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Abstract This paper introduces Jittor, a fully just-in-time (JIT) co mpiled deep learning framework. With
JIT compilation, we can achieve higher performance while ma king systems highly customizable. Jittor
provides classes of Numpy-like operators, which we call met a-operators. A deep learning model built upon
these meta-operators is compiled into high-performance CP U or GPU code in real-time. To manage meta-
operators, Jittor uses a highly optimized way of executing c omputation graphs, which we call uni�ed graph
execution. This approach is as easy to use as dynamic graph ex ecution yet has the e�ciency of static graph
execution. It also provides other improvements, including operator fusion, cross iteration fusion, and uni�ed
memory.
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1 Introduction

In recent years, deep learning has developed rapidly. With big data science, deep learning has become
a new paradigm for scienti�c research and engineering applications.As deep learning algorithms are
typically complicated to implement, various deep learning libraries and frameworks have been developed,
to provide researchers and developers with convenient ways to rapidly develop deep learning systems. The
�rst of these was Torch, a modular machine learning software library [1]. In 2008, the MILA Laboratory
of Montreal University, led by Yoshua Bengio, announced the Theano deep learning framework [2]. Its
conceptual organisation has been adopted by subsequent deep learning frameworks. Python is used as a
front-end language, while C, CUDA and other languages are used asback-end languages for acceleration,
and computational graphs (also called data
ow graphs) provide a bridge between them. Later, several
other frameworks were proposed, including Ca�e [3], TensorFlow [4],and PyTorch [5]. Theano ceased to
be maintained in 2017, and Ca�e was merged with PyTorch in 2018. Thus, TensorFlow and PyTorch are
the two main current frameworks used for deep learning; about 70% of CVPR 2020 deep learning papers
used PyTorch.

Over time, these frameworks have evolved to provide many new features, which have become very
popular and been widely used. These include hardware acceleration,automatic di�erentiation, dynamic
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binding, and eager execution. These features make the framework easier to use, or give it better per-
formance. In particular, just-in-time (JIT) compilation is a new dire ction for deep learning frameworks,
which is gradually becoming popular. TensorFlow provides an experimental back-end, XLA, which ut-
lizes JIT compilation for acceleration. PyTorch also comes with JIT suites for industrial deployment
and execution without the Python environment. There are also many compilers and libraries for JIT
compilation, such as Intel's nGraph [6], Nvidia's TensorRT, JAX [7], and TVM [8], which can help users
to easily develop fast kernels. JIT compilation technology not only improves the performance of deep
learning frameworks, but can also make them easier to use. Thus Jittor, the new deep learning framework
proposed in this paper, is fully JIT compilation based: all source codeof Jittor is compiled at run-time
for a better experience.

To support a variety of complicated deep learning tasks, computational graphs are widely used in
deep learning frameworks. Each edge of a computational graph represents a dependency, and each node
represents an operator; di�erent tasks require di�erent operators. Deep learning frameworks usually
provide a wide selection of operators to support various tasks. This makes it easy for users to readily
build learning models based on operators. However, from the perspective of the framework developer, it
is tedious and di�cult to ensure good performance for a large number of operators. From the perspective
of the user, operators that are not well-optimized cause performance degradation. We thus propose
a solution, via the concept of meta-operators and a fusion mechanism. Meta-operators are general
operators, which can be thought of as classes of specialized operators, whose common properties allow
the specialized operators to be optimized in a similar way. Operator fusion allows the combination of
multiple operators into a single operator, with the advantage that intermediate results do not need to be
stored in memory. Jittor has 3 types of meta-operators, which contain a total of 18 specialized operators.
Many common deep learning operators, such as convolution and deconvolution, can be fused by use of
these meta-operators. We only need to optimize the meta-operators and fusion strategy, to allow all
computations built upon them to be uniformly optimized for better pe rformance.

To train a deep learning model, back-propagation algorithms are typically used; the gradient of the
training loss is propagated backwards to the parameters of the model. Each forward operator of the
model requires a corresponding backward operator to back-propagating the gradient. Our meta-operators
possess the useful property of backward closure, which means that backward propagation of a meta-
operator is still a meta-operator. Fused operators for deep learning also have backward closure. The
backward closure property furthermore allows for the use of higher order derivatives in back-propagation,
resulting in faster model convergence.

The computational graph is the basic data structure in a deep learning framework. It can be static or
dynamic. In the former case, the graph is �rst built, then executed, while in the latter case, the graph is
built on the 
y, as it is executed. TensorFlow 1.0 uses static graph execution, which is e�cient and easy to
optimize and deploy, but in
exible when changes to the graph are needed during execution or debugging
is to be carried out. PyTorch instead utilizes dynamic graph execution, which allows modi�cation during
execution. This is more convenient for users, but is ine�cient when training, and unsuited to reasoning
about deep learning. We propose a new approach to computationalgraphs execution, which we call
uni�ed graph execution. It combines aspects of both static and dynamic graph execution, leading to
both 
exibility and e�ciency. In detail, uni�ed graph execution splits t he computational graph into
multiple sub-graphs. For each sub-graph, static graph executionis used, while for the global graph,
dynamic execution is used.

The rest of this paper is organized as follows. Section 2 considers design principles and the architecture
of Jittor. The front-end of Jittor, including meta-operators, th eir fusion and their back-propagation, is
considered in Section 3. The back-end of Jittor, including the JIT compiler and uni�ed graph execution
is discussed in Section 4. Section 5 compares Jittor and PyTorch, both for inferencing, and for training
a generative adversarial network. Section 6 gives a conclusion anddiscusses future work.
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Figure 1 Jittor in use.

2 Design principles and architecture of Jittor

The development of deep learning frameworks revolves around improving human productivity and com-
putational performance. To achieve good performance from modern processors, developers often need to
write assembly language, use special instruction sets, or use specialised languages or libraries, such as
shaders for GPU programming, CUDA [9], and OpenCL [10]. Although these provide excellent perfor-
mance, they are di�cult to use and debug, and furthermore, programmers need a good understanding
of the underlying hardware. Scripting languages such as Python and JavaScript are interpreted, giving
immediate feedback, further reducing the di�culty of programming , but this sacri�ces performance.

To simultaneously improve productivity and performance, various scienti�c computing libraries and
deep learning frameworks have been developed. A widely used optimization method is static compilation
with dynamic binding. This optimization method uses C, C ++, CUDA [9], or other languages to
statically compile the operators needed in deep learning, while the user dynamically applies them via
scripting languages such as Python and Javascript. Many frameworks adopt this approach, including
Numpy [11], Matlab, Theano [2], TensorFlow [4], MXNet [12], and PyTorch [5].

Dynamic binding allows users to take full advantage of the underlyinghardware performance when
using a scripting language, but it has a problem: all operations are statically compiled, making optimiza-
tions such as operator fusion di�cult; this important optimization te chnique combines multiple operators
into one operator, so that intermediate results do not need to be stored. Dynamic binding with a scripting
language cannot use this optimization. For example, the user may need to calculated = ab+ c, where a,
b, c are tensors. First, the scripting interpreter executestmp = TensorMul(a,b) and then executesd =
TensorAdd(tmp,c) . If we could compile the whole expression, rather than applying operators one by one,
we could executed = TensorMulAndAdd(a,b,c) directly without the need for temporary storage. This is
signi�cant, as on modern processors, memory access is often much slower than calculation. However, we
cannot guess what combinations of operators the user may require, and static compilation of all possible
combinations is obviously infeasible. To solve this problem, we may use JIT compilation technology to
dynamically compile and optimize the operators that the user needs.

Jittor is a completely new design of deep learning framework based onJIT compilation technology.
Following the above discussion, Jittor is designed based on the following principles.

� It should be highly customizable yet easy to use. Users should be ableto de�ne new operators and
models with just a few lines of code.

� It should separate coding from optimization. Users should be able tofocus on coding using the
front-end interface, while the code is automatically optimized by theback-end. This improves readability
of the front-end code, while well-tested, standard optimization code in the back-end ensures robustness.

� Everything should be compiled JIT. This includes the back-end and operations. Users should be able
to change the source code at any time.

An overview of an application built with Jittor is provided in Figure 1. It h as four layers, the middle
two being provided by Jittor.
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(1) Application layer. This layer is coded by the user in Python, using interfaces exposed by the
front-end layer.

(2) Jittor front-end. This layer is written in Python. All interfaces in this layer are visible to users. It
provides the meta-operator interface, allows manipulation of Jittor variables, and implements common
models. See Section 3 for more details.

(3) Jittor back-end. This layer provides interface support to the front-end layer, and also manages the
underlying hardware resources. It contains many modules, such as the operator fuser, which is used to
dynamically fuse operators for improving performance. Third party operators provided by libraries such
as CuDNN [13] and MKL can also be incorporated; the user can also de�ne their own operators. It also
includes the JIT compiler and the uni�ed computational graph. See Section 4 for more details.

(4) Hardware. The back-end layer communicates with this layer forhardware acceleration. The current
accelerator supports CPU and GPU hardware.

Our uni�ed graph execution allows operators to be generated and automatic di�erentiation to be
performed on the 
y, as for a dynamic graph. The graph is cut into multiple static sub-graphs for op-
timization. The system also uniformly manages a variety of resources, such as forward and backward
propagation operators, and computation graphs used in multiple iterations, allowing shared optimiza-
tions between these resources. For example, this permits optimization across successive iterations. This
approach provides increased opportunities for operator fusion.It also uniformly manages CPU and GPU
memory, swapping GPU memory into CPU memory when the former is insu�cient. It schedules syn-
chronous and asynchronous operations to ensure data consistency while allowing data reading, memory
copying, and concurrent computing. Meta-operators called by Python are compiled into high-performance
C++ or CUDA code. The JIT compiler is compatible with LLVM [14] and aut omatically optimizes the
underlying source code.

3 The front-end

The front-end represents that part of Jittor which is visible to users. It is fully implemented in Python. It
provides an interface to the meta-operators, commonly used layers and models, and allows manipulation
of Jittor variables. We �rst explain the meta-operators in detail in S ubsection 3.1. Then, we describe
how variables and data are manipulated inside Jittor in Subsection 3.4.Finally, we give an example in
Subsection 3.5 to illustrate the overall front-end interface.

3.1 Meta-operators

Meta-operators are a key concept in Jittor. In this subsection, we explain the concept of meta-operators,
and how they may be fused and back-propagated. They allow easy development of operators by the user
(a customized convolution example shown in Subsection 3.2 requires only 11 lines of code) while their
uniformity ensures that the JIT compilation can perform optimizatio n.

A meta-operator is a general operator, which when specialized gives a class of operators with common
properties that make them particularly amenable to optimization. Deep learning frameworks usually
provide many operators to make it easy for users to build learning models. In fact, many of them do similar
things, and can be expressed as specializations of more general higher-level operators. In particular,
reindex is a very useful meta-operator which provides an arbitrary one-to-many mapping between its
input and output. Various specialized operators such as broadcast, pad, and slice are particular forms
of this operator, and belong to the reindex operator class. Another important meta-operator is reindex-
reduce, which provides a many-to-one mapping. Sum and product are particular examples of reindex-
reduce operators. The third meta-operator class comprises element-wise operators. Each has one or more
matrix inputs, which should all have the same shape; the output matrix also has this shape. Results are
computed element by element. Matrix addition is an example of a binaryelement-wise operator.

These meta-operator classes are shown in Figure 2, which also shows how Jittor provides common,
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Figure 2 Building models from meta-operators. Operators from the th ree meta-operator classes, reindex, reindex-reduce,
and element-wise, are fused to provide other common deep lea rning operators, which in turn are used to build the model.
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Figure 3 Three examples of di�erent types of meta-operators. (a) The broadcast operator belongs to reindex type meta-
operators. Each element of the operator's input vector will be broadcast to its corresponding row of output matrix. (b)
The sum operator belongs to reindex-reduce type meta-opera tors. Each row of the operator's input matrix will be sum into
its corresponding element of output vector. (c) The add oper ator belongs to element-wise operators.

higher-level, deep learning operators (e.g., convolution, normalization, and pooling), by fusing meta-
operators.

In detail reindex, reindex-reduce and element-wise operators work as follows:
(1) Reindex. The interface of the reindex operator is de�ned as

reindex(I; SO ; f ) ! O;

where I represents anN -dimensional input tensor, its input shape is de�ned asSI , and its n-th index is
de�ned as i n 2 0; : : : ; SI m � 1. SO represents the shape of anM -dimensional output tensor O. Its m-th
index is de�ned as om 2 0; : : : ; SOn � 1. Any N -dimensional tensorT has a total QT elements given by
QT = ST1 ST2 � � � STN . To locate a certain elementTt 1 ;:::;t N , a tuple of indices (t1; : : : ; tN ) is required.
The function f : (o1; : : : ; oM ) ! (i 1; : : : ; i N ) maps a tuple of output indexes (o1; : : : ; oM ) to a tuple of
input indexes (i 1; : : : ; i N ). The reindex operator returns an output tensor O with given shape SO . Each
element of output tensor Oo1 ;:::;o M is given by

Oo1 ;:::;o M = I i 1 ;:::;i N :

In short, the reindex operator rearranges the input and storesit in appropriate positions of the output.
Index bounds checking is also performed based on the indexing function.

For example, with suitable choice off , the reindex meta-operator constitutes a broadcast operator.
In Figure 3, a 1-D vector is broadcast into a 2-D matrix. Here, the input dimension N = 1, the output
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dimensionM = 2, and f : (o1; o2) ! (o1), where i 1 is de�ned as o1 in this mapping function. The output
matrix is thus determined by Oo1 ;o2 = I o1 ; in other words, the operator performs broadcast by row.

(2) Reindex-reduce. The interface of the reindex-reduce operator is de�ned as

reindex reduce(I; SO ; f ) ! O:

Arguments I and SO have similar meanings to those for reindex. In this case,I is anN -dimensional tensor
and O is anM -dimensional tensor. Then-th index of I is de�ned asi n 2 X n , X n = 0 ; : : : ; SI n � 1. The m-
th index of O is de�ned as om 2 Ym , Ym = 0 ; : : : ; SOm � 1. The function f : (i 1; : : : ; i N ) ! (o1; : : : ; oM )
maps a tuple of input indexes (i 1; : : : ; i N ) to a tuple of output indexes (o1; : : : ; oM ). The operation of a
reindex-reduce operator is given by

Oo1 ;:::;o M =
X

( i 1 ;:::;i N )2 X 1 ����� X N ^ f ( i 1 ;:::;i N )=( o1 ;:::;o M )

I i 1 ;:::;i N :

For example, by suitably specifying f , the reindex-reduce operator can sum a 2-D matrix into a 1-D
vector as shown in Figure 3. Here, input dimensionN = 2, output dimension M = 1, and f (i 1; i 2) = i 1.
The output matrix is given by: Oo1 =

P
f ( i 1 ;i 2 )= o1

I i 1 ;i 2 , soOo1 =
P

I o1 ;i 2 . This is the common operator
that sums rows of a matrix to give a vector of sums.

(3) Element-wise operators. Element-wise operators may be unary (e.g., unary minus), binary
(e.g., + � �� ), or ternary (e.g., if-a-then-b-else-c). All input tensors must have the same shape, which is
also the shape of the output tensor. Each element of the output tensor is calculated using corresponding
elements in the same position in the input tensor(s).

3.2 Fusion of operators

In this subsection, we now explain fusion of operators from the meta-operator classes, using an example
of computing a convolution.

Listing 1 shows how a convolution operator can be implemented in terms of meta-operators. A general
reindex meta-operator is used, in addition to specialised broadcastand sum operators.

Listing 1 Python implementation of convolution using three operator s: reindex, broadcast, and sum

1: def conv(x, p):
2: N,C,H,W = x.shape
3: o,i,h,w = p.shape
4: xx = x.reindex(
5: shape=(N,o,H,W,i,h,w),
6: indices=("i0", "i4", "i2-i5", "i3-i6")
7: )
8: pp = p.broadcast(xx.shape, dims=(0,2,3))
9: yy = xx*pp

10: y = yy.sum(dims=(4,5,6))
11: return y

Line 1 shows thatconv takes two arguments: x is an image tensor, andp is a parameter tensor. Lines 2
and 3 unpack information about the shapes of the parameters. The layout of the image tensorx is:
number of batches (N), number of channels (C), image height (H), and image width (W). The layout of the
parameter tensorp is: number of output channels (o), number of input channels (i ), kernel height (h),
and kernel width (w). Lines 4{7 call the reindex operator with input tensor x and output tensor xx. The
result is:

xx(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ) = x(i0 ; i4 ; i2 { i5 ; i3 { i6 ): (1)

Line 8 broadcasts the parameter tensorp to output tensor pp, with the same shape asxx. The
broadcast operator is a specialization of the reindex operator, equivalent to pp = p.reindex(x.shape,
indices=(i1,i4,i5,i6)) . The result of this broadcast operator is

pp(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ) = p(i1 ; i4 ; i5 ; i6 ):
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Line 9 performs element-wise multiplication with result

yy(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ) = xx(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ) pp(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ):

Line 10 uses a sum operator, a specialization of reindex-reduce, tocompute

y(i0 ; i1 ; i2 ; i3 ) =
X

i4 ;i5 ;i6

yy(i0 ; i1 ; i2 ; i3 ; i4 ; i5 ; i6 ):

The above example shows how a convolution can be implemented in terms of 4 calls to meta-operators.
Jittor is able to fuse these 4 meta-operators into a single operator, such that intermediate variables xx,
pp, yy do not need to actually be calculated. Fusing all 4 meta-operators leads to the �nal expression:

y(i0 ; i1 ; i2 ; i3 ) =
X

i4 ;i5 ;i6

x(i0 ; i4 ; i2 { i5 ; i3 { i6 ) p(i1 ; i4 ; i5 ; i6 ):

In a similar way, meta-operators can also be used to implement various convolution variants, such as
dilation convolution and group convolution.

3.3 Back-propagation of meta-operators

Back-propagation [15] is the foundation of neural network training, where errors in predictions are prop-
agated back to their sources to adjust the parameters of the model. In this subsection, we explain the
back-propagation mechanism for meta-operators, and backward closure.

During back-propagation, we need to do the following. Given an operator f (x) = y, and an error
ey in the output, we need to calculate the corresponding errorex in the input. This is done via the
corresponding backward operator: g(x; ey ) = ex . To �nd g, we need to calculate the gradient of the
whole model. The chain rule is applied and each operator in the forwarddata
ow graph is mapped to
its gradient operator, where overall we have

f (x) = y )
backward

ex = g(x; ey ) = f 0(x) ey : (2)

Backward closure is an important property provided by our meta-operators. A set B of operators is
said to have backward closure if the backward operator of each operator in B is also in B . Backward
closure is especially important in training, when back-propagation is performed using a series of backward
operators of the model. If backward operators of those used in the model are unavailable, it will not be
possible to propagate the gradients back through the model. Normally, the user thus needs to implement
corresponding backward operators. With backward closure, however, derivatives, including higher-order
derivatives, can be determined automatically, saving manual e�ort.

Backpropagation of the reindex and reindex-reduce operators isperformed as follows. Letx be the
input and Sx be the shape ofx, and y be the output and Sy be the shape ofy. Let ey be the output
error to be back-propagated, andf be the index mapping function. From Eq. (2), and noting that the
reindex-reduce operator is the backward operator of the reindex operator, we have

y = reindex( x; Sy ; f ) )
backward

ex = reindex reduce(ey ; Sx ; f ): (3)

Similarly, the reindex operator is the backward operator of the reindex-reduce operator:

y = reindex reduce(x; Sy ; f ) )
backward

ex = reindex( ey ; Sx ; f ): (4)

The backward operator of an element-wise operator is still an element-wise operator. For example, for
the operator f (x) = x2, the corresponding backward operator isg(x; ey ) = f 0(x)ey = 2 xey .

Thus all of our meta-operators are inside a backward closure. Withbackward closure, forward and
backward operators can be handled in the same way during uni�ed graph execution, allowing more
opportunities for operator fusion and optimization.
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Figure 4 (Color online) Automatic di�erentiation of a convolution o perator implemented using meta-operators.

Let us return to our forward convolution example given earlier in Listing 1, shown again in Figure 4.
It consists of four meta-operators, reindex, broadcast, multiplication and sum. We also show the corre-
sponding backward operation. The sum operator (green box) is replaced by the broadcast operator (red
box). erry is back-propagated toeyy by the broadcast operator. The corresponding formulation of the
broadcast operator is

yi 0;i 1;i 2;i 3 =
X

i 4;i 5;i 6

yyi 0;i 1;i 2;i 3;i 4;i 5;i 6 )
backward

eyy i 0;i 1;i 2;i 3;i 4;i 5;i 6 = ey i 0;i 1;i 2;i 3: (5)

Because Figure 4 only shows error propagation from output to parameters, error propagation to the
input data is omitted. The back-propagation path does not pass through the reindex operator, so the
reindexing operator in forward graph is duplicated directly in the backward graph.

The backward operator corresponding to the element-wise multiplication operator is

yy = xx pp )
backward

epp = xx eyy : (6)

The broadcast operator in the forward graph becomes a sum operator in the backward graph, as
follows:

ppi 0;i 1;i 2;i 3;i 4;i 5;i 6 = pi 1;i 4;i 5;i 6 )
backward

ep i 1;i 4;i 5;i 6 =
X

i 0;i 2;i 3;i 4

epp i 0;i 1;i 2;i 3;i 4;i 5;i 6 : (7)

Combining Eqs. (1), (5){(7), the fused backward convolution operation is given by

yi 0;i 1;i 2;i 3 =
X

i 4;i 5;i 6

xi 0;i 4;i 2� i 5;i 3� i 6 pi 1;i 4;i 5;i 6 )
backward

ey i 0;i 1;i 2;i 3 =
X

i 0;i 2;i 3;i 4

xi 0;i 4;i 2� i 5;i 3� i 6 ep i 1;i 4;i 5;i 6: (8)

3.4 Variables

Variables are the basic elements used by Jittor to store data. The inputs and outputs of all operators
are variables. Variables are tensors with the following properties:

� A shape attribute.
� A data type attribute, dtype , e.g., float or int .
� A stop grad attribute to prevent gradient back propagation for this variable.
� A stop fuse attribute to prevent fusion of operators associated with this variable.
The stop grad attribute is usually used in testing or inferencing, while the stop fuse attribute pro-

vides control over operator fusion: the user may get better performance by careful use of these attributes.
For example, operator fusion will consume register resources in a GPU. With su�cient resources, fusion
will always improve performance, but fusing hundreds of operators will exhaust resources and cause
performance degradation.
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Figure 5 (Color online) Coding and timeline di�erences between sync hronous and asynchronous interfaces.

Jittor allows synchronous and asynchronous data access. Synchronous access is simple to use and can
be used interactively from the command line in a similar way to access Numpy arrays. Asynchronous
access is more e�cient as it does not generate synchronous instructions, and the computing pipeline is
not locked; a callback function is required to access the data. Figure 5 shows how the user writes code
in these two di�erent ways, and diagrammatically indicates the di�ere nce in performance.

Line 1 loops over the entire dataset. Line 2 copies the data into the GPU. Line 3 executes the model
on the GPU. Line 4 copies the data back to the CPU and prints it. In the synchronous case, because the
print function is synchronous, it blocks iterations (see Subsection3.4), so model execution and memory
copying cannot be overlapped. The asynchronous version insteadusesprint as a callback function of data
fetching. This callback is called after the data transfer is complete,allowing model execution and memory
copy to be overlapped. The timelines for the two approaches thus di�er: overlaps in the asynchronous
version provide better performance.

3.5 End-user example

We now give an example in Listings 2{4 showing how an end-user would use Jittor to model a two-layer
neural network and train it, in just a few lines of Python code. In Listing 2, we de�ne a linear layer
and a sigmoid activation function. (In practice, both are already provided by the Jittor framework, so
would not need to be de�ned. We do so here for the sake of a simple example.) In Listing 3, we de�ne
our model, a two-layer fully connected neural network with sigmoid activation. Listings 2 and 3 provide
de�nitions for Listing 4, which creates and trains the model.

Listing 2 Layer de�nitions

1: import jittor as jt
2:
3: class Linear(jt.Module):
4: def init (n in, n out):
5: self.w = jt.random((n in, n out))
6: self.b = jt.random((n out,))
7:
8: def execute(self, x):
9: return jt.matmul(x, self.w) + self.b

10:
11: def sigmoid(x):
12: return jt.exp(x) / (jt.exp(x) + 1)

Listing 2 shows how to implement layers and functions in Jittor. It de� nes a linear layer class and a
sigmoid activation function. Layers are classes as their instances store their parameters. A linear layer is
a commonly used fully connected layer, with two parameters: weights W and biasB . Its input is X ; its
output is XW + B . All of these quantities are matrices. In lines 5 and 6self.w represents the weights
and self.b represents the bias. Both are initialized using a uniform random operator. Line 9 de�nes the
execution function of the linear layer, wherejt.matmul performs matrix multiplication.
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Listing 3 Model de�nition

1: class Model(jt.Module):
2: def init (self):
3: self.net = jt.Sequential(
4: Linear(1, 10),
5: sigmoid,
6: Linear(10, 1)
7: )
8:
9: def execute(self, x):

10: return self.net(x)

Listing 4 Training with gradient descent

1: learning rate = 0.1
2: model = Model()
3: params = model.parameters()
4: for data, label in user defined data:
5: data, label = jt.array(data), jt.array(label)
6: predictions = model(data)
7: loss = (predictions - labels)**2
8: loss.fetch(print)
9: grads = jt.grad(loss, params)

10: for p,g in zip(params, grads):
11: p.update(p - g * learning rate)

A sigmoid is a commonly used activation function in neural networks: S(x) = ex =(ex + 1). If such a
de�nition were used in traditional imperative style deep learning, as used in PyTorch [5], four operators
would be executed to evaluate a sigmoid: exp (twice), + and=. Because intermediate values would need
to be stored in memory, and memory access consumes time, this would be slow, so PyTorch provides a
dedicated operatortorch.sigmoid to eliminate the need for intermediate values, improving performance.
The user must use the provided function to avoid performance degradation. In Jittor, users do not need
to consider such performance issues. JIT compilation allows the Jittor back-end to automatically fuse
these operators into a single operator (see Section 4). This is a major contribution of Jittor: we provide
high performance and customization via user-de�ned functions atthe same time.

Listing 3 de�nes our model, a two-layer neural network. jt.Sequential indicates that the model
is executed from the �rst item (layer or function) to the last item se quentially. In lines 4 and 6, the
arguments to Linear are the numbers of input and output channels. Thus, the size of the hidden layer
is 10, and a sigmoid activation function is used.

After de�ning the model class, we can now create an instance of it and train it, as shown in Listing 4.
Line 2 makes an instance of our model. Line 3 obtains its parameters,in this case the weight and bias of
each of the two Linear layers. Line 4 traverses the entire user de�ned dataset. In eachiteration, line 5
convertsdata and label into Jittor variables, line 6 makes a prediction using the model, line 7 calculates
the L 2 loss, line 8 prints the loss (asynchronously, rather synchronously, for reasons explained earlier),
and lines 9{11 train this model using simple gradient descent to update the parameters.

Jittor applies graph- and operator-level optimizations via the back-end. In this example, these opti-
mizations include the following. Operator fusion allows the activation function and loss function to be
fused. Parallelism improves the performance of compute-intensiveoperations on multi-core CPUs and
GPUs. Concurrency: for example, thejt.array operation copies the CPU host memory into GPU device
memory if the GPU is used, and memory copy and execution can be concurrent and overlapped.

3.6 Other features

Jittor also provides a code operator, a JIT compilation operator based on a high-performance language,
allowing users to directly inline C++ or CUDA code in Python. Jittor also p rovides distributed operators
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for distributed training, based on MPI [16] and NCCL 1) . NCCL is a dedicated communication library
for Nvidia GPUs. Data parallel distributed training can be achieved via use of an appropriate command
line.

4 The back-end

This section gives details of the back-end. The back-end is responsible for resource management, process
scheduling and compilation optimization. It includes the operator fuser, which decides the fusing strategy
used for the meta-operators, external operators, which are customized operators provided by users or
third-party libraries, the JIT compiler, the integrated compiler use d to optimize meta-operators, and the
uni�ed graph execution, which uni�es static and dynamic graphs execution.

4.1 Operator fuser

The operator fuser is an important part of the back-end of Jittor. It is responsible for operator fusion
optimization in arbitrary computational graphs. In Subsection 3.2, we showed an example of operator
fusion using a convolution computation. In real applications, the computational graph produced by the
front-end is much more complicated. To optimize arbitrarily cases, we consider the computational graph
as a directed acyclic graph of vertices and edges,G = ( V; E), in which each nodev represents an operator,
while each edgee represents a variable. We wish to partition G into multiple sub-graphs G0

i � G, where
each sub-graphG0

i = ( V 0
i ; E 0

i ) represents a fused operator, each node belongs to exactly onesub-graph,
and each edge may belong to a sub-graph or link two sub-graphs. The aim is to select one partitioning for
which the cost of executing all sub-graphs is minimised. However, accurate prediction of actual execution
costs is infeasible: they depend on many aspects of the hardware and other factors. So we use a simpli�ed
approach to determine the sub-graphs by de�ning the costC as

C =
X

e2 E ^ 8 i (e=2 E 0
i )

we; (9)

wherewe is simply the size of the variable represented by edgee. Eq. (9) sums the weight of each edgee
that links two di�erent sub-graphs, and so does not belong to any sub-graph G0

i . This cost is equivalent
to the total number of read and write instructions. This approach is justi�ed as most deep learning
models are constrained by memory bandwidth. Fusion can improve performance by reducing memory
operations. While minimizing the cost, the following rules need to be met.

� Rule 1. Reindex operators may not be fused with preceding meta-operators, as such fusion usually
causes performance degradation. For example, consider two operators, an element-wise add operator
(Eq. (10)), and a reindex broadcast operator (Eq. (11)). The fusion of those two operators is de�ned in
Eq. (12).

8i 2 [0; n) ci = ai + bi ; (10)

8j 2 [0; m); 8i 2 [0; n) dj;i = ci ; (11)

fused : 8j 2 [0; m); 8i 2 [0; n) dj;i = ai + bi ; (12)

Eq. (10) has n addition instructions, 2n read instructions and n write instructions. Eq. (11) has nm
read instructions and nm write instructions. However, Eq. (12) hasnm addition instructions, 2nm read
instructions and nm write instructions. The cost of Eq. (12) is greater than the sum ofcosts of Eqs. (10)
and (11), illustrating why such fusion is forbidden.

� Rule 2. Reindex-reduce operators may not be fused with following meta-operators. Such fusion
does not improve performance. For example, consider two operators, a reindex-reduce sum operator

1) https://docs.nvidia.com/deeplearning/nccl/.

https://docs.nvidia.com/deeplearning/nccl/
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Figure 6 (Color online) Fused operation for a classic network combin ation, convolve-normalize-activate. Note how oper-
ators are fused across convolution, normalization and acti vation layers.

(Eq. (13)), and an element-wise add operator (Eq. (14)). The fusion of these two operators is de�ned in
Eq. (15).

8i 2 [0; n) bi =
X

j 2 [0;m )

aj;i ; (13)

8i 2 [0; n) di = bi + ci ; (14)

fused : 8i 2 [0; n) di =
X

j 2 [0;m )

aj;i + ci : (15)

Eq. (13) has nm addition instructions, nm read instructions and n write instructions. Eq. (14) has
n addition instructions, 2n read instructions and n write instructions. However, Eq. (15) has nm + n
addition instructions, nm + n read instructions and n write instructions. While the cost of Eq. (15) is
slightly smaller than sum of costs of Eqs. (13) and (14), in our experiments, we �nd that such fusion does
not improve performance. Furthermore, the more complicated the fused operator is, the more di�cult it
is for the compiler to optimize it. So, such fusion is forbidden.

� Rule 3. Fusion should not create directed cycles between sub-graphs. For example, given a graph
with three nodes and three edges: (1! 2), (2 ! 3), (1 ! 3), if the third edge were to be fused, it would
produce a cycle between sub-graph (1; 3) and (the trivial) sub-graph 2 in the result: (1 ; 3) � 2.

A greedy algorithm is used to minimize cost: in each iteration, we selectan edgee = ( vstart ; vend ) that
satis�es Rules 1{3, and fusevstart ; vend into the sub-graph G0

i that vstart belongs to, repeating until no
edge satisfying Rules 1{3 can be found. In practice, a dynamic programming labeling algorithm is used
to avoid repeatedly searching for an edge that satis�es the rules.This algorithm works well and achieves
competitive performance for most neural networks.

Figure 6 illustrates operation fusion for a classic network combination, convolve-normalize-activate.
The convolution layer is composed of two reindex operators, one element-wise operator and one reindex-
reduce operator. The normalization layer is composed of one reindex operator, one element-wise operator
and one reindex-reduce operator. The activation layer is composed of multiple element-wise operators.
In this case, operators can be fused across convolution, normalization and activation layers.

4.2 JIT compiler

The JIT compiler is the built-in compiler used to optimize fused meta-operators. After the operator fuser
does its work, the JIT compiler compiles the fused operators into high-performance C++ code.

Listing 5 shows a Jittor Python implementation of instance norm, which normalizes an input tensorx
into an output tensor norm x. The memory layout is [N,C,H,W] , Ndenotes the batch size,Cdenotes the
number of channels,His the image height, andWis the image width. We calculate mean and variance by
reducing the �rst, third, and fourth dimensions.

Listing 6 gives the corresponding C++ code output by the JIT compiler. (This is only one possible
compilation result. Actual results may vary due to the runtime envir onment.)

In Listing 5, operators created by lines 2{4 are fused into a single nested C++ loop (lines 1{15 in
Listing 6). Line 2 in Listing 5 speci�es that this operator is to take averages along the three dimensions
(batch, image height and image width). keepdims indicates that the shape of the output is [1,C,1,1]



Hu S-M , et al. Sci China Inf Sci December 2020 Vol. 63 222103:13

Listing 5 Jittor implementation of instance norm in Python

1: def instance norm(x, eps=1e-5):
2: xmean = jt.mean(x, dims=[0,2,3], keepdims=True)
3: x2mean = jt.mean(x*x, dims=[0,2,3], keepdims=True)
4: xvar = x2mean-xmean*xmean
5: norm x = (x-xmean)/jt.sqrt(xvar+eps)
6: return norm x

Listing 6 Results of JIT compilation

1: for (int i1=0; i1<x.shape(1); i1++) f
2: xmean(i1) = 0;
3: x2mean(i1) = 0;
4: for (int i0=0; i0<x.shape(0); i0++) f
5: for (int i2=0; i2<x.shape(2); i2++) f
6: for (int i3=0; i3<x.shape(3); i3++) f
7: xmean(i1) += x(i0,i1,i2,i3);
8: x2mean(i1) += sqr(x(i0,i1,i2,i3));
9: g

10: g
11: g
12: xmean(i1) /= x.shape(0)*x.shape(2)*x.shape(3);
13: x2mean(i1) /= x.shape(0)*x.shape(2)*x.shape(3);
14: xvar(i1) = x2mean(i1) - sqr(xmean(i1));
15: g
16: for (int i0=0; i0<x.shape(0); i0++) f
17: for (int i1=0; i1<x.shape(1); i1++) f
18: for (int i2=0; i2<x.shape(2); i2++) f
19: for (int i3=0; i3<x.shape(3); i3++) f
20: norm x(i0,i1,i2,i3) =
21: (x(i0,i1,i2,i3)-xmean(i1))/
22: sqrt(xvar(i1)+eps);
23: g
24: g
25: g
26: g

rather than [C], for the convenience of subsequent operations. In Listing 6, the outermost loop variable
is x.shape(1) , and inner loop variables arex.shape(0) , x.shape(2) , and x.shape(3) , as this order
provides the best memory continuity in the jt.mean operator. Line 5 in Listing 5 creates 4 element-wise
operators: subtraction, division, square root and addition, which are fused into one nested C++ loop
(lines 16{26 in Listing 6). The order of nesting of loops in this case is0,1,2,3 , unlike the previous nested
loop, as this is the order with the best memory continuity for these element-wise operators.

The C++ code is further optimized by LLVM compatible passes, based on the speci�c hardware
environment. Common optimizations provided here include loop reordering, loop �ssion, loop fusing,
data packing, vectorizing, and CUDA / OpenMP parallelization.

The JIT compiler and meta-operators make development of customoperators a much easier process.
To develop a high-performance custom operator in a traditional deep learning framework, a developer
typically needs to develop a CPU forward operator, a CPU backwardoperator, a GPU forward operator,
a GPU backward operator, with possibly separate 
oat32 and 
oat64 versions, and so on. This is a huge
programming workload. Jittor can do all of this automatically for the developer.

4.3 Uni�ed graph execution

Uni�ed graph execution is another major contribution of Jittor. Ac cording to the execution method of
computational graphs, deep-learning frameworks can be based either on a static graph execution (also
called a de�ne-and-run approach) or a dynamic graph execution (de�ne-by-run, eager execution). Static
graph based frameworks are e�cient and easy to optimize, and dynamic graph based frameworks are
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Figure 7 (Color online) A comparison of execution methods using (a) s tatic graphs, (b) dynamic graphs, and (c) uni�ed
graphs.

easy-to-use and 
exible. Most current frameworks, including TensorFlow 2.0's eager mode, PyTorch, and
Chainer, support dynamic graphs.

As an alternative, we propose our uni�ed graph execution approach. Uni�ed graph execution provides
an imperative style interface which has the same 
exibility as a dynamicgraph. And it is also as e�cient
as a static graph. Figure 7 compares the di�erent execution methods of static graphs, dynamic graphs
and uni�ed graphs.

Static graph execution de�nes the model before running, and then executes the plan with batches
of data. In Figure 7(a), line 1 uses a placeholder method to represent input of the data needed for
the whole computational graph. Most static execution frameworks use this method, e.g., TensorFlow's
tf.placeholder() . The operator is added to the computational graphG �rst (lines 1{6), and then the
graph G is optimized and executed in multiple runs (lines 7 and 8). Line 4 is invalid: x2 cannot be
printed as nothing is executed until session.run is called. The advantage of static graphs is that they
are simple, and easy to optimize and deploy. The graph in Figure 7(a),for example, is built from all four
operators before execution, allowing operator fusion to be performed �rst. The disadvantage is lack of

exibility: debugging a static graph is di�cult; e.g., we cannot print inte rmediate results during building
as suggested by line 4. While there are workarounds to this problem,they are unnatural. It is even
harder to change the model according to intermediate results found during training. To do so, the user
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must rebuild the whole graph, and the resultant performance degradation is unacceptable.
To solve these problems, dynamic graphs were proposed [5,17], using eager execution. Using dynamic

graphs, the graph is rebuilt and executed on each iteration, allowingthe graph to be changed during
execution. Eager execution executes each operator immediately when it is added to the graph. Because
addition of operators is performed on the CPU while they are executed on the GPU, eager execution will
lower the latency between CPU and GPU, thus reducing overheads,allowing this approach to achieve
competitive performance with the static graph approach. As shown in Figure 7(b), this furthermore
allows the user to manipulate intermediate results during model building. This provides users with a
great deal of 
exibility: for example data can be printed, and the model can be changed according to
the intermediate results obtained, which is hard to do with static graphs, and is essential in applications
such as generative adversarial networks (GANs) [18] and reinforcement learning [19]. For example, when
training a GAN, the computation graph keeps changing between thediscriminator and generator. This

exibility has made dynamic graphs popular, and most frameworks (such as TensorFlow 2.0's eager mode,
PyTorch, and Chainer) currently support them.

However, dynamic graphs preclude graph optimization as each operation is executed as it is built. This
prevents operations from being inter-operator optimized, such as operator fusion. When static graphs are
used, the entire graph is available before execution, allowing operator fusion for more e�cient execution.

To obtain the bene�ts of both approaches, without their drawbacks, we use a uni�ed graph execution
approach. It provides the full 
exibility of a dynamic graph, and the graph can be rebuilt frequently
without performance degradation, yet operator fusion is still possible. This is achieved by lazy execution.
See Figure 7(c). Operators interpreted by Python are not executed immediately, but delayed until their
results are needed.op1 in line 3 is not executed until x2 is printed: x2 is needed at that point, and it
depends onx1 which in turn requires op1 to be executed. During printing in line 5, three things happen.
First, uni�ed execution will select all those operators in graph G that are required by printing, and split
them o� into a new sub-graph G0; in Figure 7 this is op1 and op2. The sub-graph G0 is then optimized
using the operator fusion process in Subsection 4.1: the operatorfuser takesG0 as input, and partitions
G0 into multiple sub-graphs G00

i , where each sub-graph represents one fused operator. Finally,sub-graph
G0 is executed. In this very simple example, asop1 and op2 are executed together, there is an opportunity
to fuse them before doing so. While addition and execution of operators is coupled in the dynamic graph,
it is decoupled in the uni�ed graph.

Note that if there is no dependency between two sub-graphs, then they can be executed concurrently,
if hardware resources permit. Jittor's algorithm for concurrencycontrol keeps track of the state (running,
pending or �nished) for each executing sub-graph.

In addition to lazy execution, uni�ed graph execution also provides two other features: cross iteration
fusion and asynchronous operation. As operators for di�erent iterations may exist in the uni�ed graph G
at the same time, this allows operators be fused across di�erent iterations. For synchronous interfaces,
the CPU will start all operators of G0 on the GPU and then wait until the GPU �nishes its job. However,
for an asynchronmous interface using a callback, the CPU does nothave to wait, and instead the GPU
will call the callback when �nishing its job. This reduces the time the CPU spends for waiting, thereby
improving e�ciency.

Figure 8 illustrates the di�erences between dynamic graph execution and uni�ed graph execution.
The top part explains the symbols used. The three types of meta-operators are given di�erent colors.
Two operator pipelines are shown: ovals indicate addition of operators to the graph in the order users
create them, where operators are added when Python interprets a line containing them; boxes indicate
optimization and execution of operators, and show the order in which operators are executed.

The second part shows part of a computational graph dynamically created by the user. op1 is an
element-wise operator, whose input is the output of previous operators, omitted here. op2 is a reindex
operator, whose input is also from previous operators.op3 is an element-wise operator, with input from
op2. op4 is a reindex-reduce operator with input fromop3. op5 has two inputs, which come from previous
operators andop1. The input for op6 comes fromop5. op7's inputs come fromop4 and op6. op8's input
comes fromop7, and its output is used by upcoming operators.
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Figure 8 (Color online) Execution pipelines for dynamic and uni�ed g raphs. The uni�ed graph can be executed out
of order; addition and execution of operators are decoupled . This permits optimization and fusion of operators in stati c
sub-graphs.

The third part shows the execution pipeline for a dynamic graph. This pipeline is very simple and
straightforward. op1 is executed immediately after it is created, and so areop2, op3, : : :. Creation and
execution are coupled, so there is no scope for optimization.

The fourth part shows the execution pipeline for a uni�ed graph. Those operators are executed out
of order: the addition and execution orders di�er. With this improve ment, uni�ed graph execution can
optimize and fuse operators on the 
y. First, op1 is created, but it is not executed immediately because
of lazy evaluation. In turn op2, op3, op4 are also created in order. However, using our previous methods,
op2, op3, and op4 can be fused before execution. The static sub-graph is further optimized by the JIT
compiler. After op2, op3, op4 have been executed,op5 and op6 are created, and they can be fused with
op1 and executed with it. While op1 was created beforeop2, it ends up being executed afterop2. This
out-of-order execution or lazy evaluation approach allowsop1 to be fused with subsequent operators.
Similarly, op7 and op8 are also not evaluated until needed by upcoming operators.

In summary, our uni�ed graph execution approach has the followingcharacteristics.

� It uni�es dynamic and static computational graph approaches, making it simultaneously easy to use
and e�cient.

� Backward closure of meta-operators allows the fusion of the forward and backward computational
graphs.

� It uniformly manages computational graphs across multiple iterations, i.e., cross iteration fusion can
be achieved. This optimization is especially useful in certain inferencing scenarios, such as fusing multiple
small batches into one big batch.

� It uniformly manages CPU and GPU memory, swapping GPU memory into CPU memory when
there is insu�cient GPU memory. This is especially useful in certain tra ining scenarios. Users can do
training tasks using larger batch sizes beyond the GPU memory limit, and using CUDA uni�ed memory.

� Synchronous and asynchronous interfaces are both provided. Synchronous and asynchronous oper-
ations are scheduled to ensure data consistency during concurrent data reading, memory copying, and
computing.

These improvements enable uni�ed graph execution to maximize the advantage of JIT optimization,
while providing an easy-to-use interface for users.



Hu S-M , et al. Sci China Inf Sci December 2020 Vol. 63 222103:17

ResNet34
Image

7×7 conv 64

Pool

ResBlock 64

ResBlock 128

ResBlock 256

ResBlock 512

Avg pool

fc 1000

3×

4×

6×

3×

ResBlock
Input

3×3 conv 64

Batch norm

ReLU

3×3 conv 64

Batch norm

Addition

ReLU

Fusion
Input

3×3 conv 64

Batch norm
ReLU

3×3 conv 64

Batch norm
Addition
ReLU

Figure 9 (Color online) Components of ResNet34 and the way it is fused and optimized.

4.4 Analysis on ResNet34

In this subsection, we will take ResNet34 [20] as an example, and analyze how uni�ed graph execution
improves performance. ResNet34 model has 33 convolution layersand 1 fully connected layer in total.
The header of ResNet34 consists of one convolution layer (7� 7 kernel size, 64 output channels) and one
pool layer. The tail of ResNet34 consists of one average pool layer and a fully connected layer (the
number of output channels is 1000). All �ve ResNets (ResNet18, 34, 50, 101, 152) share the same header
and tail. In a classi�cation task, an extra softmax layer is also addedin the tail of ResNet. The number
of layers in the header and tail is much smaller than the number of layers in the body. So the body is
the most time-consuming part of the whole ResNet. The body of ResNet34 consists of 16 ResBlocks with
di�erent channel sizes. ResBlock is a basic component of ResNet. One ResBlock consists of 2 convolution
layers, 2 batch norm layers, 2 ReLU activation functions, and one residual learning addition. When the
ResNet34 is implemented by Jittor, the uni�ed graph will analyze it and split it into multiple sub-static
graphs. In Figure 9, the �rst batch norm and the �rst ReLU will be f used; the second batch norm, the
addition, and the second ReLU will be fused. The fusion is impossible when eager execution is used, but
easy to achieve when lazy execution is used. In this example, 7 operators per block will be executed in
eager execution. However, in lazy execution, only 4 operators perblock will be executed after operator
fusion. This saves lots of memory I/O and makes the model more e�cient and execute faster.

Because of the backward closure of meta-operators, back-propagation can also get the performance
improvement brought by operator fusion. In Jittor, this improves the performance of training and testing
at the same time.

5 Evaluation

Recently, PyTorch has become the most popular deep learning platform because of its use of dynamic
graphs, making it convenient for users to design and debug deep learning models. About 70% of works
published in CVPR 2020 were based on PyTorch. Because Jittor adopts uni�ed graph execution and
operator fusion strategies, it provides advantages over PyTorch in both performance and convenience, as
we now show in two experiments in this section. The �rst experiment considers evaluation of backbone
networks (i.e., inferencing), which are the most important part of deep learning models: most of the
computational cost of a model comes from its backbone network.The second experiment concerns image
generation with a GAN [18], a very popular research �eld.

5.1 Backbone networks

Ten of the most successful and popular backbone networks for image recognition were chosen for this
experiment: AlexNet [21], VGG [22], ResNet50, ResNet152 [20], Wide ResNet50, Wide ResNet101 [23],
SqueezeNet [24], ResNEXT50, ResNEXT101 [25], and Res2Net [26]. Res2Net50 [26] is the newest, and
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Table 1 Inferencing speed comparison (FPS) between Jittor and PyTo rcha)

Model

Batch size

1 2 4 8 16 32 64 128

PT JT PT JT PT JT PT JT PT JT PT JT PT JT PT JT

ResNet50 [20] 185 220 353 357 492 548 575 667 643 773 668 810 680 829 692 836

ResNet152 [20] 64 86 126 132 209 231 251 287 273 321 283 335 288 346 296 354

Wide ResNet50 2 [23] 134 131 204 202 275 288 310 335 353 397 379 426 391 441 397 437

Wide ResNet101 2 [23] 73 72 111 112 162 169 180 194 203 225 220 243 228 254 230 253

ResNEXT50 32� 4d [25] 118 132 236 216 310 341 393 445 458 536 484 572 495 579 503 586

ResNEXT101 32� 8d [25] 50 53 78 81 123 136 149 162 166 185 178 198 183 204 185 205

Res2Net50 [26] 79 149 152 240 299 355 399 451 441 507 460 547 468 553 468 559

AlexNet [21] 865 818 1562 1500 2626 2622 3553 3745 5070 5546 6736 7431 6836 7531 6856 7551

VGG11 [22] 303 315 201 208 322 337 593 665 741 855 808 873 818 883 820 885

SqueezeNet1 1 [24] 404 842 769 1461 1619 2102 2656 2700 3035 3382 3258 3628 3406 3658 3407 3631

a) The boldface represents the faster framework for the same model and batch size.

the state-of-the-art model for most image recognition tasks. AlexNet [21] won �rst place in ImageNet
ILSVRC-2012; its performance far exceeded that of the secondplaced method. ResNet [20] won �rst
place in ImageNet ILSVRC-2016, by a large margin. These ten networks summarize the development of
convolution backbone networks from 2012 to the present.

Figure 10 shows an inferencing speed comparison between Jittor and PyTorch. The horizontal axis
shows di�erent batch sizes, while the vertical axis is number of frames processed per second (FPS). A
quantitative assessment is given in Table 1; PT means PyTorch and JTmeans Jittor. The experimental
environment is an 11 GB Nvidia 1080ti GPU, an Intel i7-6850K CPU, 32 GB RAM, FP32, PyTorch
benchmark switch on. Taking an average over the above 10 networks, the frame rate of Jittor is 26%
higher than that of PyTorch for small batches and 13% higher for large batches. More noteworthy,
the frame rate of Jittor is 101% higher for a small batch with Res2Net50. Because of the operator
fusion optimization in Jittor, small batches are processed much faster than in PyTorch. For some classic
networks like AlexNet, the frame rate of Jittor is 10% higher for large batches but 5% lower for small
batches. This is because the architecture of AlexNet is much simplerthan that of Res2Net50, so Jittor has
less opportunities for optimization, and furthermore, AlexNet is well optimized by underlying libraries
like CUDNN.

5.2 Generative adversarial networks

We compared the training speed of Jittor and PyTorch for four GAN models: WGAN-GP [27], DC-
GAN [28], LSGAN [29], and CycleGAN [30]. Table 2 shows the number of iterations per second, and
relative speed of Jittor on two di�erent datasets, MNIST [31] and cityscapes [32], for 4 GAN models.
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Table 2 Training speed comparison (number of iterations per second ) of 4 GAN models

WGAN-GP DCGAN LSGAN CycleGAN

Dataset MNIST MNIST MNIST cityscapes

PyTorch 52.35 37.73 38.61 10.08

Jittor 149.25 78.74 78.74 13.96

Jittor relative speed 2.9 2.1 2.0 1.4

Table 3 Ablation studies about asynchronous interface, cross iter ation fusion, uni�ed memory and lazy execution

FPS Speedup ratio

PyTorch 253.1 0.965

Without asynchronous interface 254.9 0.972

Without cross iteration fusion 260.4 0.993

Without uni�ed memory 264.7 1.009

Without lazy execution 73.2 0.279

All-features-on 262.2 1.000

Bene�ting from meta-operators and uni�ed graph execution, with these GANs, Jittor achieves a max-
imum relative speed of 2:9 and a minimum of 1:4, with an average relative speed of 2:1.

The performance improvement of WGAN-GP is the most signi�cant. T his is because WGAN-GP
requires second-order back-propagation, which means the back-propagation of the model requires back-
propagation again. The backward closure feature makes our second order back-propagation operators
perform better.

All test results are public, and a high-performance GAN library has been released on our website2) .

5.3 Ablation study

In this subsection, four ablation studies are performed on ResNet50 training. The experimental envi-
ronment is a 24 GB Nvidia RTX Titan, 64 GB RAM, FP32, and the batch siz e is 64. Table 3 shows
the training FPS of PyTorch and di�erent modes of Jittor, and the s peedup ratio compared to the
all-features-on mode of Jittor.

The asynchronous interface improves performance by overlapping communication and computation.
During ResNet50 training, communication between CPU and GPU is notheavy compared to computation,
so this only has 3% performance loss on FPS compared to the all-features-on mode.

Cross iteration fusion improves performance by fusion operators across iterations. However, during
ResNet50 training, only a part of the batch norm layer can be fusedacross iterations. So this only has
1% performance loss on FPS.

Uni�ed memory makes memory of CPU and GPU can be swapped. This feature can keep the
program running even when there is not enough memory. It costs about 1% performance loss, but it is
worthy.

Lazy execution is the fundamental feature of Jittor. Without this feature, all op erators cannot be
fused at all. Because most operators of Jittor build upon meta-operators, turning o� this feature will
greatly reduce performance.

6 Conclusion and future work

This paper presents the deep learning framework Jittor, with two major contributions: meta-operators
and uni�ed graph execution. Jittor has been released online3) . Use of meta-operators makes development
and optimization of deep learning operators much easier, and uni�edgraph execution is both easy to use
and e�cient.

2) https://github.com/Jittor/gan-Jittor.
3) https://github.com/Jittor/.
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In future, we plan to develop further libraries for object detection, image segmentation, 3D point cloud
processing, 3D mesh processing and related topics. We hope to further optimize performance, usability,
and scalability of Jittor. We also note that di�erentiable programming is gradually gaining attention
as a new paradigm to solve machine learning problems, in areas such asdi�erentiable Monte Carlo ray
tracing [33], di�erentiable rasterizers [34] for reverse rendering problems, and Di�Taichi [35] for trainable
physical simulation. Future versions of Jittor will support di�erent iable programming to better solve
learning problems in visual computing and geometry.
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