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Plant Phenotyping by Deep-Learning-Based Planner
for Multi-Robots

Chenming Wu , Rui Zeng, Jia Pan , Charlie C. L. Wang , and Yong-Jin Liu

Abstract—Manual plant phenotyping is slow, error prone, and
labor intensive. In this letter, we present an automated robotic sys-
tem for fast, precise, and noninvasive measurements using a new
deep-learning-based next-best view planning pipeline. Specifically,
we first use a deep neural network to estimate a set of candidate
voxels for the next scanning. Next, we cast rays from these voxels
to determine the optimal viewpoints. We empirically evaluate our
method in simulations and real-world robotic experiments with up
to three robotic arms to demonstrate its efficiency and effective-
ness. One advantage of our new pipeline is that it can be easily
extended to a multi-robot system where multiple robots move si-
multaneously according to the planned motions. Our system sig-
nificantly outperforms the single robot in flexibility and planning
time. High-throughput phenotyping can be made practically.

Index Terms—Agricultural automation, multi-robot systems,
computer vision for automation.

I. INTRODUCTION

P LANT phenotyping is an active research area that bridges
genotypes and phenotypes. Nowadays, genomics research

can yield a lot of information. Unfortunately, the data gener-
ated by sequencing technology far exceeds the current capacity
of plant phenotyping [1]. Traditional plant phenotyping heavily
relies on laborious and expensive manual operations [2]. It is es-
sential to facilitate phenotyping in efficiency and effectiveness
so that researchers working on plant genomes can easily real-
ize the agricultural promise of plant genomics. As an example,
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breeders usually use phenomic data to study the problem of im-
proving crop yields [3]. Plant phenotyping assesses a variety of
plant traits such as growth, development, tolerance, resistance,
architecture, physiology, ecology, height, leaf shape, etc. [4],
most of which must be measured on a complete 3D model [5].

However, the clutter and occlusion problems caused by nat-
urally grow of plants make phenotyping challenging. It is also
difficult to develop a general prototype for a variety of plants. A
few works (e.g., [6], [7]) specify fixed viewpoints for the robots
to solve the phenotyping problem, apparently requiring repeated
fine-tuning of almost every plant. With the development of in-
telligent robots and computer vision, developing automated sys-
tems to improve traditional phenotyping becomes possible, and
some automated phenotyping systems have been proposed in the
past years. These results have greatly accelerated the breeding
process and genetic analysis of precision agriculture.

Next-best view (NBV) planning is a general method in
robotics that tries to collect information of an unknown object.
The goal of NBV planning is very similar to the one of plant phe-
notyping. Typically, NBV is achieved by searching for the best
viewpoint of the sensors mounted on robots over a set of candi-
date viewpoints, to maximize the expected gain of information
(i.e., minimize expected entropy). However, conventional NBV
algorithms are designed for general 3D exploration tasks, which
only consider the enclosed volume as a solid. Conversely, plant
phenotyping tasks have stronger prior knowledge – the struc-
ture of the plant. In this letter, we make an effort to improve the
effectiveness of the NBV algorithms in plant phenotyping by
incorporating the prior knowledge of plant structure.

In this letter, we propose to use deep learning technique to
learn the underlying structure of plants. After having the priors of
learned structure, we design a new method to compute next-best
viewpoints accordingly. A promising advantage of this method
is that it can be easily extended to multi-robot systems. Specifi-
cally, we develop such a system equipped with multiple robotic
arms that can be manipulated simultaneously (see Fig. 1). To
demonstrate the functionality of a multi-robot system in plant
phenotyping, we apply the proposed NBV planner to achieve
better performance compared to conventional NBV methods.
Our system solves phenotyping problem generally without mak-
ing any assumption about the type of phenotypic data. In sum-
mary, we make the following contributions:
� An efficient NBV planning method based on deep learn-

ing, which takes advantage of the structural prior of plants
and provides a way for computing the information gain of
candidate viewpoints.
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Fig. 1. An overview of our multi-robot system for efficiently completing the
plant phenotyping tasks. The picture on the left shows the system setup, which
consists of three UR-5 robot arms with a fixed base. The figure on the right
shows the results obtained by positioning the sensors to different viewpoints by
our deep network based NBV planner.

� A practical solution that can easily extend the proposed
learning-based NBV planning method from a single robot
to a multi-robot system that does not sacrifice too much
speed of planning.

Experimental tests have demonstrated that our approach can
obtain results with better completion. The rest of this letter is
organized as follows – Section II reviews literature, Section III
presents an overview of our robotic phenotyping system;
Section IV explains the deep NBV planner; Section V describes
all experiments conducted on our system, including both the
simulation and the real environment results; future works and
conclusion are given in Section VI.

II. RELATED WORK

This section briefly reviews the relevant research of plant phe-
notyping from three perspectives – robot-assisted phenotyping,
deep-learning-based phenotyping, and NBV planning.

A. Robot-Assisted Phenotyping

Compared to laborious phenotyping, the rapid development
of robotics has significantly facilitated plant phenotyping in
many ways. In the early stage of robot-assisted phenotyping,
plants are grown on top of the conveyor system and are auto-
matically transferred to an X-Y scanning cabinet on a regular
basis [8]. Lemnatec [9] has built automated phenotyping plat-
forms for laboratory, greenhouse, and outdoor scenes. The plat-
forms comprise various sensors for phenotyping. Ruckelshausen
et al. [10] propose an autonomous on-site robot platform, namely
BoniRob, which can be used in single-plant phenotyping. Alenyà
et al. [11] develop a single-robot system for probing plant leaves
from different viewpoints, followed with an NBV-based plan-
ning method for actively exploration [12]. Muller-Sim et al. [13]
invent a field-based mobile system called as Robotanist that navi-
gates under the canopy of row crops for outdoor high-throughput
phenotyping. Sa et al. [14] design an autonomous crop harvest-
ing system consisting of a robotic arm and equipped cutting
tools, harvesting the pepper.

One major problem in single robot systems is the limited
flexibility (i.e., the reachability of a robotic arm). To solve this

problem, a new idea is emerged to manipulate multiple robots
simultaneously or asynchronously. As a result, effectiveness or
efficiency or both can be improved. To the best of our knowl-
edge, only Gao et al. [15] attempt to incorporate multi-robot
systems into phenotyping. They design a team of AGV robots
to collect several soybean canopy images in outdoor fields. In
contrast, we target at phenotyping in laboratory environments.

B. Deep-Learning Based Phenotyping

Autonomous robots significantly reduce human intervention
when collecting phenotypic data. Post-processing is crucial to
translating it into an interpretable knowledge for agricultural
experts. Many efforts have been devoted to the interpretations.
We refer the interested readers to a comprehensive review [16]
because of space constraint. However, the use of deep-learning
techniques to guide robot manipulations in-situ has yet to receive
widespread acceptance for robot-assisted phenotyping tasks.
McCool et al. [17] design a lightweight deep network for real-
time weed segmentation for robotic weeding-decision making.
The system proposed in [14] uses a deep neural network to de-
tect peduncles of sweet peppers for harvesting. Milioto et al. [18]
propose a Convolutional Neural Network (CNN) network for a
similar weeding purpose by leveraging background knowledge.
Parhar et al. [19] use a variant of Generative Adversarial Net-
work (GAN) for in-situ sorghum stalk detection and grasping.

C. Planning for Next-Best View

An intelligent and complete phenotyping system requires an
algorithm to drive. However, most existing phenotyping robots
lack this. The underlying problem of plant phenotyping is con-
ceptually similar to a particle application of NBV. In the line
of NBV planning (note that we only discuss non-model based
NBVs in this letter), existing methods mainly rely on frontier-
based exploration, where the sensor is iteratively moved to a
viewpoint that maximizes information gain [20]. The measure-
ment of the information gain is calculated in the domain of
either volumetric-space (ref. [12], [21]–[24]) or surfel-space
(ref. [25]). The idea behind volumetric-NBV is simple yet ef-
fective: the target 3D object is enclosed with an occupancy grid
and act space carving progressively until reaching a specific
termination criterion. Our work is established on top of it but
additionally uses well-defined plant structural information.

It is worth noting that the deployment of multi-robot sys-
tems for phenotypic analysis, including mechanical design and
algorithms, is still in its infancy. We address this challenging
problem and propose a scalable NBV planner for single-robot
or multi-robot phenotyping system.

III. MULTI-ROBOT SYSTEM

We develop a multi-robot plant phenotyping system having
three robotic arms, where each is equipped with an RGB-D sen-
sor [26]. RGB-D sensors not only provide images with a reason-
ably high resolution, but we can reconstruct the global informa-
tion of plants to which images can be registered. The collection
of global and local data is useful for us to extract phenotypic
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characteristics further. The robots can move simultaneously by
following the planned collision-free trajectories. Our system is
governed by the deep-learning based NBV planner, which su-
pervise the operation of the motion planning module and the
trajectory execution module.

A. Hardware

Our system consists of three robotic arms (UR-5), where each
arm is equipped with a depth camera (Intel RealSense SR-300)
in its eye-in-hand configuration. UR5 controllers connect to an
adaptive switchboard with 100 Mbps Ethernet interface, which
ensures low latency. The SR-300 depth cameras connect to a
USB 3.0 hub with an external power source. The USB hub keeps
communications with a PC running our software. All robots
move simultaneously in each round of data acquisition for effi-
ciency.

B. Software

The core part of the software in our system is a deep-learning
based NBV planner, which is responsible for evaluating and
selecting the most promising viewpoint for each round of data
acquisition. Viewpoints in Cartesian space are planned as trajec-
tories that can be executed simultaneously by the system. The
low-level software components used to control the operation of
our system are based on the Robot Operating System (ROS).
Integrated information of plant leaves can be progressively up-
dated after a post-processing step, including noise filtering and
registration. As the major technical contribution of this letter, the
deep-learning based NBV planner consists of two parts. First, a
deep network that can predict the ‘full’ shape of a scanned model
(in the form of a point cloud Yo) from the partially scanned point
cloudX . The predicted shape Yo provides additional clues to the
second part of our planner to update the probability map for su-
pervising the planning algorithm to score the candidate viewing
points.

IV. DEEP NBV PLANNER

The next-best viewpoint is defined as the one that can provide
the maximum amount of information for the plant phenotyping.
An NBV planner selects the next-best viewpoint v∗ from a set of
candidate viewpoints V by maximizing information gain. Pre-
vious NBV approaches usually cast a set of rays {r} from each
viewpoint v within V , where the quantity and silhouette of {r}
depend on sensors. Each ray is intersecting with the surround-
ing environment to determine the information gain required for
making NBV decision. The surrounding environment is often
described as an enclosed bounding volume (e.g., box, sphere)
around a point-of-interest (POI) in a workspace W , which en-
codes the prior knowledge about the plant phenotyping task,
called the workspace prior in our letter. The enclosed bound-
ing volume M is usually represented by octomap [27], which
is a widely-used grid structure in which each voxel x ∈ M has
a probability to encode its status as occupied, free or unknown.
Each ray r traverses all voxels and finally ends up by either reach-
ing an occupied voxel or exceeding the maximal distance itself.

After casting all rays from v and traversing M, each ray r will
give a set of intersected voxels as Xr ⊂ M. An entropy-based
evaluation process is applied to {v} through an objective func-
tionEv . In particular, we use the Occlusion Aware VI model [28]
and the definition of the information gain of a single ray Er is:

Er =
∑

x∈X
Pv(x) ·

(−P (x) lnP (x)− P̄ (x) ln P̄ (x)
)

(1)

where P (x) is the estimated probability of a voxel to be occu-
pied given all measurements and Pv(x) is the pi-productions of
P̄ (·) of all intersected voxels traversed before x and P̄ (x) =
1− P (x). By summing up the information gains of all relevant
rays, we obtain the following entropy model:

Ev =
∑

r

Er (2)

Among all the sampled viewpoints, the next-best-view v∗ can
be selected:

v∗ = argmaxEv. (3)

After obtaining the best viewpoint v∗, the robot positions the
sensor at v∗ and updates the occupancy map M using the cap-
tured information. Specifically, the probability value P (x) of a
voxel x ∈ M is updated by the log-odds rule [27]. The above
steps are repeated until the termination criterion is met.

Traditional NBV planning methods generalize well in real-
world scenarios, but they lack the task-specific information.
For example, although plants grow naturally, high-level spatial
structures, such as leaf size and distribution, should follow spe-
cific probabilistic rules. Such plant-specific knowledge should
be combined withM in voxel-space to improve the efficiency of
NBV planning. Our solution is to train a deep neural network to
predict plant-specific information to help with NBV planning.
The predicted result is also in the form of a set of voxels. Unlike
the ray-casting strategy in traditional NBV planning, our ap-
proach casts rays from voxels to viewpoints to achieve efficient
planning.

A. Deep Network for NBV

As mentioned, we design a deep network N (·) to supplement
task-specific information for NBV planning. In this section, we
describe the architecture of our proposed network model and
the way to incorporate the output of the model with the NBV
planner’s probabilistic map M.

1) Network Architecture: Our network is based on the re-
cently proposed Point Completion Network (PCN) [29] but with
the capability of predicting the confidences of completed points.
However, point cloud completion and confidence inference can-
not be trained as a unified task because the value is measuring
how close a predicted point to its ground-truth is variable. We
separate this task into two different branches and design a new
network inspired by multi-task learning (MTL) [30]. The first
branch of our network is similar to the original PCN, which
uses an encoder-decoder structure to complete a partial point
cloud X , with no requirement for any structural assumptions or
annotations. The predicted result of this branch is Yo ∈ Rm×3,
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Fig. 2. The network we use for generating point clouds with confidences. An encoder-decoder network – PCN first takes a partial point cloud X obtained by the
sensors as input. The encoder module is responsible for generating a global feature v for the decoder and our proposed probability branch. The decoded result is
also concatenated with the global feature to learn the confidence of the output predicted point. Yo is the point cloud produced by the part of original PCN, Yp is
Yo combined with confidences produced by the probability branch and Ygt is the ground truth point cloud.

Fig. 3. An illustration of computing the next-best viewpoint using our pro-
posed method. (a) The occupied voxels of M are shown in green, and the
occupied voxels of M̄ is shown in yellow. (b) Our method casts rays from every
voxel in M̄ to the candidate viewpoints, accumulating the information gain of
all traversed unknown voxels using Eq. 1. The red rays either fall outside of
FOV or be blocked by occupied voxels (shown in green) in M.

where m is the number of points. The predicted point cloud Yo

can capture low-level geometric details and thus can encode the
plant-specific knowledge in the voxels. The second branch of our
network is the probability branch that outputs the confidence or
probability values of each predicted point in Yo. In particular, we
first concatenate the global features v ∈ Rk (k = 1024) (i.e., the
output of the encoder) in the first branch and the decoded point
cloud Yo. The stacked vectors are then sent through a multi-layer
perceptron (MLP) that has three linear layers with the sigmoid
activations. The MLP will generate a probability vector of vp as
the output of the second branch to describe the confidence of the
prediction Yo. The final output Yp of the entire architecture is the
concatenation of Yo and vp: Yp = [Yo, vp] ∈ Rm×4. The entire
pipeline for the network described above is shown in Fig. 2.

2) Loss Function: For the first branch, we use the same loss
function Lo as proposed in the original PCN, which measures
the distance between the predicted point cloud Yo and the under-
lying ground truth Ygt. For the second branch, the loss function
Lp measures the difference between the confidence of the pre-
dicted point cloud provided by the second branch and a desired

confidence about the point cloud, which is computed accord-
ing to the nearest point-to-point distance between the predicted
point cloud Yo and the ground truth point cloud Ygt. In partic-
ular, given a point x ∈ Yo, the desired confidence is computed
as v∗p(x) = miny∈Ygt

e−λ‖x−y‖2 . This formulation gives us real
value in the range of [0, 1], which can be regarded as a prob-
ability value as well. The confidence loss function Lp is then
defined as:

Lp =
1

|Yo|
∑

x∈Yo

|v∗p(x)− vp(x)|2, (4)

where λ is a scaling parameter for fitting different scales of
plants, and it is set as the diagonal length of the occupancy
map M.

3) Training Strategy: As we mentioned before, the ground-
truth of a predicted point is variable during the training of the
PCN branch. In the design of our MTL-based network, we adopt
hard parameter sharing strategy [31] to train the probability
branch. In hard parameter sharing, a portion of the parameters
is shared among different tasks, while the other parameters are
task-specific. In our case, the trained hidden layers of the PCN
branch are sharing to the probability branch, whose layers are
completely task-specific. Therefore, the two different tasks must
be trained in a fixed order. More specifically, we have to train
the PCN branch before the probability branch.

4) Oracle Generation: The output Yp of the deep network is
a point cloud with confidence values. It can be used to derive a
distribution about the possible occupancy status of the voxels,
which should be accessed by the sensor’s rays. In this letter,
we name this useful information for NBV planning as oracle.
Voxels encoded with free status in M should have a low proba-
bility of being accumulated by a set of measurements of sensors.
Our deep network may mispredict these voxels. Considering the
map M that has been built, the conservative strategy of oracle
generation should remove these voxels. As a result, it should pro-
vide instructions to the NBV planner where the possible voxels
that need to be accessed are. Given the combination of scanned
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Fig. 4. A comparison of M̄ generated with/without the probability branch.
Some predicted points are not as precise as expected, so there are incorrect
points in black rectangles. (a) The predicted point cloud with probability (from
low to high: blue - red) (b) M̄ generated by point cloud only (c) M̄ generated
by using probability – incorrect predictions are shown in gray.

point cloud X , we first use the proposed network to generate
a full point cloud with confidences as Yp. To accommodate the
input size of the network, we resize X to X ′ through adaptive
downsampling to feed the network. We use Yp to update M and
get a new probabilistic map Gp using the log-odds rule [27].
Since there is no explicit correspondence between the input and
output of the trained model, the overlap may exist so we must
draw a clear line to make oracle more especially effective. To
this end, we compute the difference between all occupied voxels
in Gp and all occupied voxels in M, and finally the oracle M̄
is built, which is defined as a 0-1 binary grid, a voxel in M̄ is
either occupied or free. Adding this probability branch is to com-
bine long-term measurements and network predictions – i.e., a
voxel has been measured as empty for many times should not
be regarded as occupied even if the network predicts it is. This
branch not only provides the confidence distribution of a pre-
dicted point cloud but also seamlessly bridges the deep-network
to NBV planners who use a log-odds rule as the updating strat-
egy. Our probability branch provides the capability of weighting
the predicted point cloud that we use to generate M̄ – see the
comparison in Fig. 4.

B. Oracle-Informative Planning

The oracle generated by the above steps is used to guide NBV
planning. Ideally, the optimal next-best viewpoint v∗ can fully
observe all voxels in M̄ because M̄ gives a sufficient estimation
of the locations for next scanning. In other words, a ‘good’ view-
point should cast more rays to cover voxels in M̄. However, we
refer to this situation as ‘optimal’ because it is practically impos-
sible due to realistic limitations, such as self-occlusions and the
limited field-of-view (FOV) of the sensors. Instead of looking
for an ‘optimal’ solution, our planning scheme chooses to find
a practical solution that is close to the ‘optimal’ case.

1) Planning Algorithm: Our proposed planning algorithm
tends to choose the viewpoint v which can be seen by more
voxels in M̄ with ‘1’ attribute. Traditional NBV approaches
usually cast rays from all candidate viewpoints to M. By con-
trast, our search algorithm traces the casting rays from voxels
with ‘1’ attribute in M̄. We connect each voxel in M̄ with each
candidate viewpoint to constitute a set of back-tracing rays {r′}.
Specifically, for a voxelx and a viewpoint v, a ray r′ := (x → v)
is feasible if it falls into the FOV region FOV (v) of v, which
is described by standard pinhole models. The information gain

of Ev contributed by x is computed in the domain of M∩M̄
using Eq. 2. We also provide a pseudo code in Algorithm 1.

2) Planning Space: The state-of-art NBV methods such
as [22], [23] predefine a bounding geometry and assume that
it is able to cover the target object completely. We also follow
this assumption to define the search space and choose to sample
candidate viewpoints on a sphere around POI with a fixed radius
R. The feasibility of a view can be determined by the kinematic
model of the robot, together with W . The analysis of feasibility
can eliminate unnecessary views in advance.

C. Termination Criterion

It is important to define a termination criterion in NBV plan-
ning because there is no explicit expression that can be used to
terminate the search. Similar to [23], [24], we define a simple
termination criterion to complete the NBV planning, as shown
below.

Ev∗ < qthres (5)

where qthres is a user-defined threshold of the lowest informa-
tion gain that can be accepted.

D. Extend to Multi-Robot Systems

Mobile robots with eye-in-hand sensors, such as the on used
in [22], can use uncertainties to reconstruct complex objects
flexibly. However, robotic arms with fixed bases are limited by
flexibility (i.e., reachability). If people want to use robotic arms
in plant phenotyping, a better solution would be adopting more
robotic arms in different setups of bases. For instance, we use
three robotic arms at the same around the target plant, as de-
scribed in Sec. III. The problem of extending single robots to
multi-robot systems contains a set cover problem [32], which
is NP-hard [33]. Due to the difficulty, we decided to propose
a practical solution to this problem. It is worth noting that the
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most challenging part of this problem is to design an efficient
algorithm to avoid overlapped viewpoints as the exact overlaps
can only be identified by updating the occupancy map. To this
end, we propose a heuristic algorithm as follows.

We design the algorithm based on the preference for paying
less attention to a voxel of M̄ if it has been used to select other
viewpoints. Let N be the number of robotic arms. We first gen-
erate a search space by sampling the candidate viewpoints for
all N sub-robots (see Fig. 6 for an N = 3 example). Then we
apply the proposed NBV planning algorithm on all candidate
viewpoints to obtain a matrix A ∈ Rp×q (see above). The rows
of A are oracle voxels {xi}, the columns of A are candidate
viewpoints {vi}, and A(i, j) is the information gain contributed
from voxel i to viewpoint j. The sum of each column of A can
be used to select next-best viewpoints. We repeat the following
steps until N next-best viewpoints are generated.
� Take the tth viewpoint with the largest col-wise sum value;
� Set all columns whose corresponding viewpoints are be-

longing to the same robot of tth viewpoint to zero;
� Multiply an adaptive decayγ = ln 2−A(s, t) to every row
s whose A(s, t) 	= 0 to decrease the risk of overlapping.

V. EXPERIMENTAL RESULTS

We now present the experimental results of our system. Since
the ray-castings are embarrassingly parallel, all the proposed al-
gorithms are implemented on GPU architecture with the help of
GPU-Voxels library [34], including the method we implemented
for comparison. All tests are run on a PC with Intel(R) Xeon(R)
Gold 6146 CPU @ 3.20 GHz, 128 GB RAM and NVIDIA Titan
V. We test the deep-learning based NBV planner on simulations
and provide a real-world demo with a multi-robot setup.

A. Dataset and Training

An obstacle to adopting deep networks in plant phenotyping
is the lack of data. It is an onerous task to collect point clouds
of plants as ground truth manually. In this letter, we use ng-
Plant [35] to synthesize data. ngPlant is a parametric synthesis
tool for plants. We randomly assign parameters such as branch-
ing angles and offsets to synthesize different plants. Instead of
using the original 2D texture to represent leaves, we apply De-
launay triangulation on the texture to convert them to meshes.
The synthesized meshes are then converted to point clouds by
uniformly sampling. We reserve 150 models for validation and
100 models for testing. The rest 610 models are used for train-
ing. The resolution of occupancy map M is 0.04 m. We render
the plants at different viewpoints using a standard pinhole cam-
era model (Intel(R) Realsense(TM) SR300 @ 640 × 480). The
partial point clouds can be obtained by extracting values from

TABLE I
COMPUTATIONAL STATISTIC OF EACH ROUND

the depth-buffer and applying intrinsic and extrinsic parameters.
The network is trained by using the Adam optimizer. The first
training pass for the PCN branch takes original training settings
from [29] for 53 epochs. Then we train the probability branch
using 10−4 learning rate, and it is converged after 263 epochs
(around 15 hours).

B. Simulation Experiments

In our simulations, we assume robots can completely cover the
search space (i.e., plants) though this is not achievable because
of robots’ reachability in reality. We compare our method with
the traditional NBV planning approach using the same entropy
model (i.e., Occlusion Aware VI). The evaluations are conducted
on different choices of the number of robots N , from 1 to 3, for
ten trails. To clarify the experimental results, we define a metric
to calculate the precision (i.e., surface coverage rate) between
the ground truth point cloud S1 and the point cloud S2 measured
by sensors as follows.

P (S1, S2) =
1

|S1|
∑

x∈S1

U

(
min
y∈S2

||x− y||2 − ε

)
(6)

where U(·) is the Heaviside step function, and ε is the distance
threshold used to determine if a point in S2 has already been
captured. All simulations use ε = 5× 10−5.

Though our method and the traditional method using the same
entropy model, the termination criteria are hard to be the same
due to different evaluation processes. To fairly compare our
method with the traditional method, we compute the average
entropy value when both algorithms achieve 85% coverage rates
on the same plants and use them as the termination criteria. A
comparison of computational statistics between our proposed
method and the traditional NBV approach (the basic pipeline
in [22] with the Occlusion Aware VI entropy model) is shown in
Table I, and our proposed method shows a promising speed, al-
though it has an additional inference step taken by the deep neu-
ral network. Experimental results show that our method yields
better results than the traditional NBV approach. Even if the pre-
cision of initialization step (randomly initialized in simulations)
is lower than the traditional NBV method, the final result will
be superior to the traditional NBV method, which proves the ef-
fectiveness and efficiency of our proposed method. An example
of comparisons w.r.t. precision P (S1, S2) is shown in Fig. 7.

The average accuracy of point cloud predicted by the network
can be measured by Chamfer Distance (CD), and Earth Mover
Distance (EMD) [29], and they are 0.02617 and 0.28637 respec-
tively. We also provide the results measured by the same metrics
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Fig. 5. The progressive views of plant phenotyping by our multi-robot. These pictures are taken when our multi-arm system is running the proposed deep NBV
planner. The last column depicts the resultant point cloud of the plant. One can watch the accompanying video for a full illustration.

(CD and EMD) as a function of how much the progress of plant
phenotyping in Fig. 8.

C. Real-World System Deployment

1) Motion Planning: The low-level component of our soft-
ware adopts the RRT-Connect algorithm [36] to plan motions,
which interchangeably builds two trees to connect the start and
goal configurations. Considering the high-dimensional problem
introduced by multi-robot, it is easy to plan viewpoints but fails
to succeed in most cases. In our system, we ease the problem
with the following strategies.

1) It is not necessary to sample all candidate viewpoints in
situ, and we presample these viewpoints using an ana-
lytically inverse-kinematic solver. We add the maximal
enclosed volume (the workspace prior used in NBV plan-
ning) to the environment to avoid collisions.

2) The initial configurations of our robots in each round of
phenotyping are fixed. We compute the initial configu-
rations by finding the minimal one whose corresponding
configurations have minimal L2 distances over all others.

3) We use the planner [36] to generate trajectories between
the target and the initial configurations for all robotic
arms simultaneously and remove the viewpoints whose
corresponding configurations cannot be planned within
tmax = 40 seconds.

By using these rules, the successful rate of motion planning
can significantly increase from less than 10% (i.e., randomly
generating initial viewpoints without using any rules mentioned
above) to 94.2%.

We pre-sampled 100 viewpoints for each of the three robots.
It takes around 24 hours to generate motions on four PCs. The
motion planner takes 0.238 second for each trajectory on aver-
age. We build a database to store the planned trajectories, and
they can be queried in real-time during phenotyping.

2) Camera Calibration: The static transformation between
the mounted sensor and the end-effector should be well cali-
brated; otherwise, the point cloud cannot be deployed to the cor-
rect location. Moreover, the relative positions of robots should
also be calibrated for collision avoidance. We use the classic
hand/eye calibration method [37] to randomly acquire a set of
poses for each robot to track an AR marker for calibration. The
calibrated results are fine-tuning multiple times until a satisfac-
tory result is obtained.

3) Results: The progressive views of our real-robot experi-
ment are shown in Fig. 5 , the scanned result is also shown in the

Fig. 6. In a multi-robot system with N = 3 sub-robots, we sample candidate
viewpoints on a sphere using an analytically inverse-kinematic solver.

Fig. 7. Comparisons between our proposed NBV method and a traditional
NBV method in phenotyping a test plant (N = 1, 2, 3). The results show that
although the initial precision of our approach is lower than the conventional
NBV, our proposed method rapidly outperforms traditional method and shows
a larger AUC value. The results are averaged over ten trials each for making the
comparison fair.

Fig. 8. The progressively measured Chamfer Distance (CD) and Earth Mover
Distance (EMD) [29] on the generated results of our network-based planner.

right-most column of the same figure. We also provide a video
in the supplementary material to explain the proposed planner
and demonstrate the physical experiments.

VI. CONCLUSION AND FUTURE WORK

In this letter, we present an automated robotic system for fast,
precise, and noninvasive plant phenotyping. We propose a deep-
learning based NBV planner to compute next-best viewpoints.
The planner first uses a deep neural network to estimate a set of
candidate voxels for next scanning, and then cast rays from these
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voxels to determine the viewpoints to be positioned with sen-
sors. Our proposed learning-based NBV planning method can
be easily extended from a single-robot to a multi-robot system
without sacrificing too much speed of planning. The results of
our experimental tests are encouraging and prove that the system
can advance the high-throughput phenotyping research.

Our system has a disadvantage that it heavily relies on the
trained deep networks; if the networks cannot produce com-
pelling predictions, the system may not be able to give next-best
viewpoints. We plan to solve this problem by incorporating the
deep NBV planner with other planners by scheduling them at dif-
ferent stages [38]. We plan to use this system to build a complete
dataset in terms of plant phenotyping and conduct quantitative
analysis.
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