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Semi-Continuity of Skeletons in 2-Manifold and
Discrete Voronoi Approximation

Yong-Jin Liu, Member, IEEE

Abstract—The skeleton of a 2D shape is an important geometric structure in pattern analysis and computer vision. In this paper we
study the skeleton of a 2D shape in a 2-manifoldM, based on a geodesic metric. We present a formal definition of the skeleton S(Ω)

for a shape Ω inM and show several properties that make S(Ω) distinct from its Euclidean counterpart in R2. We further prove that for
a shape sequence {Ωi} that converge to a shape Ω inM, the mapping Ω→ S(Ω) is lower semi-continuous. A direct application of this
result is that we can use a set P of sample points to approximate the boundary of a 2D shape Ω inM, and the Voronoi diagram of P
inside Ω ⊂M gives a good approximation to the skeleton S(Ω). Examples of skeleton computation in topography and brain
morphometry are illustrated.

Index Terms—2D shape sequence, Voronoi skeleton, 2-manifold, geodesic.
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1 INTRODUCTION

THE skeleton of a 2D shape is an important geometric
structure which has found a wide range of applications

in pattern analysis and computer vision. Many previous
works focus on the skeleton of a shape defined in a Eu-
clidean space, such as a 2D shape in the plane R2 and a
3D solid in R3. In recent years, the study of 2D shapes in
a general 2-manifold M has received increased attention
for many applications; e.g., (1) 2D shapes in images that
are embedded as 2-manifolds in various high-dimensional
spaces for geometric flow analysis of images [14]; (2) 2D
shapes such as ridge, basin and lake regions in a terrain
domain (Figure 1) for motion planning [13]; (3) sulcal and
gyral regions on cortical surfaces for medical image analysis
[31].

In this paper, we study the skeleton of a 2D shape
defined inM based on a geodesic metric. There are several
closely related terms of skeletons in literature, including
medial axis [4], shock graph [12], [34] and cut locus [37],
[38]. For a 2D shape Ω in the plane R2, the skeleton is the set
of centers of maximal open disks contained in Ω [24], [28];
the medial axis is the set of points in Ω which have at least
two closest points in R2 \ Ω and is always a subset of the
skeleton [4], [28]; the shock graph is a directed, acyclic graph
of shock groups where the loci of shock positions are the
medial axis [12], [34]; the cut loci is the closure of the set
containing all points which have at least two closest paths
to the boundary of Ω [37]. Based on a geodesic metric, we
present a formal definition of the skeleton of a 2D shape in
M in Section 4.

The challenge of defining and studying the skeleton of
a 2D shape in M stems from the geodesic metric dg . For
example, the skeleton definition in R2 relies on an open
disk which is always bounded by a planar circle. However,
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(a) A terrain model (b) Voronoi skeleton 1

(c) Another view of (b) (d) Voronoi skeleton 2

Fig. 1. Skeletons on a 2-manifold M. A stratigraphic ridge Ω in M is
bounded by a red curve (having the same altitude) and the skeleton of
Ω is shown in blue. Voronoi skeletons 1 and 2 are at granularities 20 and
3 (detail about granularity is presented in Section 6.2).

only if a radius r is smaller than the injectivity radius at a
p ∈ M, a geodesic disk Dr(p) = {q ∈ M|dg(p, q) < r}
is homeomorphic to a planar disk [6]. It was shown in [20]
that inM of genus g, the boundary of Dr(p) can have up to
g+1 separated closed curves. In this paper we further show
that, distinct from its Euclidean counterparts, the skeleton
of a shape that encloses a connected region in M can be
disconnected.

In this paper we study a mapping S from a given 2D
shape Ω ⊂ M to a skeleton S(Ω) ⊂ M and prove the
following result: For a shape sequence {Ωi} converging to
a shape Ω in M, the mapping from {Ωi} to {S(Ωi)} is
lower semi-continuous. A direct application of this result is
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that we can sample the boundary of Ω using a sequence
of dense sample points {Pi}, then the Voronoi diagrams
{V (Pi)} inside Ω ⊂ M give good approximations to the
skeleton S(Ω). The 2-manifold M studied in this paper is
general, i.e., either a smooth surface with bounded principal
curvatures or a piecewise linear surface (e.g., a 2-manifold
triangular or quadrilateral mesh) embedded in Rn, n ≥ 3.

2 RELATED WORK

The medial axis or the skeleton of a shape in Euclidean
spaces has attracted considerable attention in computer
vision and pattern analysis [33]. Lieutier [18] proved that
any bounded open subset O ⊂ Rn has the same homotopy
type as its medial axis. The stability of the medial axis and
skeleton of O have been investigated in [7], [8]. An elegant
λ-medial axis was further proposed in [9], showing that for
regular values of λ, the λ-medial axis remains stable under
Hausdorff distance perturbations of O. All these works
focus on the domain of open subsets in Rn. In this paper,
we study the convergence of skeletons of open subsets in a
2-manifoldM based on a geodesic metric.

For any two points p and q in M, the shortest path
joining p and q is a geodesic. The Hopf-Rinow theorem [6]
for smooth surfaces and its adaption [1] to piecewise linear
surfaces ensure that a geodesic always exists for any two
points in M. The geodesic offers a metric dg in M, such
that ∀p, q ∈ M, the geodesic distance dg(p, q) is the length
of the shortest path inM joining p and q. Wolter [37] studied
the geodesic metric in a bordered Riemannian manifold and
showed that, the geodesic distance function dg(A, ·) to a
closed set A ⊂M is C1-smooth in the complement of CA in
M \ (∂M∪A), where CA is the cut loci of A and ∂M is the
boundary ofM. For piecewise linear surfaces, the geodesic
metric was studied in [19], [25], which shows dg(A, ·) is
uniformly Lipschitz continuous.

Numerical methods had been proposed for computing
geodesics in both smooth parametric surfaces [22] and
piecewise linear surfaces [15], [25]. Geodesic-based distance
functions inM can be characterized by level sets or equiva-
lent iso-contours. The structure of iso-contours in piecewise
linear surfaces was studied in [20]. By regarding piece-
wise linear surfaces as linear approximations of smooth 2-
manifolds, the fast marching [29] and level set methods [27],
[30] by solving the Eikonal equation in 2-manifold meshes
have been studied. Shi et al. [31] extended the method of
Hamilton-Jacobi skeleton [32] from a Euclidean plane to
a piecewise linear surface, and its application in medical
image analysis was also presented in [31].

Some researchers studied the geometric properties re-
lated to skeletons inM. Notably, Wolter [37] studied the cut
loci and used it to characterize the regularity of a geodesic
distance function dg(A, ·) in general Riemannian manifolds.
Lai [16] systematically investigated the variational problem
with Laplace-Beltrami eigen-geometry in 2D smooth sur-
faces and showed that a novel skeleton of a subset in a
smooth 2-manifold can be obtained from Reeb graphs. In
this paper, we study the convergence of skeletons of a shape
sequence in a general 2-manifold M, and show that the
Voronoi diagram of dense sampling of the shape boundary

p p
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D3(p)

D4(p)

D5(p)

D4(p)
D5(p)

Fig. 2. Geodesic disks Dr(p) inM: disks of r = 1, 2, 3 are homeomor-
phic to a planar disk while disks of r = 4, 5 are not.

can well approximate the skeleton of the shape. For 2-
manifold triangular meshes, the exact geodesic [19], [25],
[36] and Voronoi diagram [20] can be computed efficiently
using computational geometry methods. As a comparison,
the numerical solutions of the Hamilton-Jacobi equation or
Laplace-Beltrami operator may be sensitive to the triangular
shape and triangle density of the mesh.

3 PRELIMINARY ON HIT OR MISS TOPOLOGY

Let M be a connected, closed 2-manifold1. Ω is a bounded
and connected 2D region in M. ∂Ω = Ω ∩ (M\ Ω) is the
boundary of Ω. Based on the geodesic metric dg in M, a
geodesic r-disk centered at a p ∈M is defined by

Dr(p) = {q ∈M|dg(p, q) < r}. (1)

Whenever there is no risk of confusion, we omit the term
“geodesic” and simply call Dr an r-disk. An r-disk in M
may not be homeomorphic to a planar disk (Figure 2).

A set U ⊂M is open if and only if ∀p ∈ U , ∃δ > 0 such
that Dδ(p) ⊂ U . Let O be the collection of all the open sets
in M and C = {M \ o|o ∈ O} be the collection of all the
closed sets inM. The empty set ∅ andM are both open and
closed.

Let X ∈ {O, C}. X can be regarded as a space X in
which the “points” are sets in M. A hit or miss topology
[23], [28] is defined on X using a definition of neighbor-
hoods2, which consist of packed points in the space X
equivalent to a collection of sets inM.

The main result in the hit or miss topology that we use
in this paper follows.

Definition 1. [28] Let I be an index set. A sequence {xi}, i ∈ I ,
converge to x in X if and only if it satisfies two conditions:

1) If an open set o intersects x, then there exists an n such
that o intersects all the xi, ∀i > n.

2) If a closed set c is disjoint from x, then there exists an m
such that c is disjoint from all the xi, ∀i > m.

x is called the limit of this sequence, written as lim{xi} = x.

1. A closed manifold is a compact manifold without boundary.
2. Formally, given two finite sequences O = {o1, · · · , oi, · · · , om}

of open sets and C = {c1, · · · , cj , · · · , cn} of closed sets in M, the
collection of all the elements in X which intersect every oi and are
disjoint from every cj defines an open (O,C)-neighborhood in X [23],
[28]. Note that in the general hit or miss topology, C is a sequence of
compact sets. In this study, the space M is always bounded and we
directly use the terminology of closed sets.
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Fig. 3. A skeleton does not have medial axis points. Place a circle in the
coordinate system as shown in left and ab is a diameter of the circle in
x-axis. Rotate the circle around y-axis to get a torusM, and a is rotated
into a circle Cblue and b into a circle Cred. Cred is the skeleton of open
set M \ Cblue and Cred has no medial axis points. Centered at each
point in Cred, there is a maximal disk whose boundary touches only one
point in Cblue twice.

4 SKELETON OF AN OPEN SET INM
Matheron [24] chose to define the skeleton in R2 using open
sets due to the reason that the closure of the skeleton is
connected if the planar shape is connected3. We follow [24]
to use open sets for defining the skeleton inM.

Denote by D the collection of all r-disks Dr(p) ⊂ M,
∀p ∈ M and r > 0. Based on the geodesic metric dg(·) in
M, we have

Property 1. Dr1(p1) ⊂ Dr2(p2) if and only if dg(p1, p2) ≤
r2 − r1.

Proof. ∀q ∈ Dr1(p1), dg(q, p2) ≤ dg(q, p1)+dg(p1, p2). Since
q can be chosen arbitrarily, dg(q, p2) can reach r1+dg(p1, p2).
If Dr1(p1) ⊂ Dr2(p2), then dg(q, p2) < r2. Thus dg(p1, p2)
≤ r2 − r1. On the other hand, if dg(p1, p2) ≤ r2 − r1, then
r2 ≥ r1 +dg(p1, p2) > dg(q, p1) +dg(p1, p2) ≥ dg(q, p2) and
thus q ∈ Dr2(p2).

The relation “is a proper subset of” is a strict partial
order on D. By Zorn’s lemma [26], we have:

Property 2. Any disk in a subset of D is contained in a maximal
disk in that subset.

Definition 2. Let Ω be an open set in M. The skeleton of Ω,
denoted by S(Ω), is the set of centers of maximal geodesic open
disks contained in Ω.

A key difference of Definition 2 between M and R2

follows. If a point s ∈ S(Ω) has at least two different closest
points inM\Ω, s is called a medial axis point. In R2, medial
axis points are dense in S(Ω); while inM, S(Ω) may have
no medial axis points at all. One example is illustrated in
Figure 3.

In most cases, S(Ω) is a closed set. However, it was
shown in [24] that S(Ω) is not necessarily a closed set and an
example of S(Ω) being an open set was given in R2. Thus,
following [24], we study the mapping Ω→ S(Ω) from O to
C, where S(Ω) is the closure of S(Ω).

Distinct from its Euclidean counterpart in R2, S(Ω) in
M has some specific properties. Below we show that a
connected open region Ω ⊂ M may have a disconnected
skeleton S(Ω). As a comparison, Matheron [24] proved that
in R2, if Ω is connected, S(Ω) is also connected.

3. In R2 a connected closed set may have a disconnected skeleton;
see the example at page 219 in [24].
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Fig. 4. 2D bisector. r lies on the bisector of points p and q in R2 and
∠prq = α. A planar triangle fan with a spanning angle γ > 2α is folded
into the gray-shaded area (middel left). When unfolding the triangle fan
from the lines pr and qr, respectively, inside the triangle fan, the yellow
(or blue) region has a shorter geodesic distance to point p (or q), and
the uncolored area with a spanning angle γ − 2α has equal geodesic
distance to both p and q.
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Fig. 5. A disconnected skeleton inM and a connected skeleton in R2.
See text for full description.

First we show that the bisector of two points in M is
not necessarily a curve but may contain 2D regions. Let p
and q be two points in R2. r lies on the bisector of p and q
with angle ∠prq = α. Then we cut a region in R2 and plug
in a folded triangle fan with a spanning angle γ > 2α (the
shaded region shown in Figure 4) to form a 2-manifoldMT .
The geodesic distance in the area of the folded triangle fan
inMT is determined by unfolding the triangle fan along the
boundary lines pr and qr, respectively [25]. Then, as shown
in Figure 4, inside the folded triangle fan, the yellow (or
blue) region has a shorter geodesic distance to point p (or
q), and the uncolored area with spanning angle γ − 2α lies
on the bisector of p and q inMT .

Next we show that the skeleton of a connected region
in M and its closure are not necessarily connected. Let the
shaded region in Figure 5 be the 2D bisector with a spanning
angle γ − 2α as identified in Figure 4. Note that the shaded
region is a folded polygonal region which does not lie in
the same plane spanned by points p, q and r. In the shaded
region, if points x1, x2 and r are not in the same line, then x1

and x2 satisfy the triangle inequality |dg(x1, r)−dg(x2, r)| <
dg(x1, x2). By Property 1,Ddg(x1,p)(x1) 6⊂ Ddg(x2,p)(x2) and
Ddg(x2,p)(x2) 6⊂ Ddg(x1,p)(x1)4. Then along any direction in
the spanning angle γ − 2α (middle left in Figure 5), there is
a maximal disk whose boundary touches points p and q. Let
Arc be a circular arc in the shaded region which has equal
distance to r, and LS be a line segment which is the bisector

4. Note that dg(x1, r)+dg(r, p) = dg(x1, p) and dg(x2, r)+dg(r, p) =
dg(x2, p).
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part of p and q in the planar region (middle right in Figure
5). Note that one endpoint of LS is open (hollow circle in
Figure 5). It is readily seen that Ω =

⋃
x∈Arc

⋃
LS Ddg(x,p)(x)

is a connected open set inMT and S(Ω) = Arc
⋃
LS. S(Ω)

is not closed due to the open end in LS and S(Ω) consists
of two disjoint subsets Arc and LS. As a comparison, the
skeleton of R2 \ {p, q} is the bisector of p and q (far right
in Figure 5), since any two points x1 and x2 in the bisector
satisfying dg(x1, x2) > |dg(p, x1)− dg(p, x2)|. We have:

Property 3. For a connected open set Ω ∈M, the skeleton S(Ω)
is not necessarily closed and S(Ω) is not necessarily connected.

5 SEMI-CONTINUITY OF MAPPING Ω→ S(Ω)

Recall that O and C are the collections of all the open
sets and closed sets in M respectively. For an open set
Ω ∈ O, the mapping Ω → S(Ω) from O to C maps Ω to
the closure of the skeleton S(Ω). We consider a sequence
{Ωi} that converge to Ω in O, i.e., lim{Ωi} = Ω. There is
a corresponding sequence {S(Ωi)} and in this section we
study the convergence of {S(Ωi)} in C.

Let {ci} be a sequence in C. Denote by lim{ci} (resp.
lim{ci}) the intersection (resp. union) of the accumulation
points of {ci} in M. Let {oi} be a sequence in O that
converge to o.

Definition 3. [28] For a mapping F from O to C,

• F is upper semi-continuous if and only if F (o) ⊃
lim{F (oi)}. i.e., if a closed set A is disjoint from F (o),
there exists a NA such that A is disjoint from all the
F (oi), ∀i > NA.

• F is lower semi-continuous if and only if F (o) ⊂
lim{F (oi)}. i.e., if an open set B intersects F (o),
there exists a NB such that B intersects all the F (oi),
∀i > NB .

Property 4. The mapping Ω → S(Ω) from O to C is lower
semi-continuous.

We prove Property 4 in two steps.

• Step 1. For each maximal disk MD ⊂ Ω, we prove
that there exists a sequence {MDi} of maximal disks,
which converge to MD in O, where MDi ⊂ Ωi and
lim{Ωi} = Ω.

• Step 2. Prove Property 4 using the result of Step 1.

A similar result was presented in [24] for skeletons of
open sets in R2. Our study extends their result from R2 to
M, with a more general proof.

5.1 Proof of Step 1

For a maximal disk MD ⊂ Ω, let OMD be the collection of
all the open sets inM that intersect MD, i.e., ∀oi ∈ OMD ,
oi∩MD 6= ∅. Let CMD be the collection of all the closed sets
inM that are disjoint from MD, i.e., ∀ci ∈ CMD , ci∩MD =
∅. By Definition 1, to prove Step 1, we need to show that
(1) ∀o ∈ OMD , there exists an NO such that ∀i > NO, o
intersects all the MDi (Proposition 1), and (2) ∀c ∈ CMD ,
there exists an NC such that ∀j > NC , c is disjoint from all
the MDj (Proposition 2).

Proposition 1. ∀o ∈ OMD , there exists an NO and a maximal
disk sequence {MDi} such that ∀i > NO, MDi intersects o,
where MDi ⊂ Ωi and lim{Ωi} = Ω.

Proof. Let p be the center of MD with a radius rMD , i.e.,
MD = DrMD

(p) = {q ∈ M|dg(p, q) < rMD}. Let {ri}
be a sequence of positive scalar values, which monotonic-
sequentially converge to rMD , i.e., ri ↑ rMD , ri < ri+1 <
rMD . Correspondingly there is a sequence {Di}i∈J with an
index set J , Di = Dri(c), of concentric disks in Ω such that
∀i ∈ J , Di ⊂ Di+1, and lim{Di} = MD. Then there exists
an N1 such that ∀i > N1, Di intersects o.

Next we show that there exists an N2 such that ∀i > N2,
Di ⊂ Ωi. If it is not true, then there exists an open set o′ ∈ O
that intersects all the Di, but does not intersect all the Ωi,
∀i > N2 (note that Di ⊂ Di+1). Since Di ⊂ MD, MD ⊂
Ω, o′ must intersect MD and Ω. On the other hand, since
o′ does not intersect all the Ωi, ∀i > N ′ > N2, and {Ωi}
converge to Ω, o′ cannot intersect Ω. A contradiction.

By Property 2, ∀i > N2, each Di is contained in a
maximal disk MDi ⊂ Ωi. Let NO = max{N1, N2}. That
completes the proof.

Proposition 2. For the same sequence {MDi} as in Proposition
1, ∀c ∈ CMD , there exists a NC > NO such that ∀i > NC ,
MDi is disjoint from c.

Proof. We prove this proposition by contradiction. Suppose
for any sufficiently largeN ′′, ∃i > N ′′,MDi intersects some
c ∈ CMD . Then there exists at least a point x ∈ c which
satisfies x ∈ MDi and x 6∈ MD. Since Di ⊂ MDi, there is
a contradiction in that {Di} converge to MD and MD is a
maximal disk in Ω.

5.2 Proof of Step 2
In the proof of Step 1, we show that for any maximal disk
MD ⊂ Ω, there exists a sequence {MDi} of maximal disks,
MDi ⊂ Ωi, that converge to MD. Let the centers of MD
and MDi be p and pi, respectively. For each point p ∈ S(Ω),
there exists a sequence {pi} of points that converge to p,
such that ∀i, pi ⊂ S(Ωi). Accordingly, if an open set B
intersects S(Ω), there exists a NB such that B intersects all
the S(Ωi), ∀i > NB . Thus the mapping Ω → S(Ω) is lower
semi-continuous.

5.3 Manifold with Boundary
The above proof of Property 4 requires that M is a con-
nected, closed 2-manifold. Let M′ is a connected, compact
2-manifold with boundary. In this section we show that
Property 4 also holds forM′.

Denote the boundary ofM′ by ∂M′. First, note that an
open set Ω in M′ cannot contain a point in ∂M′, i.e., Ω ∩
∂M′ = ∅. Let G = {g1, g2, · · · , gn}, n ≥ 1, be the set of
connected components in ∂M′. Each gi ∈ G is a closed
curve and we can always glue a cap mi (i.e., another 2-
manifold with the same boundary gi) to remove gi from G.
ThenM =M′∪(∪ni=1mi) is a connected, closed 2-manifold.

By Property 4, the mapping Ω → S(Ω) is lower semi-
continuous in M. Since Ω ∩ ∂M′ = ∅, for any sequence
{Ωi} that converge to Ω in M, there exists an N such that
∀i > N , Ωi∩∂M′ = ∅ and Ωi ⊂M′. Therefore the mapping
Ω→ S(Ω) is also lower semi-continuous inM′.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2015.2430342, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI 5

6 SKELETON APPROXIMATION

The result in Property 4 is useful in pattern analysis and
computer vision. Below we list some applications, in each
of which a shape sequence {Ωi} converge to a shape Ω.
Then by Property 4, the limit of {S(Ωi)} contains S(Ω).

• Curve evolution. Based on a psychophysically rele-
vant representation of visual parts, a novel decom-
position rule was proposed in [17] for shape contour
evolution. The shape is defined in R2 and can be
extended to a 2-manifold M. The process of shape
evolution forms a sequence of shapes from the coarse
level to fine detail level that converge to the original
shape.

• Morphology on 2-manifolds. For a shape Ω ∈M, we
define the dilation as Ω⊕Dρ =

⋃
p∈ΩDρ(p) and the

erosion as Ω 	 Dρ = {p ∈ M|Dρ(p) ⊂ Ω}. Then
given a sequence {ρi} of disk radii which converge
to ρ = 0, the dilation Ω⊕Dρ or erosion Ω	Dρ gives
a sequence {Ωi} that converge to Ω.

• Point approximation. Let ∂Ω be the boundary of a
shape Ω ⊂ M. If we sample ∂Ω using points and
make the samples denser and denser, the sequence
of point sets converge to ∂Ω.

In these applications, if the skeleton S(Ωi) in the shape
sequence {Ωi} can be computed much easier than S(Ω),
we can use S(Ωi) as an approximation of S(Ω). In this
section we show that this approximation is good in the
sense that the skeletons of Ωi contain the skeleton of a small
perturbation of Ω.

6.1 Voronoi Skeleton of Point Sampling
Let Ω be a connected open set inM. Note that Ω− = M\
∂Ω is also open. If P = {p1, p2, · · · , pm}, pi 6= pj , is a set
of sample points of ∂Ω, S(M \ P ) is an approximation of
S(Ω−) and S(M\ P )

⋂
Ω is an approximation of S(Ω).

The Voronoi cell of pi ∈ P inM is defined as

V C(pi) = {q|dg(q, pi) ≤ dg(q, pj), i 6= j, q ∈M}

A boundary-based Voronoi diagram of P is defined as

V D(P ) =
⋃
i

∂V C(pi)

where ∂V C(pi) is the boundary of V C(pi). For each point
pi ∈ P , we denote by PB(pi) ⊂ V C(pi) the set of points
which satisfy ∀x ∈ PB(pi), the boundary of a maximal disk
centering at x touches pi at least twice (Figure 3). PB(pi)
is actually the cut loci of pi [37] and is called the pseudo-
bisector in [20]. We define an extended boundary-based
Voronoi diagram of P as

EVD(P ) = V D(P )
⋃(⋃

i

PB(pi)

)

Property 5. S(M\ P ) ⊂ EVD(P ).

Proof. Ω′ = M \ P is an open set in O. By Definition 2,
S(Ω′) is a set of centers of maximal disks in Ω′. Note that
the interior of any maximal disk contains none of the points
in P . There are two cases of maximal disks in Ω′. The first

Blue dots are 
sample points

Four components 
in Voronoi diagram 
are disconnected

Fig. 6. Disconnected boundary-based Voronoi diagrams in M. Some
sample points are at the back of the model (right) and cannot be viewed
when the surface is shaded (left). Top: 2-manifold of genus 2. Bottom:
2-manifold of genus 0.

case is the boundary of a maximal disk touches at least two
different points in P . In this case, the centers of maximal
disks are in V D(P ). The second case is the boundary of a
maximal disk touches one point in P twice (Figure 3). In
this case, the centers of maximal disks are in

⋃
i PB(pi).

That completes the proof.

Note that S(M\ P ) may not be equal to EVD(P ). For
example, the shaded region in Figure 5 is the 2D bisector
of points p and q, but only the Arc is in the skeleton.
By Property 3, S(Ω) may be disconnected. Note that the
boundary-based Voronoi diagram V D(P ) of a sampling
P may be also disconnected; two examples are shown in
Figure 6.

Let V S(P ) = EVD(P )
⋂

Ω. If P is a dense sampling
of ∂Ω, we use EVD(P ) and V S(P ) as approximations
of S(M \ ∂Ω) and S(Ω) respectively. We call V S(P ) the
Voronoi skeleton of Ω under the sampling P .

6.2 A Hierarchy of Voronoi Skeletons
Let P be a sampling of ∂Ω. If there are g holes in-
side Ω, ∂Ω consists of g + 1 disjoint closed curves
and let P = {(p11, · · · , p1m1

), · · · , (pi1, · · · , pimi
), · · · ,

(p(g+1)1, · · · , p(g+1)mg+1
)}. We define an ordering in P as

follows: (1) the sampling in each closed curve is periodic,
i.e., ∀i, pi(mi+1) = pi1; (2) when one walks along the
boundary from pij to pi(j+1), ∀i, j, Ω is always on the left-
hand side. Whenever there is no risk of confusion, we use
the concise form P = {p1, p2, · · · , pm} and set the number
of sample points m ≥ 3.

We use the r-regular model in [28] to study a sampling
criterion of P :

Definition 4. The shape Ω is called r-regular, if Ω = (Ω 	
Dr) ⊕ Dr = (Ω ⊕ Dr) 	 Dr , where Ω ⊕ Dρ =

⋃
p∈ΩDρ(p)

and Ω	Dρ = {p ∈M|Dρ(p) ⊂ Ω}.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2015.2430342, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI 6

pj

pj2

pi

pi+1a

x
a

pj

(a)                                   (b)                             (c)

a

x

l1

l2

b

 b

pj

a

x
 b

 a

Fig. 7. Proof of Property 6. The shaded area is Ω and the blank area is
M\ Ω. (a) If the closest sample point to x is pj (or pj2), the midpoint a
of the shortest path xpj (or xpj2) is inside Ω (orM\Ω). (b) DiskDra (a)
of radius ra = dg(a, x) < r contains two connected components of ∂Ω,
i.e., l1 and l2 (green colored curves). b is the closest point of a on ∂Ω,
b ∈ l1, and b′ is the closest point of a on l2. (c) a′ is a point in the path
ab′ which has equal distance to l1 and l2. Dra′ (a′) is a maximal disk in
Ω whose radius ra′ = dg(a′, b′) < r.

Definition 5. P is called an ε-sampling of ∂Ω, if ∀x ∈ ∂Ω,
min{dg(x, pi)|pi ∈ P} ≤ ε.

Denote by B(pi, pj) ⊂ M the bisector between pi and
pj . Let Ci(i+1) be the segment in ∂Ω that has two endpoints
pi and pi+1 and does not pass through any other points in
P .

Property 6. For an ε-sampling P of an r-regular shape Ω inM,
if ε < 2r, then ∀x ∈ Ci(i+1), the closest sample point in P is
either pi or pi+1.

Proof. Note that if Ω is an r-regular shape, all the maximal
disks in Ω and M \ Ω have radii no smaller than r. Below
we show that if Property 6 is not true, then there exists a
maximal disk in either Ω or M \ Ω such that its radius is
smaller than r.

Refer to Figure 7(a). If Property 6 is not true, then there
exists a point x ∈ Ci(i+1) such that the closest sample point
to x is pj , j 6= i, j 6= i+1. Since P is ε-sampling, dg(x, pj) ≤
ε. Denote by xpj the shortest path between x and pj inM.
Let a be the midpoint of xpj , i.e., a ∈ xpj and dg(a, x) =
dg(a, pj) < r. Below we show that if a ∈ Ω, then in Ω
there exists a maximal disk whose radius is smaller than r.
If a /∈ Ω, a similar argument can show that inM\ Ω there
exists a maximal disk whose radius is smaller than r.

Assume a ∈ Ω. If the disk Dra(a) of radius ra =
dg(a, x) < r is a maximal disk in Ω, then we are done.
Otherwise, the disk Dra(a) contains two connected compo-
nents of ∂Ω, since Dra(a) cannot contain any sample point
pk ∈ P in its interior. Refer to Figure 7(b). Denote these two
connected components by l1 and l2. Denote by b the closest
point of a on ∂Ω. Without loss of generality, assume b ∈ l1.
Let b′ be the closest point of a on l2. If dg(a, b) = dg(a, b

′),
then Dr′=dg(a,b)(a) is a maximal disk in Ω whose radius
r′ = dg(a, b) < r. Otherwise, for any point in the shortest
path ab′, its closest point on ∂Ω must be on l1 or l2. Refer to
Figure 7(c). Now moving a to b′ along the path ab′. During
this movement, the closest point of a is changed from l1 to
l2 and there must exist a critical point a′ in ab′ such that it
has two closest points on ∂Ω: one is in l1 and the other is
b′ ∈ l2. Then Dra′ (a

′) is a maximal disk in Ω whose radius
ra′ = dg(a

′, b′) < r.

Note that the proof of Property 6 is similar to the ones
in [2], [3], [5] in which, however, a different result of a ball
containing at least one skeleton point is obtained.

Property 7. For an ε-sampling P of an r-regular shape Ω inM,
if ε < 2r, then V C(pi)

⋂
∂Ω = V C(pi)

⋂
(C(i−1)i

⋃
Ci(i+1)).

Proof. Suppose in addition to C(i−1)i

⋃
Ci(i+1), there is an-

other portion C ′ of ∂Ω inside V C(pi). Since C ′ is disjoint
from V C(pi)

⋂
(C(i−1)i

⋃
Ci(i+1)), when walking around

∂Ω in a counterclockwise order, pi+1 must be in-between
V C(pi)

⋂
(C(i−1)i

⋃
Ci(i+1)) and C ′, and pi−1 must be

in-between C ′ and V C(pi)
⋂

(C(i−1)i

⋃
Ci(i+1)). Then by

Property 6, the closest sample point to x ∈ C ′ is pj , j 6= i;
however x ∈ V C(pi), a contradiction.

Based on Property 7, the Voronoi diagram V D(P ) of
an ε-sampling P is well structured since we can recon-
struct a piecewise linear approximation ∂Ω′ of ∂Ω from
P such that the approximation error Error(∂Ω′, ∂Ω) =
supx∈∂Ω infy∈∂Ω′ dg(x, y) ≤ ε. Some similar results that
reconstruct a curve from dense sample points in a Euclidean
plane R2 had been studied (e.g., [10]). Our result extends
them from R2 to a 2-manifoldM.

Since for lim{Pi} = ∂Ω, S(Ω) ⊂ lim{V S(Pi)} and
some subsets in V S(P ) may be redundant (e.g., the bisector
B(pi, pi+1) locally around ∂Ω is usually redundant), we
present a hierarchy of Voronoi skeletons which give a level-
of-detail approximation of S(Ω).

Definition 6. For any bisector B(pi, pj) ⊂ V D(P ), the gran-
ularity of B(pi, pj) is defined as g(B(pi, pj)) = |j − i|.

Definition 7. The boundary-based Voronoi diagram of P at
granularity k is defined as V D(P )|k = {B(pi, pj)|B(pi, pj) ⊂
V D(P ), |j − i| ≥ k}. The Voronoi skeleton at granularity k is
V S(P )|k = (V D(P )|k

⋃
(
⋃
i PB(pi)))

⋂
Ω.

For an ε-sampling P = {p1, p2, · · · , pm} of an r(> ε/2)-
regular shape Ω ⊂ M, the Voronoi skeletons V S(P )|k
from granularity k = dm/2e − 1 to 1 give a hierarchy of
approximations to S(Ω). One example of V S(P )|k at k = 20
and 3 is illustrated in Figure 1.
∀x ∈ S(Ω), let rMD(x) be the radius of the maximal disk

in Ω centered at x and Sλ(Ω) = {x ∈ S(Ω)|rMD(x) ≥ λ}.
Inspired by a novel λ-medial axis in Rn [9], below we show
that the Voronoi skeleton V S(P ) is a good approximation
since it contains the skeleton of a small perturbation of Ω:

Property 8. For an ε-sampling P of ∂Ω, if λ > ε, then
Sλ(Ω′) ⊂ V S(P ), where Ω′ = (Ω⊕Dε) \ P .

Proof. We prove this property by showing that for all maxi-
mal disks MD in Ω′, ∂MD∩∂(Ω⊕Dε) = ∅. If it is not true,
let MDr(x), x ∈ S(Ω′) and r > ε, be such a maximal disk
whose boundary contains a point z ∈ ∂(Ω⊕Dε). Then in a
geodesic path from z to x in Ω′ there exists a point y ∈ ∂Ω.
By Property 1, Dε(y) ⊂ MDr(x). Since P is an ε-sampling
of ∂Ω, Dε(y) as well as MDr(x) contain at least a point in
P ; a contradiction to the fact that MDr(x) is inside Ω′.

6.3 Applications
If Ω is bounded by piecewise smooth curves in a smooth
2-manifold M, it is generally difficult to compute S(Ω)
exactly. One practical way to compute an approximation
of S(Ω) is to approximate M by a 2-manifold triangular
mesh T and use numerical solutions of Hamilton-Jacobi
equations on T [27], [30], [31]. However, these numerical
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(b) Voronoi skeletons of one connected component in the topographical
surface of North America

Granularity k=60 k = 40 k = 10 k = 5

k = 2k = 10k = 40Another view k=60

(a) Voronoi skeletons of one connected component in the topographical
surface of Asia

Granularity k=60 k = 40 k = 10 k = 5

k = 10Another view k = 60

Fig. 8. Voronoi skeletons in topographical surfaces of Asia and North
America at different granularities. Full illustrations of Voronoi skeletons
of five continents, including Africa, Asia, Europe, North America and
South America, are presented in supplemental material A.

Model name Tri. No Boundary Sample Pt. Time (sec.)
Africa 88,163 596 5.878
Asia 63,684 981 7.614

Europe 50,464 754 3.309
North America 60,788 1,158 4.211
South America 45,748 522 4.759

TABLE 1
The statistical data of computing Voronoi skeletons in topographical
surfaces in Fig. 8 and supplemental material A. The running time is
measured using a PC with Intel(R) i7-2600 CPU running at 3.4GHz.

solutions may suffer from the triangular shape and triangle
distribution in T ; e.g., the numerical error may be much
smaller in congruent triangles of equal sizes than that in
sliver triangles of non-uniform sizes. In this study, we use
the computational geometry method [20], [21] based on an
exact geodesic [19] to compute the Voronoi skeleton as a
good approximation to S(Ω). Compared to the numerical
solutions to PDEs, the computational geometry method
is accurate and not sensitive to the triangular shape and
triangles’ distribution in T .

Let V be the mesh vertex set in T . T is said to be non-
degenerated if ∀vk ∈ V , ∀pi, pj ∈ P , i 6= j, dg(vk, pi) 6=
dg(vk, pj). It was shown in [20] that if T is non-degenerated,
2D bisectors can not appear in V D(P ) and V D(P ) is a
collection of finite 1D curve segments. If a mesh T ′ is
degenerated, we can slightly disturb the positions of those
violated vertices such that the resulting mesh T is non-
degenerated. In all the examples presented in this section,
we preprocess each mesh surface T such that T is non-
degenerated.

Superior 
frontal sulcus

Inferior frontal 
sulcus

Inferior 
precentral sulcus

Superior precentral sulcus Postcentral sulcus

Intraparietal sulcus

Lateral occipital 
sulcus

Occipital 
temporal sulcus

Inferior temporal sulcus
Superior 
temporal sulcus

Fig. 9. Parts of sulcal shapes in the cortical surface of human brain.

Another view: k = 2                              k = 2

Inferior frontal sulcus: k = 6                       k = 2

Intraparietal sulcus: k=10        k = 5                       k = 2

Central sulcus: k = 20                            k = 4

Fig. 10. Voronoi skeletons of three sulci at different granularities. Full
illustration of Voronoi skeletons of 14 major sulci are presented in
supplemental material B.

Skeletons can find a wide range of applications in pattern
analysis [33], from the large scale such as the stellar ar-
rangement in galaxies to the small scale such as the pattern
representation of molecular structures. Below we present
two applications in topography and brain morphometry.

In topography, skeletons in a topographical surface can
be used to estimate a drainage network from basin bound-
aries, or estimate the lengths of mountain chains, canyons,
rivers, roads and other elongated structures. A method that
uses the medial axis in a topographical mesh was pro-
posed in [11] for designing continuous cartograms. Figure
8 shows topographical surfaces of two continents, Asia and
North America. The boundary of one connected component
in each topographical surface is sampled by points (the
number of sample points is summarized in Table 1). A
Voronoi skeleton for each boundary is computed only once
and can be illustrated at different granularities (Figure 8).
The Voronoi skeletons of five continents are illustrated in
supplemental material A. The data in Table 1 demonstrates
that the computation of Voronoi skeletons is fast; i.e., less
than ten seconds for 2-manifold meshes of nearly 100k
triangles.

In brain morphometry, recent advances have attracted



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2015.2430342, IEEE Transactions on Pattern Analysis and Machine Intelligence

SUBMITTED TO IEEE T-PAMI 8

considerable attention for constructing a graphical repre-
sentation of cortical folding patterns [35]. Skeleton-based
methods on the cortical surface became popular due to
the representation of intrinsic geometry [31]. The cortical
surface can be segmented into labeled gyri by a set of sulci
(Figure 9). We sample the boundaries of sulcal regions by
points and build the Voronoi skeletons. Figure 10 illustrates
Voronoi skeletons of three sulci at different granularities.
The Voronoi skeletons of 14 major sulci are illustrated in
supplemental material B. All sulcal shapes have hundreds of
triangles and the computation of all sulcal Voronoi skeletons
are less than one second.

7 CONCLUSION

In this paper we study the skeleton in a 2-manifold M
and show several properties that distinguish it from its Eu-
clidean counterpart in R2; i.e., the closure S(Ω) of skeleton
is not necessarily connected for a connected region Ω ⊂ M
and a skeleton inM may have no medial axis points at all.
We prove that when a sequence {Ωi} converge to a shape
Ω ⊂ M, the mapping Ω → S(Ω) is lower semi-continuous.
Finally some applications of these results on sample-point-
based Voronoi skeleton approximations are presented.
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