
Inverse Image Editing: Recovering a Semantic Editing History from a
Before-and-After Image Pair

Shi-Min Hu1 Kun Xu1 Li-Qian Ma1 Bin Liu1 Bi-Ye Jiang1 Jue Wang2
1TNList, Tsinghua University, Beijing 2Adobe Research

afterbefore
Before-and-After Image Pair Recovered Editing History

scale the region copy, rotate and
 scale

adjust hue
Applications

re-edited image

Figure 1: Given a source image and an edited copy (left), our system automatically recovers a semantic editing history (middle), which
can be used for various applications, such as re-editing (right). In this case, the second editing step of the recovered history, involving hue
modification, is altered to change the berries to a difference color. Image courtesy of Andrea Lein.

Abstract

We study the problem of inverse image editing, which recovers a
semantically-meaningful editing history from a source image and
an edited copy. Our approach supports a wide range of commonly-
used editing operations such as cropping, object insertion and re-
moval, linear and non-linear color transformations, and spatially-
varying adjustment brushes. Given an input image pair, we first ap-
ply a dense correspondence method between them to match edited
image regions with their sources. For each edited region, we de-
termine geometric and semantic appearance operations that have
been applied. Finally, we compute an optimal editing path from
the region-level editing operations, based on predefined semantic
constraints. The recovered history can be used in various appli-
cations such as image re-editing, edit transfer, and image revision
control. A user study suggests that the editing histories generated
from our system are semantically comparable to the ones generated
by artists.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics editors; I.4.9 [Image Processing and Computer Vision]:
Applications

Keywords: image editing history, inverse image editing, history
recovery, region matching

Links: DL PDF WEB

1 Introduction

In image editing, a series of operations are often performed to ac-
complish an editing task. For instance, the user may first select an
object in the image, apply geometric transforms to adjust its shape
and position, and then apply various color adjustments to enhance
its appearance. This process is repeated if multiple image regions
need to be touched up to achieve an editing goal, resulting in a long
and sometimes complicated editing history.

Having a clean and complete editing history available is required
in many graphics and file management applications, such as image
editing revision control [Chen et al. 2011], automatic tutorial gen-
eration [Grabler et al. 2009] and editing visualization [Heer et al.
2008]. Retention of an editing history also leads to new possibil-
ities in image editing, such as: adjusting the history to produce
results with different variations from the source image; transferring
the history to another image, etc. These editing goals are much
harder to achieve without having the editing history.

Unfortunately, although existing software provides powerful edit-
ing tools, there is no universal, efficient solution to encode, store,
transmit and re-use an editing history. For instance, Adobe Photo-
shop 1 only allows a partial history to be saved in either the image
file or the command log file. It is often the case that a complete
history is not available after the editing task is accomplished. Fur-
thermore, image editing is a trial and error process especially for
amateurs. It can easily take dozens of operations to explore differ-
ent ideas, fix errors and fine tweak parameters before producing a
desired output. As a result, the raw editing history produced by a
novice user is often long, redundant, less understandable, and may
not be directly applicable in some applications that requires a clean
history.

In this work, we study the problem of recovering a clean and se-
mantically meaningful editing history given a source image and an
edited version, which we call inverse image editing. This task in-
volves several technical challenges. Firstly, we need to discover
which objects or regions have been edited. Secondly, we need to
determine how each object or region has been edited. Finally, a
semantically meaningful editing path needs to be generated from

1http://www.photoshop.com/

http://doi.acm.org/10.1145/2508363.2508371
http://portal.acm.org/ft_gateway.cfm?id=2508371&type=pdf
http://cg.cs.tsinghua.edu.cn/people/~kun/inverseedit/

recovered local editing operations. Our system provides a set of
solutions to these problems. In particular, we improve the state-of-
the-art region matching methods to handle large appearance differ-
ences between an original object and its edited version (see Sec. 4).
We propose new methods to recover semantic appearance operators
for each edited region (see Sec. 5), and then merge them to form a
meaningful editing path under predefined semantic constraints (see
Sec. 6). We also demonstrate how the recovered history can be ap-
plied to various applications (see Sec. 7).

It is impossible in practice to recover all editing operations that may
have been applied to an image. Our system supports a set of com-
monly used linear and non-linear geometric and color adjustments,
and arbitrary combinations of them. Specifically, each edit step may
contain (but not necessarily) the following operations: (1) select an
object (region); (2) apply a geometric transform that may involve
scaling, rotation, translation, and flipping; and (3) apply per-region
color adjustments that may involve brightness, exposure, hue, sat-
uration, and tone adjustments, with a spatially-varying per-pixel
strength map for simulating local paint brushes. These operators,
when stacked together, provide vast editing possibilities, and cover
many popular adjustment tools in modern image editing software.

To evaluate the proposed system, we construct a test dataset that
contains before-and-after image pairs, along with the original edit-
ing steps performed by artists. A user study on this dataset revealed
that the editing histories generated by our system are in general
comparable to the original ones in terms of semantic meaningful-
ness (see Sec. 8).

2 Related Work

Region matching between images. A core component of our sys-
tem is to build correspondences between regions in the original
and edited images. Sparse matching methods such as SIFT match-
ing [Lowe 2004] are not applicable, as dense correspondences
are required in our application. Conventional optical flow meth-
ods [Brox et al. 2009; Zimmer et al. 2011] cannot be applied either,
since an edited region may undergo large appearance transforma-
tions that violate the apparent motion assumption of optical flow.
The recent SIFT flow method [Liu et al. 2008] and the dual boot-
strap method [Yang et al. 2007] combine sparse features with dense
matching through a seed-and-grow scheme, but they still have dif-
ficulty in matching textureless objects where features are hard to
extract.

Recently, a family of patch-based fast image correspondence meth-
ods have been proposed. PatchMatch [Barnes et al. 2009] is a ran-
domized algorithm for finding approximate nearest neighbors be-
tween image patches; it has been further extended to include ge-
ometric and color transformations during matching [Barnes et al.
2010], or to find exact nearest patches [Xiao et al. 2011]. Built
upon the generalized PatchMatch algorithm [Barnes et al. 2010],
HaCohen et al. [2011] propose a non-rigid dense correspondence
(NRDC) algorithm for matching regions between images with
shared content. We adopt the framework of this algorithm and ex-
tend it for our application, as described in Sec.4.

Editing process management. Kurlander and Feiner [1988]
present an early work on generating editable graphical visualiza-
tions for long user sessions. More recently, Heer et al. [2008] pro-
pose a visualization system for interactively generating graphical
histories. Su et al. [2009] provide another interactive visualiza-
tion approach for managing operation histories for vector graphics.
Grabler et al. [2009] propose a system to automatically create step-
by-step, visually appealing tutorials of complicated image editing
processes. Chen et al. [2011] propose a nonlinear revision control

method for image editing, using a directed acyclic graph for man-
aging and visualizing the editing process. Chen et al. [2012] sug-
gest an adaptive history, which automatically segments and groups
a lengthy sequence of editing commands for easy navigation. The
Delta system [Kong et al. 2012] can help users identify the tradeoffs
between workflows using visual comparisons. All these systems re-
quire the editing process to be available. Fu et al. [2011] propose
a system to estimate a reasonable drawing order from a static line
drawing, which is in spirit similar to our proposed system, but is
limited to line art rather than natural images.

Edit transfer. Berthouzoz et al. [2011] propose content adaptive
macros to transfer complex image manipulations applied on source
images to new target images, by learning the relationships between
image features and the parameters of editing procedures. Similarly,
Bychkovsky et al. [2011] learn global tone adjustment models from
training images, which can then be automatically applied to new
images. Again, these systems require the editing procedure to be
known.

Image Analogies [Hertzmann et al. 2001] provides a classic exam-
ple of edit transfer without recovering the editing process. However,
it cannot handle geometric or object-level edits. The RepFinder
system [Cheng et al. 2010] finds repeated scene elements in an im-
age so that edits made to one element can be transferred to others.
As one of many applications, our recovered history from one im-
age pair can be applied to new images to achieve semantic editing
transfer. The ImageAdmixture system [Zhang et al. 2012] finds
object-level grouped elements in images, and allows object mix-
ing and appearance transferring between different images. Yücer
et al. [2012] propose transfusive image manipulation, an automatic
approach to transfer edits made to one image to others containing
the same object or scene.

3 Algorithm Overview

The pipeline of our algorithm is shown in Fig. 2. It consists of three
main steps: (1) region matching; (2) recovering semantic appear-
ance operators for each matched region pair; and (3) generating the
editing history.

Specifically, we first find all matched region pairs between
the source and edited images (Sec. 4). This is achieved by
using a matching method extended from the non-rigid-dense-
correspondence (NRDC) algorithm [HaCohen et al. 2011] to ac-
commodate a wider range of appearance difference between a pair
of regions. Secondly, we recover semantic appearance operations
for each matched region pair (Sec. 5), which may include both
global linear color transforms such as brightness, exposure, hue
and saturation adjustments, as well as non-linear tone mapping
and local brushes with spatially-varying strength. Finally, given
the matched region pairs and their recovered editing operations, we
use an optimization approach to generate a compact, semantically-
meaningful editing history, according to a set of predefined editing
rules (Sec. 6).

4 Region Matching

In the first step of the algorithm, we seek to reliably recover re-
gion pairs between the source and edited images that share the same
content. Comparing two matched regions gives us the means to dis-
cover whether the source region has been edited, and if so how. Our
region matching approach is extended from the NRDC [HaCohen
et al. 2011] algorithm to have better capabilities of handling large
appearance transforms.

Specifically, we adopt the coarse-to-fine framework in the original

Input

after-edit image

before-edit image

Matched Region Pairs Appearance Operators

Hue
Sat
Bri
Exp

Tone

Recovered Editing History

delete a fish

move and scale a fish and adjust brightness

adjust hue of the w
hole im

age

Hue
Sat
Bri
Exp

Tone

adjust hue

adjust hue and brightness

Figure 2: Pipeline of the proposed inverse image editing system.

NRDC approach, which initially downsamples the image to a low
resolution, finds matches, and uses them as constraints for finding
matches at the next finer resolution. At each level, the following
four steps are applied sequentially: (1)nearest neighbor search; (2)
patch merging; (3) color transform estimation; and (4) coarse-to-
fine propagation. After the above steps finish at the finest level, a
boundary refinement step is applied to produce an accurate bound-
ary for each matched region. Next we will describe these steps and
their differences from the original NRDC approach in more detail.

4.1 Nearest neighbor search

Given a source image A and an edited image A′, for each patch u′

in A′, our goal is to find the closest source patch u in A that mini-
mize a distance measure D(u, u′). A 4D geometric transformation
G (i.e. representing 2D translation, rotation, scaling, and flipping)
is used to represent the geometric relationship between u and u′.

The above problem can be efficiently solved by generalized Patch-
Match [Barnes et al. 2010], which we now briefly review. Initially,
a few random transformations are assigned to each patch. The al-
gorithm improves the transformations by iterating between a prop-
agation and a random search step. The propagation step proceeds
in scan-line order, replacing the transforms of each patch by that
of its neighbor if appropriate. In the random search step, each
patch randomly finds several transforms for further evaluation. The
transforms are randomly chosen from windows of exponentially de-
creasing sizes.

We utilize generalized PatchMatch, but improve upon it in sev-
eral ways. Firstly, like NRDC, we use floating-point coordinates
to support sub-pixel precision. Secondly, to account for cross-
channel color changes between patches, we define the matching
cost Dm(u→ u′) from patch u to patch u′ as:

Dm(u→ u′) = min
Cu

∥∥CuI(u)− I(u′)
∥∥
2
, (1)

where I(·) represents the color values of pixels in a patch. Cu

is a 3 × 3 color transform matrix, obtained by least square mini-
mization of the above equation. It accounts for cross-channel color
transforms such as a hue change. This measure, however, do not
work well with degenerated cases, e.g., a patch u′ with a uniform
color. Hence, we define the final distance between u′ and u to be:

D(u, u′) = max(Dm(u→ u′), Dm(u′ → u)). (2)

Thirdly, as done in the PatchMatch Stereo method [Bleyer et al.
2011], we add an additional local refinement step in each iteration.
In this step, for each patch, we locally optimize the stored geomet-
ric transforms using the gradient descent method to further reduce

the distance measure in Eqn. 2. This is because the 4D transforma-
tion space is too large for random search to efficiently find optimal
transforms.

4.2 Patch merging

After the best transform has been identified for each patch u′, adja-
cent patches which are consistent are merged into larger regions. To
achieve this we define the consistency error between two patches in
the edited image as:

∆(u′, v′) =
‖Gv(v′c)−Gu(v′c)‖2
‖Gu(u′c)−Gu(v′c)‖2

+ λ
∥∥(Cu − Cv) · I(u′)

∥∥
2
,

where u′, v′ represent two patches in A′ centered at u′c, v′c, respec-
tively, and (Gu, Cu) and (Gv, Cv) are estimated geometric and
color transforms of them. The two terms measure differences in
geometric and color transforms between u′ and v′ respectively, and
λ is a balancing weight which we fix at 0.1 when using normalized
color and spatial coordinates in [0, 1]. Note that the correspond-
ing definition in the NRDC approach [HaCohen et al. 2011] does
not include a color difference term, which is essential to distinguish
patches with only color transformation.

Next, we adopt a greedy scheme to merge neighboring patches
based on the proposed consistency error. Specifically, we randomly
select a patch, and greedily grow the region by merging it with its
neighboring patches whose consistency error with respect to the
selected patch is low (the threshold is 10), until no more neighbors
can be included. We then select another patch to start another grow-
ing process. Following NRDC, we prune regions that are too small
(less than 1% image size). This process results in a set of merged
regions in A′, each corresponds to a matched region in A.

4.3 Color transform estimation

For each matched region pair R and R′, we assume a per-region
cross-channel cubic color transform CR between them, along with
a per-pixel smoothly-varying strength map w. This allows us to
handle a rich set of possible color editing operations, including hue,
contrast, saturation, tone, and brightness adjustments. It is also im-
portant to note that introducing a spatially-varying strength map w
allows the system to support various paint brushes for local editing.
Mathematically the color transform is formulated as:

Im(p′) =w(p) ·
∑

i,j,k≥0;i+j+k≤3

ai,j,k,m(I0(p))i(I1(p))j(I2(p))k

+ (1− w(p)) · Im(p), m = 0, 1, 2; p ∈ R (3)

where p denotes a pixel in region R, and p′ is the corresponding
pixel in R′, Im(·) denotes the color value of the m-th channel of

(a) (b) (c) (d)
Figure 3: Boundary refinement for matched regions. (a,b) Source
and edited images. (c,d) Region matching results before and after
boundary refinement.

a pixel; ai,j,k,m are the coefficients of the per-region cross-channel
cubic color transformCR, andw(p) is the per-pixel editing strength
whose value is between 0 and 1.

An iterative optimization approach is applied to recover both the
per-region cross-channel cubic color transform CR, and the per-
pixel edit strength map w. We start with a constant strength map
w(p) = 1. At each iteration, we first fix w and obtain CR us-
ing a least square solver, by taking into account all pixels in two
matched regions. We then fix CR to recover w. We assume that
it varies very smoothly, and the values are roughly the same in a
small neighborhood such as a 7× 7 window. Hence, for each pixel
p, w(p) is also obtained using a least square solver, by taking into
account the neighboring pixels in a local 7× 7 window. In our im-
plementation, we find usually 3-5 iterations is usually enough to get
good estimates of both CR and w that are accurate enough for our
purposes.

4.4 Coarse-to-fine propagation

Similar to the NRDC approach, in our coarse-to-fine strategy, we
use the results obtained at the current level to constrain the solution
at the next level with a higher resolution. Specifically, for faster
convergence, the stored transform of a patch leading to a matched
region have its search space at the next level limited to be within a
small range (e.g. shift within 5 pixels; scale, rotation within 0.2)
of the final transform at the current level. Besides, the estimated
cross-channel cubic color transform CR of a region pair is applied
to reduce the appearance difference between the two regions, before
evaluating the distance (Eqn. 2) between patches.

4.5 Boundary refinement

Because we use patches of size 7 × 7 in the region matching pro-
cess, the boundary of each matched region is typically not located
accurately, as shown in the examples in Fig. 3. To further improve
the accuracy of region boundaries, we first over-segment both the
source and the edited images using the Mean Shift algorithm [Co-
maniciu and Meer 2002], and assume that each segment should be-
long to a single region based on color consistency. Hence, we check
each segment for conflict. If 80% of a segment is inside a matched
region or the unmatched region U (i.e. pixels not belonging to any
matched region), we assign the whole segment to the same region.

Next, in the edited image, we create a refinement band B′ around
each matched region R′ by expanding and shrinking its boundary
by 5 pixels, and then calculate an alpha matte in the refinement band
using an existing alpha matting technique [Levin et al. 2008]. Once
the alpha matte is computed, we also refine the transforms for pixels
in B′. We use a similar algorithm to that in Sec. 4.1 to propagate

the transforms from inside the regionR′ to the refinement bandB′,
the only difference being that we modify Eqn. 1 to use the alpha
values of pixels (αp) as weights in calculating patch distance:

Dm(u→ u′) = min
Cu

∑
p∈u

αp

∥∥CuI(p)− I(p′)
∥∥2 , (4)

where p is a pixel in u, and p′ is the corresponding pixel in u′. In
this way we avoid the influence of background colors when cal-
culating matching distances for patches in the foreground objects.
Examples of boundary refinement are shown in Fig. 3.

Finally, we remove those region pairs whose color and geomet-
ric transforms are both identity transforms (i.e. correspond to no
edit). The remaining matched region pairs will be used in subse-
quent steps for generating the editing history. Fig. 4 shows several
examples of the matched region pairs.

5 Semantic Appearance Operator Recovery

Recall that we use a per-region cross-channel cubic transform
(Eqn. 3) to describe appearance changes between a matched region
pair. Such a transformation is powerful for reconstruction, but lacks
semantic meanings. In this section we describe how to further re-
cover semantic editing operations from it.

A wide variety of global color and appearance adjustment tools ex-
ist in modern image editing software. By consulting profession-
als and studying representative software packages such as GIMP2 ,
Adobe Lightroom3 and Apple Aperture4 , we have identified five of
the most commonly used basic appearance operators: brightness,
exposure, hue, saturation, and non-linear tone curve adjustments.
Brightness and hue operators shift the values x of their correspond-
ing channels by a constant f , to x + f . Saturation and exposure
operators scale the value of each channel x to x · (1 + f). Inspired
by existing tone curve adjustment interfaces, we use a cubic spline
to represent a non-linear tone curve, parameterized by five control
points: (0, 0), (0.25, f1), (0.5, f2), (0.75, f3), (1, 1), where f1,
f2, f3 are three values in [0, 1]. In total, we have 7 parameters for
appearance editing (i.e. 1 each for brightness, exposure, hue and
saturation, 3 for the tone curve). Although this is a short list of ba-
sic operators, a wide range of adjustment effects can be achieved
by composing multiple operators. For instance, commonly used
contrast, shadow and highlight adjustments can all be achieved by
non-linear tone curve manipulation.

It is important to note that, besides the 7 per-region editing param-
eters, each pixel inside the region still maintains a per-pixel editing
strength w, such that: x′ = w · f(x) + (1−w) · x. This allows the
system to support local adjustment brushes with spatially-varying
strength. Similar to Sec. 4.3, we optimize the per-region parameters
and the per-pixel editing strength alternatively, as detailed below.

Parameter initialization. For initializing w, we use the editing
strength map obtained in Sec. 4.3. We then obtain the initial esti-
mations of per-region parameters by applying the following steps:

1. Convert images to HSV color space, and compute initial hue
and saturation parameters by subtracting the mean hue values
and dividing the mean saturation values of the two regions,
respectively.

2. Convert images to grayscale, and obtain initial brightness and
exposure parameters fb and fe by fitting a linear model x′ =

2http://www.gimp.org/
3http://www.adobe.com/products/photoshop-lightroom.html
4http://www.apple.com/aperture/

Figure 4: Matched region pairs. Left to right: original and edited images, and recovered matched region pairs. In the last example, the
recovered spatially varying strength maps are also shown.

brightness & exposure gamma hue & brightness hue & saturation & curve spatially varying adjustment

source image ground truth edited images

ground truth
recovered

tone curve recovered edited images

Figure 5: The accuracy of the appearance operator recovery. Top: ground truth edited images generated by changing: brightness and
exposure, gamma (tone) curve, hue and brightness, hue and saturation and tone curve, spatially varying adjustment of brightness and
exposure, respectively. Bottom: results rendered using recovered operators are visually indistinguishable from the ground truth. Errors in
estimated parameters are within 1%. Bottom-left: ground truth and recovered tone curves for the 4-th ”hue and saturation and tone curve”
example. Notice that in the rightmost example, spatially varying adjustments of brightness and exposure have been applied, and the ground
truth and recovered spatially-varying strength maps are shown in the top left corner of corresponding images, respectively.

fe · x + fb, where x and x′ are intensities of corresponding
pixels in the two regions.

3. After compensating for brightness and exposure differences,
use least square fitting to obtain initial tone curve parameters.

Parameter refinement. After initialization, we iteratively optimize
the per-pixel strength map w and the per-region parameters. we
first fix w and use a gradient descent method to search for optimal
parameter values, by minimizing the L2 color difference between
the two regions after applying the color adjustments. Since the pa-
rameters are also influenced by the order of operations, we assume
the following fixed order for color adjustments: (1) hue, (2) satura-
tion, (3) brightness, (4) exposure, (5) tone curve. Next, we fix the
per-region parameters and adjust w, using the same local constancy
assumption and least square solvers as described in Sec. 4.3. We
usually apply 5 iterations in this process.

Operation removal. After the above optimization process, we ex-
amine the parameter values to see if they are close to the default

values that correspond to no change. If some of them are, we then
assume that the corresponding edits have not been applied. We then
fix these parameters to their default values and re-apply the opti-
mization process to update others.

Fig. 5 shows some examples of recovered appearance operators. It
suggests that the recovered operators are accurate and can generate
high fidelity rendered results when compared with the ground truth
edited images. Fig. 6 gives another example on spatially varying
adjustment. From left to right, we give the source image, edited
image, and recovered per-pixel editing strength map. The result
suggests our method is robust to recover such edits. A more thor-
ough evaluation is presented in Sec. 8.

6 Recovering the Editing History

So far we have generated a list of matched region pairs, and appear-
ance and geometric transforms between each pair. We now explain
how to further process the matching result to generate a compact

source image edited image recovered strength map

Figure 6: Spatially varying adjustment example.

editing history.

6.1 Layered editing

Before introducing the proposed editing path recovery method, it is
important to note that our system intrinsically does layered editing,
where each pair of matched region is on a different layer. Note
that the same object in the source image A (denoted as O(A))
could match to multiple objects in the edited image A′ (denoted
as Oi(A

′)), often caused by cloning. In this case there will be mul-
tiple copies of O(A) and each one pairs with an Oi(A

′) and lives
in a different layer.

6.2 The optimal editing path

The problem of generating an editing path from matched regions
does not have a unique solution, as many different paths can lead
to the same editing result. To find a reasonable path, we first in-
troduce the concept of state. Formally, let the list of matched re-
gion pairs be {Rk

ck,gk−−−→ R′k} (1 ≤ k ≤ n, n is the number
of matches), where ck, gk denote the estimated per-region appear-
ance and geometric transforms between each pair. We denote the
state of each region Rk by the edits that have already been ap-
plied. Hence, the beginning state of an editing path is: Φstart =
{φ1 = (0, 0), φ2 = (0, 0), ..., φn = (0, 0)}, and the final state is:
Φend = {φ1 = (c1, g1), φ2 = (c2, g2), ..., φn = (cn, gn)}. Our
goal is to find a stack of editing steps that change the state from
Φstart to Φend.

In this framework, a single editing step involves selecting one,
or multiple spatially connected regions {Rj} simultaneously, and
modifying their states in the same way: φj = φj + (ce, ge) for all
j, where (ce, ge) indicates the particular operation applied. (ce, ge)
are not allowed to be both zero (i.e., no edit). Furthermore, ei-
ther ce or ge should satisfy the constraint that ce = cj − cnow

j or
ge = gj − gnow

j for at least one selected region Rj ; (cnow
j , gnow

j)
denotes the current state of region Rj . In other words, at least one
region reaches its final color or geometric transform in a single edit-
ing step. Given these constraints, at any step, the number of possi-
ble editing paths to be taken is limited. For example, given a region
R1 whose current state is φ1 = (0, 0), the allowed editing steps are
{(0, g1), (c1, 0), (c1, g1)}.

We also need to define semantically what is the optimal path from
Φstart to Φend. By consulting with experienced artists, we have
determined four principles that the majority of people agree:

1. Layers are edited in the coarse-to-fine order. Large, visually
dominant edits are applied before fine-tuning the appearance
of small objects;

2. If the same edits are applied on multiple objects, then they are
applied either together at once, or sequentially without inter-
ruption (temporal focus);

3. Nearby objects are edited sequentially before moving to far
away objects (spatial focus);

4. Downsampling is deferred as much as possible.

Specifically, Principle 2 and 3 reflects the spatio-temporal local
editing focus, meaning that the users are more likely to focus on the
same editing operations for a while before moving to other tools,
and focus on nearby objects in a local region first before moving to
far away ones.

Based on the above principles, we define the total editing cost as:∑
1≤i≤m

Ei + λp

∑
1≤i≤m−1

|ti+1 − t′i|, (5)

wherem is the number of editing steps,Ei denotes the cost of the i-
th editing step (to be explained next), and ti, t′i denote the centroids
of the selected region(s) of the i-th editing step before and after
applying the edits, respectively.

The first term is the summed cost of all editing steps, and the sec-
ond term measures the switching costs between adjacent editing
steps according to Principle 3 (i.e. |ti+1 − t′i| approximates the
spatial movement from the i-th step to the (i + 1)-th step). λp is a
controlling weight set at 0.5 in our experiments.

The cost of the i-th editing step Ei is defined as:

Ei =
√
‖Si‖ · (dc(i) + dg(i)) · (1 + λsi) · Pi, (6)

where Si = {Rj} denotes the selected region(s) of the i-th editing
step, ‖Si‖ is its size and

√
‖Si‖ is used to approximate its visual

dominance. dc(i) and dg(i) measure the amount of color and geo-
metric transforms applied in this step, their exact formulation will
be given later. λs is a constant set to 0.01 in our system. The term
(1 + λsi) has two purposes: (i) it penalizes longer editing paths: a
shorter path is preferred for the same result, and (ii) it favors edits
on dominant objects (i.e. ‖Si‖ is large) being applied earlier (i.e.
when i is smaller), thus satisfying Principle 1.

The final term Pi in Eqn. 6 penalizes for early down-sampling (sat-
isfying Principle 4). It is defined as the average scaling factor that
has already been applied:

Pi =

∑
j ‖Rj‖min(1/tscale(Rj), 1)∑

j ‖Rj‖
,

where j iterates over all selected regions in this editing step,
tscale(Rj) is the scale factor that has already been applied to that
region Rj . Note that we completely avoid enlarging after down-
sampling the same region, by setting Pi = +∞ for such edits.

Finally, the amount of color and geometric transforms dc(i) and
dg(i) in Eqn. 6 are defined as:

dc(i) =
∑
p∈Si

‖I(p′)− I(p)‖/(σc‖Rs‖),

dg(i) =
√
T 2
x + T 2

y /σxy + Trot/σrot + | log Tscale|/σscale,

where p is a pixel in Si and p′ is its corresponding pixel, and σc con-
trols the influence of the color transform. (Tx, Ty), Trot and Tscale

denote the average translation, rotation angle and scaling of the re-
gion, respectively. σxy, σrot and σscale are weights controlling the
influence of each term. In our system, the weights are empirically
set to σc = 1, σxy = 1, σrot = π, σscale = ln 3.

With above definitions, we seek the editing path from Φstart to
Φend with minimal total editing cost (as defined in Eqn. 5) among
all possible paths. This can be efficiently solved using dynamic
programming.

2: copy, move, scale, adjust hue1: adjust hue

1: move and scale

2: move and scale 3: adjust hue

4: adjust hue 5: move

1: move 3: move 6: move and rotate

2: copy and move 4: adjust hue 5: copy and rotate
source image edited image recovered editing history

Figure 7: Recovered editing histories from before-and-after image pairs.

6.3 Handling no-match regions

There may exist regions in both A and A′ that cannot find good
matches on the other image. This may be caused by operations such
as cropping, object insertion or removal. We first examine if the
edited image A′ has been derived from the original A by cropping,
by finding two bounding boxes B(A) an B(A′) containing all the
matched regions in A and A′, respectively. Cropping is identified
if B(A′) covers the entire image while B(A) covers only a portion
of it, and B(A) is treated as the cropping window.

We then look for object insertion and removal. An unmatched re-
gion in A′ may be the result of inserting an object into A, or re-
moving one from A and filling the hole using image completion
techniques. If the region is caused by image completion, then there
should be no obvious seams between the unmatched region and its
surrounding ones. Otherwise if the region is caused by inserting a
new object, then we expect the region to be surrounded by a strong
object boundary. We thus check how smooth the transition is be-
tween the region and its surroundings. Specifically, we check how
well the region boundary agrees with the over-segmentation bound-
aries obtained by the mean shift algorithm (see Sec. 4.5). If they
agree with each other well (e.g. there is more than 50% overlap),
this region is considered to be a newly inserted object. Otherwise
we further check the same region in A, and if the source region
is also an unmatched region, then we decide that the object in the
source region has been removed and the hole has been filled by im-
age completion techniques.

If such operations are identified, we incorporate them into the edit-
ing path computed in Sec. 6.2. Specifically, we add cropping and
object removal at the beginning of the history, and add object inser-
tion at the end of it to create a completed editing path.

7 Applications and Results

We have implemented our method on a PC with an Intel Xeon
2.4GHz CPU and 8GB memory. For an image of size 640×480, re-
gion matching takes 2–3 minutes, recovering appearance operators

1. Use the
‘move’ tool
 to relocate
 the tower.

2. Use the
‘scale’ tool
 to enlarge
 the gate.

3. Use the
‘color’ tool
 to adjust H
and L value
of tower top.

source image

edited image generated tutorial

Figure 8: Generating a tutorial from the recovered edit history.

takes about 10–15 seconds, depending on the number of regions
being edited, and finding the optimal editing path takes about 2–5
seconds.

Fig. 7 shows a number of input before-and-after image pairs and
the recovered editing histories using our approach. It suggests that
our system works reliably even for large geometric and appearance
transforms, and the appearance transform is allowed to be spatially
varying (e.g. the first example). Furthermore, the recovered editing
steps are semantically-meaningful, and can easily be used to drive
tools in image editing software. Note how the system generates a
compact and reasonable editing history for the 2nd and 3rd exam-
ples, from the low-level region matching results shown in the 3rd
and 4th rows of Fig. 4. Next, we illustrate how the recovered history
can be used in various applications.

Automatic tutorial generation. A straightforward application is to
use the recovered editing history to automatically generate an image
editing tutorial. Fig. 8 shows a simple example of turning the his-
tory into a step-by-step tutorial. Our method can be combined with

crop
and adjust hue

copy and move

source image A edited image A′ recovered editing history new source image B editing transfer result B′

Figure 10: Edit transfer. Given the image pair A and A′, we first recover the editing history (middle), then apply it to image B to generate a
result B′ in a similar way. Object segmentation in B is obtained by GrabCut.

source image edited images

recovered editing histories

adjust hue

hue

merged result

copy

copy
hue copy

Figure 11: Merging multiple editing paths from the same source image. The image on the right is rendered using the merged editing history.
Image courtesy of Flickr user Hans J E.

Figure 9: Image re-editing results generated from recovered edit-
ing histories (see original examples in Fig. 4 top right and the sec-
ond row of Fig. 7). Left: increasing (instead of decreasing in the
original edit) the brightness of the swan on the right. Right: the
first editing step (move and scale) is modified to only include move,
and the fifth editing step (move) is changed to removal.

more powerful tutorial generating systems [Grabler et al. 2009] to
produce more visually appealing results.

Re-editing. Users can modify the recovered history, e.g. to remove
steps, or change parameters of some steps, and re-apply the modi-
fied history to the source image A to generate a new edited image
A′′. Some examples are shown in Fig. 1 and Fig. 9. This is easier
than directly editing the original edited image A′ to achieve A′′,
as the user may have to carry out object selection and use other
editing tools again in the latter case; the user may also no longer re-
member the parameters for the parts of the edit which are to remain
unchanged.

Edit transfer. The recovered editing history from one pair of im-
ages can be transferred to a new image to achieve edit transfer. An
example is shown in Fig. 10, where the recovered editing history

from images A and A′ is applied to image B. To do this, we as-
sume that A and B have similar composition, so that objects in B
are roughly at the same locations as those in A. To automatically
extract the object mask inB, we first identify a rough bounding box
in B which is 1.5 times larger than the actual object bounding box
in A, then apply GrabCut [Rother et al. 2004] for segmentation.

Other dedicated approaches have already been proposed for edit
transfer, such as image analogies [Hertzmann et al. 2001] and
content-adaptive macros [Berthouzoz et al. 2011]. Compared to
image analogies, our method has more constraints on the input,
requiring similar composition of images A and B. However, on
the other hand, it is capable of object-level editing, and also han-
dles geometric editing such as cropping, which are clear advan-
tages over image analogies and other appearance-based transfer ap-
proaches. Content-adaptive macros requires the editing history to
be known, so our system can be potentially used to generate such
editing macros.

Merging editing paths. Our approach can be combined with the
image revision control system [Chen et al. 2011] to merge different
editing paths. An example is shown in Fig. 11, where our system
recovers multiple different editing paths and merges them to create
a single final rendering result.

8 Evaluation

To objectively evaluate the proposed system, we create an evalua-
tion dataset that contains 21 image editing examples produced by
several artists. To produce these examples, we explicitly explained
the range of supported operations to the artists and asked them to
perform editing using supported operations. The input images and
the performed editing paths were chosen or created by the artists

1 6 11 16 21
0

0.5

1

ours
equal
artist

Figure 12: Percentage in favor of our and artist generated edit
sequences.

without any supervision. We then selected 21 successful or moder-
ately successful examples out of 25 that we received from the artists
for user study. The original editing steps are recorded for all exam-
ples. We generate editing histories for all these examples using our
system, and compare them to the original ones.

We first evaluate the representation ability of the recover histories,
by measuring the PSNR values of the reconstructed edited images.
The average PSNR value of this dataset is 26.1dB, and the stan-
dard deviation is 6.2dB. Visually, there is no noticeable difference
between the reconstructed and the ground truth edited images for
most examples. These results suggest that our recovered histories
can faithfully reproduce the edited images in high fidelity.

Secondly, we conducted a qualitative evaluation on the seman-
tic meaningfulness of the recovered histories. We invited 30 par-
ticipants who are image editing enthusiasts and are familiar with
Adobe Photoshop to participate in the study. In each user session,
for each editing example, we first showed the before-and-after im-
age pair to the subject, followed by the two editing histories: the
original one and the recovered one. The display orders of the two
histories were randomly determined. Each history was illustrated as
an automatic slideshow, and the subject was allowed to switch back
and forth to see each step more clearly, and there is no time limit
in the study. After viewing a pair of editing histories, the subject
was then asked to judge which one is semantically more natural,
or they are about equal. The results of the user study are given in
Fig. 12. In total, our method achieved an averaged score of 0.45
(i.e. “ours is better”, “about equal”, “artist’s is better” are scored at
1, 0.5, and 0, respectively), and the one tail p-value is 0.039 5. This
study demonstrates that our recovered histories are comparable to
the original ones produced by artists in terms of semantic mean-
ingfulness. In 17 out of 21 examples (81.0%), a majority of users
rated that our recovered histories are equal or better than the orig-
inal ones. All examples used in the user study are included in the
supplemental material.

9 Limitations and Discussion

9.1 Failure cases

To better understand the limitation of the proposed system, we stud-
ied the low rating examples (e.g. the 2nd and 6th examples) in the
above user study to see why they are less successful. For the 2nd ex-
ample (top row in Fig. 13), although our recovered editing steps are
the same as that of the artist, participants rated it lower due to its vi-
sually noticeable reconstruction error. This is because the saturated
color values in the sun region lead to errors in the reconstructed
color transforms. For the 6th example (bottom row in Fig. 13), the

5This p-value measures the average scores of all examples, i.e. compute
averaged scores for each example, and measure the p-value of 21 scores.

original editing patch produced by the artist has a more natural spa-
tial layout (i.e. change the color of the leaves from bottom to top,
given the bottom one is visually more dominant), while our method
first edits the leaves in the middle since their regions are large (see
Eqn. 6). This example suggests that one could potentially use a bet-
ter algorithm to rank the visual dominance of different objects to
improve the semantic meaningfulness of the recovered history.

Our system can fail more dramatically when the individual tech-
nical components are incapable of handling more difficult cases.
Firstly, the region matching algorithm in Sec. 4 may fail in the fol-
lowing cases: (1) when the size of the matched regions is too small
to be classified as reliable; (2) when the applied geometry/color
transformations are too dramatic; and (3) when some regions are
purely textureless. Two such examples are shown in Fig. 14. In
the first row of Fig. 14, the matching of the head of giraffe failed
due to the large deformation. In the second row of Fig. 14, our re-
gion matching missed the left and right mushroom stems since they
are too thin. Secondly, appearance operations that cannot be well
approximated using the ones in Sec. 5 will lead to large reconstruc-
tion error when re-applying the history. Such an example is shown
in the third row of Fig. 14, where our method failed to recover the
complex appearance changes.

9.2 Supported operations

As discussed earlier, our system currently only supports a limited
range of operations. We believe that with dedicated solutions, other
editing operations could potentially be supported. For instance, to
support Gaussian blur, we can optionally add it as a new transform
dimension in the region matching step. By allowing a blurred re-
gion to match against multiple versions of the original image with
different amount of blur, we can match the blurred region to its
original sharp region, and at the same time produce an estimation
of the size of the blur. In the appearance operator recovery step,
we can first blur the source region using the recovered blur, then
downsize both regions to a lower resolution to remove the effect of
blurring for estimating other color operators. We implemented the
above procedure in the system and in Fig. 15, we provide an exam-
ple involving two operations: foreground move, and background
Gaussian blur. Our method successfully recovered both operations.

Other more complicated operations are not supported in our current
system, such as bilateral filtering, alpha matting, Poisson blending,
etc. In general, it is relatively easy to support global operations.
However, if the operation is “content aware”, i.e., the color of a
pixel is changed adaptively according to its local neighborhood ap-
pearance, such as bilateral filtering, then it is much harder to re-
cover. Nevertheless, we have demonstrated that our current system
is already widely useful as it supports a wide range of commonly
used editing operations.

10 Conclusion

We present a novel system for recovering a semantically meaning-
ful editing history from a source image and an edited version of
it. To achieve this, we use a dense correspondence method which
extends the NRDC approach to find all edited regions, and recov-
ers appearance operations applied to each region. From all possi-
ble edit paths, we recover an optimal one based on semantic con-
straints. Experimental and user study results show that our system
can recover clean and meaningful editing histories involving large
geometric and appearance transformations. We further show that
the recovered histories can be useful in a wide range of applica-
tions.

sp. vary. adjust brightness
copy and move

source image edited image our recovered history reconstructed image

adjust hue

adjust hue
adjust hue

adjust hue

sp. vary. adjust hue

adjust hue

adjust hue

source image edited image original history by artist our recovered history

Figure 13: Less successful examples. Top: noticeable color reconstruction error due to the saturated sun region. Bottom: the recovered
history has less ideal operation order compared with the original one. Image courtesy of Flickr user äquinoktium (top).

As future work, we would like to improve the robustness of the pro-
posed system, by replacing some technical components with newly
developed, more advanced methods. For example, we could po-
tentially improve the robustness of the region matching step by
using recently proposed higher-order deformation models [Yücer
et al. 2012], after obtaining the initial matching by our proposed
method. Another way to improve system robustness is to combine
our method with techniques proposed in previous photo manipula-
tion detection systems [O’Brien and Farid 2012; Kee et al. 2013].
We are also interested in combining our system with the work of
[Ma et al. 2013] to automatically generate change blindness im-
ages, and in extending our method to handle vector images [Lai
et al. 2009; Liao et al. 2012]. Another potential extension is to apply
our method to large image libraries [Hu et al. 2013], for analyzing
image correlations and/or dependencies within a large dataset.

Acknowlegements. We thank the anonymous reviewers for their
valuable comments. This work was supported by National Ba-
sic Research Project of China (2011CB302205), Natural Sci-
ence Foundation of China (61120106007 and 61170153), National
High Technology Research and Development Program of China
(2012AA011802), PCSIRT and Tsinghua University Initiative Sci-
entific Research Program.

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Trans. Graph. 28,
3, 24:1–24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized patchmatch correspondence
algorithm. In Proc. of ECCV, 29–43.

BERTHOUZOZ, F., LI, W., DONTCHEVA, M., AND AGRAWALA,
M. 2011. A framework for content-adaptive photo manipulation
macros: Application to face, landscape, and global manipula-
tions. ACM Trans. Graph. 30, 5, 120:1–120:14.

BLEYER, M., RHEMANN, C., AND ROTHER, C. 2011. Patch-
match stereo - stereo matching with slanted support windows. In
Proceedings of the British Machine Vision Conference, 14.1 –
14.11.

BROX, T., BREGLER, C., AND MALIK, J. 2009. Large displace-
ment optical flow. In Proc. of CVPR, 41 –48.

BYCHKOVSKY, V., PARIS, S., CHAN, E., AND DURAND, F. 2011.
Learning photographic global tonal adjustment with a database
of input / output image pairs. In Proc. of CVPR, 97–104.

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Trans. Graph. 30, 4, 105:1–
105:10.

CHEN, H.-T., WEI, L.-Y., HARTMANN, B., AND AGRAWALA,
M. 2012. Data-driven adaptive history for image editing. Tech-
nical Report.

CHENG, M.-M., ZHANG, F.-L., MITRA, N. J., HUANG, X., AND
HU, S.-M. 2010. Repfinder: finding approximately repeated
scene elements for image editing. ACM Trans. Graph. 29 (July),
83:1–83:8.

COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust
approach toward feature space analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 24, 5, 603–619.

FU, H., ZHOU, S., LIU, L., AND MITRA, N. J. 2011. Animated
construction of line drawings. ACM Trans. Graph. 30, 6 (Dec.),
133:1–133:10.

GRABLER, F., AGRAWALA, M., LI, W., DONTCHEVA, M., AND
IGARASHI, T. 2009. Generating photo manipulation tutorials by
demonstration. ACM Trans. Graph. 28, 3 (July), 66:1–66:9.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2011. Non-rigid dense correspondence with
applications for image enhancement. ACM Trans. Graph. 30, 4,
70:1–70:10.

HEER, J., MACKINLAY, J., STOLTE, C., AND AGRAWALA, M.
2008. Graphical histories for visualization: Supporting analysis,
communication, and evaluation. IEEE Transactions on Visual-
ization and Computer Graphics 14, 6, 1189–1196.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proc. of Sig-
graph, 327–340.

HU, S.-M., CHEN, T., XU, K., CHENG, M.-M., AND MARTIN,
R. R. 2013. Internet visual media processing: a survey with
graphics and vision applications. The Visual Computer 29, 5,
393–405.

source image edited image reconstructed image

Figure 14: Failure examples due to large geometric deformation
(top), small image structures (middle) and complex color change
(bottom). Image courtesy of Flickr user Michael Li (third row).

1: move

2: Gaussian
blur

source image edited image recovered history

Figure 15: A gaussian blur example. Image courtesy of Flickr user
LarryBiker.

KEE, E., O’BRIEN, J., AND FARID, H. 2013. Exposing photo
manipulation with inconsistent shadows. ACM Transactions on
Graphics 32, 3, 28:1–28:12.

KONG, N., GROSSMAN, T., HARTMANN, B., AGRAWALA, M.,
AND FITZMAURICE, G. W. 2012. Delta: a tool for representing
and comparing workflows. In Proc. of CHI, 1027–1036.

KURLANDER, D., AND FEINER, S. 1988. Editable graphical his-
tories. In IEEE Workshop on Visual Languages, 127–134.

LAI, Y.-K., HU, S.-M., AND MARTIN, R. R. 2009. Auto-
matic and topology-preserving gradient mesh generation for im-
age vectorization. ACM Trans. Graph. 28, 3, 85:1–85:8.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2008. A closed-
form solution to natural image matting. IEEE Trans. Pattern
Anal. Mach. Intell. 30, 2, 228–242.

LIAO, Z., HOPPE, H., FORSYTH, D., AND YU, Y. 2012. A
subdivision-based representation for vector image editing. IEEE

Transactions on Visualization and Computer Graphics 18, 11,
1858–1867.

LIU, C., YUEN, J., TORRALBA, A., SIVIC, J., AND FREEMAN,
W. T. 2008. Sift flow: Dense correspondence across different
scenes. In Proc. of ECCV, 28–42.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2, 91–110.

MA, L.-Q., XU, K., WONG, T.-T., JIANG, B.-Y., AND HU, S.-
M. 2013. Change blindness images. IEEE Transactions on
Visualization and Computer Graphics, to appear.

O’BRIEN, J. F., AND FARID, H. 2012. Exposing photo manipula-
tion with inconsistent reflections. ACM Transactions on Graph-
ics 31, 1, 4:1–4:11.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. ”grab-
cut”: interactive foreground extraction using iterated graph cuts.
ACM Trans. Graph. 23, 3, 309–314.

SU, S. L., PARIS, S., ALIAGA, F., SCULL, C., JOHNSON, S.,
AND DURAND, F. 2009. Interactive visual histories for vector
graphics. Tech Report, MIT-CSAIL-TR-2009-031.

XIAO, C., LIU, M., YONGWEI, N., AND DONG, Z. 2011. Fast
exact nearest patch matching for patch-based image editing and
processing. IEEE Transactions on Visualization and Computer
Graphics 17, 8, 1122–1134.

YANG, G., STEWART, C., SOFKA, M., AND TSAI, C.-L. 2007.
Registration of challenging image pairs: Initialization, estima-
tion, and decision. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29, 11, 1973–1989.

YÜCER, K., JACOBSON, A., HORNUNG, A., AND SORKINE, O.
2012. Transfusive image manipulation. ACM Trans. Graph. 31,
6, 176:1–176:9.

ZHANG, F.-L., CHENG, M.-M., JIA, J., AND HU, S.-M.
2012. Imageadmixture: Putting together dissimilar objects from
groups. IEEE Transactions on Visualization and Computer
Graphics 18, 11, 1849–1857.

ZIMMER, H., BRUHN, A., AND WEICKERT, J. 2011. Optic flow
in harmony. Int. J. Comput. Vision 93, 3, 368–388.

