each image into homogeneous regions with sim-
ilar color and texture. To accommodate the inaccuracies when
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Figure 3: Hierarchical segmentation of images. Three original
images and their six levels of segmentation are shown. Regions
are colored using their mean values.

graphs are matched, multiple, hierarchical segmentations are used
to build graphs for each image. In practice, six levels are used:
see Figure 3. A graph is then constructed for each level of seg-
mentation, in which each region is represented as a node. Features
are extracted for each region. Due to their high dimensionality,
comparing features directly when searching the library would be
expensive. Instead, for speed, the features from all library images
are analyzed and clustered. Each cluster represents a certain type
of content (such as sky, grass, trees, etc), and is given a unique la-
bel. Each graph node (region) is then assigned a label indicating
the cluster it most closely matches. These labels are then used as
the basis for graph matching when considering whether images in
the library are suitable material for extrapolating the source image.
We now explain the process in further detail.

Feature extraction. We extract low level appearance features to
summarize each segmented region. The appearance features in-
clude color, texture, geometry and local features. For color fea-
tures, we take the mean region pixel intensity of each channel in
RGB and HSV color spaces, histograms of hue and saturation as
well as entropy of the region as a compact summary.

For texture features, we build a texton dictionary with a vocabulary
of 256 words based on a bank of filter responses with 8 orientations,
2 scales, and 2 elongations [Martin et al. 2001]. Every region pixel
is assigned a texton word index and a texton histogram is calculated
to summarize the region’s texture. Position of a region is also im-
portant to encapsulate the layout of an image. Last but not least, a
bag-of-words model of a dictionary with 256 unique words trained
on SIFT features [Sivic and Zisserman 2003] from the whole li-
brary is used to summarize local interest points. These features are
presented in Table 1. In total, each region is represented by a 531
dimension feature vector fi. Each feature coordinate range is ini-
tially normalized to [0,1], and then each of these four categories of
features are scaled so that each category has equal weight (i.e. po-
tential contribution to the overall feature vector length), to balance



Figure 4: Example clustered regions. Each strip shows several
region instances closest to corresponding cluster centers.

the importance of the four categories.

Region categories and label assignment. To allow efficient
matching and indexing, feature vectors are next replaced by la-
bels. We cluster all regions in our library so that every region Rj
belongs to some cluster Ci. We use the k-means clustering algo-
rithm with vocabulary size k = 500, which is sufficient to represent
many kinds of regions each with a variety of appearances (blue sky,
cloudy sky, conifer trees, broadleaved trees, . . . ). After clustering,
each fj is allocated to the nearest µi which represents the mean
feature vector for the ith cluster.

Regions belonging to a given cluster Ci have similar appearance—
some examples are shown in Figure 4. Each region Ri is given a
label Li which is the index of its nearest cluster:

Li = argmin
j
jjfi − µj jj

2 (1)

This labeling strategy provides the basis for compact image sum-
maries allowing both efficient search for extrapolation candidates,
and efficient filtering of irrelevant images, as detailed in Section 5.

Our experiments have shown this simple strategy to be more suit-
able than the supervised learning approaches [Liu et al. 2009;
Gould et al. 2009; Tighe and Lazebnik 2013] typically used in com-
puter vision, where the aim is to assign a semantic label (e.g. sky,
mountain) to each region: note that in that case, regions bearing
the same label could have substantially different appearance (e.g.
blue sky, cloudy). Instead, our aim is to find regions with similar
appearance.

Table 1: Features used to summarize a region.
Type Description Dimension Total

Color

Mean color RGB 3
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Mean color HSV 3
Hue histogram 5
Saturation histogram 4
Entropy of hue 1
Entropy of saturation 1

Texture Texton histogram 256 256
Geometry Centroid 2 2
SIFT BoW histogram 256 256
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Figure 5: Coarse graph matching. (a) and (b) are the source image
and one of its graph representation respectively; (c) is a close-up
of one extracted subgraph of (b) when extrapolating to the right;
(e) and (f) are a candidate image and its graph representation;
matched graph nodes and edges of (f) are highlighted with white
circles and yellow lines in (d).

5 Image extrapolation using graph matching

We now explain how we use graph matching in our solution to the
image extrapolation problem. Our approach includes three main
steps: (i) image representation using graphs; (ii) candidate image
retrieval via subgraph matching and (iii) image extrapolation using
retrieved candidates.

5.1 Graph-based image representation

We use a compact and concise planar-graph-based representation
as a basis for solving the extrapolation problem. The motivation
of leveraging graphs as proxies is that graphs provide a powerful
tool for representing both image content and structure. Regions are
encoded as graph nodes, and spatial relationships between adjacent
regions are represented by graph edges. This gives a high-level
representation which is both more powerful and economical than
considering an image as a set of raw pixels. As noted earlier, six
coarse-to-fine source graphs are generated for each image to im-
prove robustness to segmentation inaccuracies.

Formally, an undirected planar graph G = (V,E) is used to de-
scribe each segmentation of a library image at different scales. Its
N regions give a set of nodes V = fV1, . . . , VNg and a set of
undirected edges E � V � V . Each node Vi encodes information
about region Ri, in particular the label of the closest cluster center
µj together with the feature vector fi of the region Ri. An edge
Ei = hVx, Vyi is added to the graph for each pair of regions Rx
and Ry which are adjacent in the image. Graphs are built for all
library images during off-line processing.

Given a new source image to be extrapolated, we again use the clus-
ters determined for the library images. However, to cope with in-
accuracies in assigning region labels, the construction of the source
image graph GQ is done slightly differently. After segmentation
and constructing the graph, every source graph node V iQ is given
multiple permitted labels LiQ = fl1, . . . , lmg representing the m
nearest cluster centers for each region, rather than simply the near-
est center. These are the clusters with labels lj satisfying

jjf iQ − µlj jj < αmin
l
jjf iQ − µljj (2)

where α is a constant to control the strictness of the multiple possi-
bilities: we take all clusters whose centroid is at a distance no more
than α times the distance to the closest cluster. α is set to 1.2 in our
experiments. Note that allowing multiple labels for source nodes,
rather than all library nodes, reduces storage requirements.



Source image Matched candidates

Figure 6: Input source image, showing extrapolation boundary, and the six best candidates retrieved by graph matching.

5.2 Candidate image retrieval
Finding candidate images suitable for use in extrapolating a given
source image can now be treated as graph matching, using the
graphs for library images and the source image, as we now explain.

Subgraph extraction. A subgraph GSQ of one source graph is ex-
tracted according to the user indicated extrapolation direction: re-
gions touching at least one corresponding extrapolation boundary
are used as subgraph nodes V SQ . Edges between those regions are
extracted from the original graph structure to form subgraph edges
ESQ. For instance, if the user wants to extrapolate the image to
the right, the subgraph of a source graph touching the right image
boundary are extracted, as shown in Figure 5(c). Note that if the im-
age is to be extrapolated in more than one direction, subgraphs for
all such directions are extracted and matched against library graphs
separately, and the extrapolation order is decided based on the graph
matching results, as further discussed in Section 5.3.

Graph matching. Our graph matching procedure cascades coarse
matching and fine matching steps. Coarse matching finds potential
subgraphs in the library that share compatible labels and topological
structure with the source graph. Fine matching considers feature
vectors between corresponding nodes in detail, and further filters
out graphs with low consistency. Coarse matching quickly discards
most images, which are poor matches and so irrelevant, while fine
matching gives more accurate measures of closeness.

In the coarse matching stage, to cope with scale and segmenta-
tion granularity differences, each of the six extracted source sub-
graphs is matched against all library image graphs. A match exists
if we find a subgraph with the same topology and whose nodes
have the same labels (in particular, if the library image node la-
bel matches one of the labels of the corresponding source image
node). The coarse matching process is performed using traversal
and backtracking: firstly, an early rejection step is performed to
check whether all labels in a source subgraph exist in the candidate
graph. If not, the candidate is rejected immediately. Otherwise,
a random pair of matched source and candidate nodes is then se-
lected. Starting from this pair, we traverse the two graphs by seek-
ing new pairs of matched nodes. This procedure is repeated until
all source nodes are matched with the nodes from the candidate.
To accelerate this process, we index library graphs using inverted
files indicating which images contain each specific region label.
Only library images containing all required labels are considered
for matching. This substantially reduces the number of potential
matches. All candidate graphs that match one of the source sub-
graphs are collected for the next step.

After coarse graph matching, candidates have been determined, and
fine graph matching calculates a more accurate average feature dis-
tance D between each source graph region and corresponding li-
brary graph region to discover which of the candidate matches are
best. Let ri denote the region in the retrieved graph corresponding
to the ith region in one source subgraph. Then

D =
1

n

∑
V i
Q
∈V S

Q

jjf iQ � fri jj, (3)

where n is the number of pairs of nodes matched between the
source subgraph and the retrieved graph. After sorting candidate
subgraphs according to D in ascending order, we keep the top K
(typically 20) as candidates. Figure 6 illustrates the top six can-
didate images of input source image. Brief pseudocode for graph
matching is given in Algorithm 1; a detailed algorithm is provided
in the supplementary material.

User interaction. The user interaction in our system is limited to
simply choosing one or more images from those presented after
graph matching. These chosen images provide components for ex-
trapolation. Similar user interaction is widely applied in data-driven
approaches [Hays and Efros 2007; Sivic et al. 2008; Chen et al.
2009; Kaneva et al. 2010; Chia et al. 2011].

Algorithm 1 Graph Matching Algorithm

Input:
1: Source graph GQ
2: Library graphs GL = fGl1 , Gl2 , ..., Glng
3: Extrapolation direction d 2 fUp,Left,Down,Rightg

Output:
4: Candidate subgraphs GSR = fGSr1 , G

S
r2 , ..., G

S
rtg

5: Extract subgraph GSQ from source graph GQ according to d;
6: for each Gl 2 GL do
7: Check labels between GSQ and Gl for early rejection;
8: Randomly select a pair of nodes hV aQ , V bl i with same label;
9: if Depth first traversal ofGl starting from V bl succeeds then

10: Get matched library subgraph set G′;
11: GSR = GSR

⋃
G′;

12: end if
13: end for //Coarse Graph Matching
14: Sort GSR using Eqn. 3 in ascending order and keep top K as

candidates; // Fine Graph Matching
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Figure 7: Transformation: (a) pairs of region boundary curves
extracted from source image and candidate image; (b) the scan line
for finding potential alignment points; (c) two sets of intersection
points; (d) aligned optimal curve sets using rigid transformation.

5.3 Extrapolation

After user selection of candidates, extrapolation is automatically
performed using an extrapolation operation. Each extrapolation op-
eration involves finding suitable content in a candidate image and
using it to augment the current image. The original graph structure
is also (usually) enlarged after each operation, before any subse-
quent extrapolation step.

Extrapolation operation. Extrapolating an image in one direction
d is a basic step in our extrapolation procedure and may be applied
multiple times to achieve the desired output. We utilize the retrieved
library subgraph set GSR for a given direction to compute the result.
Consider a matched subgraph GSr 2 GSR, it already meets the re-
quirement of similar visual appearance to the source subgraph GSQ.
We must integrate the source image and a particular retrieved image
to ensure boundary consistency at the transition in these regions.

The basic idea is to make region boundaries well matched within
transition parts, by applying a rigid transformation as well as local
warping to the library image such that the region boundaries in the
transition part are well matched with those in the source image, to
ensures that when the images are stitched, no visual artifacts are
created due to inconsistent boundaries. To achieve this, we first
align region boundary curves using scaling and translation opera-
tions to align the boundaries as accurately as possible, formulated
as an optimization problem. After that, local warping is used to
connect the boundaries as smoothly as possible. We now give more
details.

Let C(�) be the set of region boundary curves between every pair
of adjacent boundary regions of some subgraph. Two sets of region
boundary curves are extracted, C(GSQ) for the source subgraphGSQ
and C(GSr ) for the retrieved library image subgraph GSr . For the
source image, let each curve CiQ 2 C(GSQ) start from siQ at the
image boundary and extend inwards for a length of γ pixels to its
end point eiQ (γ = 25 is used in experiments).

For retrieved library images, the region boundary curves are ex-
tracted according to the extrapolation direction. For instance, if

extrapolating the image in the right direction, for region boundary
curve Cir , the starting point sir is set as the leftmost pixel of the
corresponding region boundary, and traces the curve until it meets
the rightmost endpoint eir . Two adjacent nodes may share multi-
ple region boundaries. For simplicity, this is not taken into account
when graph matching is performed. A further verification is carried
out in this stage to ensure that nodes not only have one-to-one cor-
respondence, but also for suitable region boundary curves between
the nodes. Images that do not pass this verification are discarded
(for example, if two curves in the candidate image match one curve
in the source image).

Assume t pairs of boundary curves are extracted from the source
image and the selected library image (Figure 7(a)). As explained,
for the source boundary curve, only a short boundary segment is ex-
tracted, while for the candidate boundary curve, the whole curve is
extracted. This allows optimizing the alignment so that the portion
from the candidate boundary curve best matches the source bound-
ary curve. Aligning the extracted boundary curves for a given ex-
trapolation operation in one direction involves two phases. The first
is to translate, and possibly sightly scale, the library image so that
at the source image edge, the region boundary curves for source
and library images match in both position and orientation as well as
possible. The second phase further eliminates remaining inconsis-
tencies by local warping based on seam carving.

Global transformation optimization. The first phase of aligning
region boundary curves is now explained. Consider each pair of
corresponding curves hCiQ, Ciri from source image and library im-
age. We need to find a transformation Tψ,ϕ where ψ is a scaling
factor, andϕ = (ϕd, ϕo) is a translation vector, such that when ap-
plied to the retrieved image, it joins well to the source image in the
overlap area. Taking a concrete case, assume that ϕd is the trans-
lation in the extrapolation direction and ϕo in the orthogonal direc-
tion. Using a translation ϕd means that a scan line L(ϕd) orthog-
onal to the extrapolation direction intersects with all t curves Cr;
suppose the intersection point with the ith curve Cir is denoted as
ηi(ϕd). We first check if the source and library image curves have
consistent orientations by taking a small piece of Cir starting from
ηi(ϕd) with a length γ, denoted Cir(ϕd). Let OiQ and Oir(ϕd) be
the average orientations forCiQ and andCir(ϕd). The pair of curves
is considered to be compatible if jOiQ − Oir(ϕd)j < ξ; ξ = π/4
in our experiments. Values of ϕd with all curves compatible are
considered as acceptable candidate values. For each candidate ϕd
we further optimize the scaling factor ψ over a range of [0.8, 1.2]
in steps of 0.1, and ϕo such that the end points of curves si are
best aligned with the library image curves after transformation. The
optimal transformation T ∗ is determined as the one satisfying the
following equation, and is applied to the library image to align it
with the source image.

hψ∗,ϕ∗i = argmin
ψ,ϕ

t∑
i=1

jL(si)− L(Tψ,ϕ(ηi))j, (4)

where L(�) is the coordinate along the scan line direction. See Fig-
ure 7.

Local warping. The global transformation helps to place both im-
ages into alignment, but does not ensure that all boundary curves
are well aligned. In the second phase, further refinement of the
alignment is performed using local warping. Such warping is very
local, so does not cause noticeable distortion, but can substantially
improve local alignment. We adapt the well-known seam carving
method [Avidan and Shamir 2007] for this purpose. Seam carv-
ing works by adding or removing so-called seams (a consecutive
sequence of pixels running from one side of the image to the oppo-
site side), one at a time. For this problem, we restrict such seams
to go in the direction of image extrapolation (i.e. orthogonal to the
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Figure 8: Local seam carving: (a) original image (green border)
with extrapolation boundary (yellow border) and candidate image
(red border); (b) images are aligned after 37 steps of seam carving,
removing seams; (c) local seams (red) in intermediate results.

shared boundary). Moreover, we further restrict the seams to be lo-
cal: in other words, seams added or removed should end within a
specific interval of the shared boundary, as the aim is to help align
corresponding boundary points in both images. More specifically,
the t pairs of coarsely aligned coordinates hL(si), L(Tψ,ϕ(ηi))i
are available along the scan line, we eliminate the differences
jL(si) � L(Tψ,ϕ(ηi))j iteratively: we start by aligning the first
pair of region boundary curves, then compare the differences of
jL(si) � L(si+1)j and jL(Tψ,ϕ(ηi)) � L(Tψ,ϕ(ηi+1))j and de-
termine whether seams should be added into or removed from the
corresponding region in the candidate image at each iteration:

ωi = jL(si)�L(si+1)j � jL(Tψ,ϕ(ηi))�L(Tψ,ϕ(ηi+1))j. (5)

If ωi < 0, it means that jωij seams should be removed in the
candidate image and vice versa. These seams start from the ex-
trapolation boundary between L(Tψ,ϕ(ηi)) and L(Tψ,ϕ(ηi+1))
and then move across the interior of the image. After seam re-
moval or insertion, the coordinates of unprocessed boundary points
L(Tψ,ϕ(ηj)), (j > i) are updated accordingly. The magnitude of
image gradients is used as a cost function, so that seams are more
likely to go through smooth areas where local warping is less no-
ticeable. Local seam carving is performed iteratively until all pairs
of curves are well aligned. Figure 8 illustrates an example of lo-
cal seam carving which has helped to improve the alignment of the
original images and the image used for extrapolation.

Image stitching. After aligning region boundary curves as de-
scribed above, we then stitch the adjusted library image to the orig-
inal image. We use graphcut [Kwatra et al. 2003] within a band of
b pixels of the original image boundary to find an optimal cut run-
ning in the direction of the original image boundary, such that one
side of the cut comes from the original image and the other side
from the image used for extrapolation. b is a constant controling
the band width, set to 25 by default. Next, we use Poisson blend-
ing [Pérez et al. 2003] to adjust the color of the transition and make
the stitched image coherent. Finally, the result after the extrapola-
tion operation is refined to be rectangular: depending on the relative
location of the retrieved image and the source image, any stitched
parts lying outside the desired extrapolation region are trimmed.
Holes can arise if the image used for extrapolation is smaller than
the original image, so any small unfilled area within the desired ex-
trapolation region is filled using an image patch-based completion
approach [Barnes et al. 2009].

Table 2: Keywords used to build the library.
mountain beach coast castle natural park rock
garden sea hill countryside landscape lake
village forest farmland riverside peak street

Extrapolation order determination. The extrapolation operation
above is performed in one direction at a time. When the input image
needs to be extrapolated in more than one directions, our strategy is
to successively extrapolate the image in each direction and use the
result as a new input image. If neighboring directions for example
(Up,Left) or (Up,Left,Down) are to be extrapolated, choice
of extrapolation order can affect the result. We determine the ex-
trapolation order by comparing the size of the candidate subgraph
set GSR after coarse graph matching for each direction and pick the
direction with the smallest size of GSR (choosing one at random in
the case of a tie). Starting with the most difficult direction means
we are more likely to find a solution. If we start with an easier di-
rection and make an unfortunate choice of extrapolation direction,
it may make it too hard to later find a suitable image to extrapolate
in the more difficult direction.

Once an extrapolation operation has been performed, the source
graph is merged with the relevant subgraph from the candidate im-
age and the candidates are again retrieved with the updated source
graph. This process is repeated until all directions have been ex-
trapolated.

6 Experimental results
Our method relies on an image library to provide additional con-
tents needed for extrapolation. For our experiments, we built a li-
brary comprising 50, 000 outdoor images downloaded from Flickr,
using the keywords shown in Table 2 to choose relevant images.
We used general keywords, rather than specific locations such as
‘Mount Fuji’ or ‘Hyde Park’, to avoid collecting multiple images
of the same place (which would obviously give better completion
results than a generalized collection). The library contains both
natural scenes and everyday photos such as street views, people
and buildings. We rely on the massive number of available Inter-
net images to ensure that sufficient images are available to provide
sufficient useful content to produce plausible extrapolation. Ex-
isting data-driven image completion/navigation works [Hays and
Efros 2007; Sivic et al. 2008; Kaneva et al. 2010] assume a large
image database is available. To make a convincing comparison, we
give such methods an advantage by providing them with a large
image library containing one million images, including those in our
library, and further images from Flickr and the SUN database [Xiao
et al. 2010]. Note that a medium sized image library suffices for our
method and was used to produce all the results in this paper, even
though we might have obtained better results with a larger library.

The experiments were carried out on a computer with 2� 2.90GHz
Intel Xeon CPUs and 128GB RAM. Graph construction was domi-
nated by the segmentation step which takes about 5 minutes for an
image with dimensions 800 � 600 using a single core. The graph
matching procedure takes less than 5 seconds for a given source
image on a single core. Determination of optimal alignment also
takes less than 1 second. Stitching takes less than 2 seconds using
MVC stitching [Farbman et al. 2009]. In contrast, the method of
Sivic et al. [2008] takes about 2 minutes for image matching and
30 seconds for stitching using a single core. Note that both our
method and the one in [Sivic et al. 2008] by default require man-
ual candidate selection from the K (typically 20) retrieved images
determined algorithmically to be the best matches.

Our algorithm is intended to add a significant amount of new im-
age, not just to fill modest holes. Figure 1 gives an example where



Figure 9: Extrapolation results. Each row shows an input source image and desired output region, followed by several alternative results.

 Original images Missing regions Our results Sivic et al.

Figure 10: Comparisons with related work. Left to right: original images; trimmed as a basis for extrapolation; our results; results using
Sivic’s method. Our method better preserves boundary consistency.

substantial extrapolation is performed in Up, Left and Right direc-
tions. Figure 9 shows typical extrapolation results with alternative
candidates. The third and fourth rows give extrapolation results in
more than one direction. In the fourth row, the extrapolation prior-
ity order was determined as Left! Up! Right automatically.

One approach to evaluating our method is to consider a special case
where ‘ground truth’ is available, by extracting a rectangular region
of an image as the source image and extrapolating it to the size of
the original image. We compare our results to those provided by
the state-of-the-art data-driven scene navigation algorithm [Sivic
et al. 2008]. Their method was used as follows: camera transla-
tion and rotation motions were taken into consideration for scene
matching, half of the scenes were used to retrieve good matches,
and the top 20 results were returned as candidates for extrapolation.
Otherwise the setup was the same as in [Sivic et al. 2008]. Figure 10
shows two examples of attempting to regenerate trimmed images of
a mountain and a beach scene. Although the extrapolated content is
obviously different from the original, our results show reasonable
extrapolated results which are also aesthetically pleasing. The re-

sults using the method in [Sivic et al. 2008] have subtle but visible
discontinuities between the new and existing content.

For more extensive testing and comparison with existing work, we
prepared a dataset with 60 image extrapolation tasks, using the ma-
jority of images from [Hays and Efros 2007], originally prepared
for hole filling, as well as other images downloaded from Flickr,
chosen to be diverse in terms of challenge presented. The extrap-
olation boundary and the amount of extrapolation content for each
image were pre-determined manually to avoid meaningless extrap-
olation. Figure 11 shows results obtained by our method and other
methods involving user interaction to choose preferred candidate
images; a full set of results is given in the supplementary material.
The additional material introduced by the method in [Sivic et al.
2008] is often plausible, as it uses global image matching with a
large database containing a million images. Even so, this content
lacks detailed consistency with the original image, leading to arti-
facts, in particular where the images are stitched. Our method is
more flexible, and produces better results, even when using a con-
siderably smaller database.
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Figure 11: Some results of comparisons with related work using manually selected candidates.

Although our approach is not intended to be fully automatic, it gen-
erally yields acceptable results by simply using the highest ranked
candidate from graph matching. Figure 12 shows some extrapola-
tion results using the best match, for both our method and the one
in [Sivic et al. 2008] (see Figure 11 for input). Other such fully
automatic results as well as topK returned candidates are provided
in the supplementary material.

Our approach is readily adapted to user guided image extrapolation.
After selecting extrapolation boundaries and desired image dimen-
sions, the user can also optionally suggest extrapolation content by
placing a portion of another reference image in a desired location.
For example, one can cut a region from a reference image and place
it in a specified position. A filtering process is applied during graph

matching to ensure that the new content to be included has a sub-
graph consistent with the suggested reference. Note that the labels
of the content, rather than the pixel values, are considered by the
system. Figure 15 gives an example of extrapolating a scene to
include an added castle, or sea.

Figure 13 gives an example of generating a mountain panorama
from seven images, requiring extreme extrapolation. Starting from
the leftmost part, we extrapolate the image multiple times to the
right. In each step, after automatic graph matching, one candidate
image was manually selected for extrapolation from amongst the
top ten candidates.

Our work can also be used for image completion as well as ex-
trapolation. Given a hole to be filled (Figure 14), our system first



Figure 13: Panorama generated starting from the leftmost part.

(a) Original image (b) Input hole (c) Patch-based completion (e) Our results(d) Hays et al.

Figure 14: Image completion results. From left to right: (a) original image; (b) after users removal of an unwanted area; (c) content-aware
fill by Adobe Photoshop CS6; (d) fill using the method of Hays et al; (e) results from our method.

Figure 12: Automatic extrapolation results using the top match
rather than user selection. Left: our results; right: Sivic et al.’s
results.

analyzes the surrounding areas and builds a graph as for extrap-
olation. The extracted graph is then used to retrieve appropriate
library images for hole filling. After aligning the corresponding
regions, the hole is filled by finding an optimized seam and blend-
ing [Hays and Efros 2007]. Figure 14 compares our results with
those computed by Photoshop and Hays’ method. Photoshop uses
patch-based completion (see Figure 14(c)) which leads to signifi-
cant repetition. Hays’ method [Hays and Efros 2007], using a large
image library containing one million images, produces a result with
a noticeable change in vegetation (see Figure 14(d)). Our results
are shown in Figure 14(e). Plausible results are obtained, due to the
flexible graph matching strategy.

User Study. Since plausibility and aesthetics are subjective, we
conducted a two-phase user study to evaluate our algorithm for im-
age extrapolation. The first phase considers the realism of the pic-
tures generated by our method and an alternative approach. The

Input user guidances Extrapolation results

Figure 15: User guided image extrapolation. Left: input image
and user suggested content. Right: extrapolation result.

second provides a more direct comparison with existing work. The
60 extrapolation tasks mentioned before were used for this study,
computing output images using our algorithm and Sivic’s [2008].

In the first part of the user study, we prepared 80 images, 60 of them
randomly selected from the 60 pairs of synthesized images (one in
each pair being generated by our method and the other by Sivic’s
method), the others being real images.

40 subjects aged from 18 to 40 were hired to judge whether these
images were real. For those images they believed to be faked, they
were also given the option to indicate a rectangular region in the im-
age that looked inconsistent. On average, 53% of our results were
judged to be real while 24% of Sivic’s were. Even the real images
were sometimes considered to be fake; about 91% were recognized
as real.

In the second phase, 60 pairs of extrapolated images were displayed
horizontally to the subjects in random order. In each pair, one was
our result and the other was Sivic’s result. Subjects were required to
select the one they felt to be more real, allowing a direct comparison
of the two algorithms. Overall in 51 out of 60 pairs, our images
were considered to be better. In Figure 16, we show some typical
results in which our results were regarded as better or worse than
the competing method. More details of the user study are provided
in the supplementary material.

Limitations. Our approach has several limitations. Image extrap-
olation is a challenging task and we cannot produce meaningful
results in all cases, especially when essential content is lacking in
the library. Images with specific repetitive textures at the boundary
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Figure 16: Image extrapolation results generated from the same
input, using our method and Sivic et al.’s, for user study phase II.
Top: an example pair of images in which our result was regarded
as significantly better. Middle: a pair judged equally realistic. Bot-
tom: a case in which Sivic et al.’s method was considered to give
the better result.

Figure 17: Limitations.

are just one potential source of such problems. Next, the success
of our algorithm relies on analyzing distinct image regions in the
source image. Clutter or fine structure at the boundary may cause
matching failure. Enlarging the image library is likely to only be a
partial solution to this problem at best. A further issue is that source
and library region compatibility is inferred mainly from low-level
image descriptors, and these can lead to significant semantic mis-
match, such as objects with incompatible scales being juxtaposed
(see also [Hays and Efros 2007; Sivic et al. 2008]). The use of a
large feature vector helps to overcome this problem to a certain ex-
tent, but is not always successful. Typical limitations are shown in
Figure 17. On the left is an example with a specific structure (tree
trunks) for which no match can be found in the library, for extrap-
olation downwards. The example on the right shows that the scales
of images, in this case the sizes of people from different images,
may be incompatible, leading to implausible extrapolation results.

7 Conclusions

We have suggested a data-driven method for a challenging task—
extensively extrapolating an image. Our graph-based method can
automatically retrieve appropriate library images suitable as a ba-
sis for extrapolation with generally correct appearance; the follow-
ing extrapolation stage ensures boundary consistency in the result.
Various applications demonstrate the effectiveness and uses of the
proposed work.

Our method is among the first attempts to tackle this challenging
problem. Our results leave room for improvement, and we invite
other researchers to take up this challenge. Probably the major chal-
lenge is how to determine that large-scale structures in the image are
compatible. A result with a man and a mouse at the same size in
the image would be unacceptable—yet a man and tiger would not.
Careful analysis of textures at different scales or interactive image
segmentation [Liu and Yu 2012] may provide a possible approach
to tackling this problem.

Other, more immediate improvements are also potentially possi-
ble. We extrapolate the image in different directions sequentially.
A global rather than sequential approach would probably lead to
better results. Secondly, our current stitching algorithm aligns and
blends images, but it is still an open question how to seamlessly
blend images with subtle texture differences, even if they are se-
mantically compatible. Thirdly, graph-based matching and stitch-
ing are exploited in this work, but alternative fast retrieval methods
are also worth exploring. Finally, different feature vectors and re-
gion descriptors offer the possibility of more accurate retrieval.
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