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Abstract

This paper presents a novel method for real-time homogenous translucent material editing under fixed illumi-
nation. We consider the complete analytic BSSRDF model proposed by Jensen et al. [JMLH01], including both
multiple scattering and single scattering. Our method allows the user to adjust the analytic parameters of BSSRDF
and provides high-quality, real-time rendering feedback. Inspired by recently developed Precomputed Radiance
Transfer (PRT) techniques, we approximate both the multiple scattering diffuse reflectance function and the sin-
gle scattering exponential attenuation function in the analytic model using basis functions, so that re-computing
the outgoing radiance at each vertex as parameters change reduces to simple dot products. In addition, using a
non-uniform piecewise polynomial basis, we are able to achieve smaller approximation error than using bases
adopted in previous PRT-based works, such as spherical harmonics and wavelets. Using hardware acceleration,
we demonstrate that our system generates images comparable to [JMLH01] at real-time frame-rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms; I.3.7
[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Translucent materials can be found almost everywhere in
our daily life, such as marble, milk, bread, wax, paper, jade,
etc. Traditionally, computer rendering of 3D objects is based
on the BRDF (Bidirectional reflectance distribution func-
tion [NRH∗77]) model, which assumes that light enters and
exits surface at the same point. However, BRDF cannot
model translucent materials well as they exhibit significant
light scattering below surface, which is known as subsurface
scattering. Subsurface scattering effects can be simulated ac-
curately using a number of offline techniques, but it may take
hours to render a frame. Jensen et al. [JMLH01] proposed an
analytic BSSRDF (Bidirectional subsurface reflectance dis-
tribution function [NRH∗77]) model approximation for sub-
surface scattering, which speeds up the rendering by 2 or-
ders of magnitude (i.e., from hours to minutes). This break-
through work has led to the popularity of translucent mate-
rials in 3D applications, and a great demand has arisen for
interactive translucent material design.

In this paper, we present a real-time rendering system for
homogenous translucent material editing. Our system con-
siders the complete analytic BSSRDF model proposed by

Jensen et al. [JMLH01] that includes both multiple scatter-
ing and single scattering effects. We allow the user to dy-
namically change the parameters of the analytic model (e.g.,
the scattering coefficient, the absorption coefficient, and the
phase function) under fixed environment lighting while pro-
viding high-quality rendering feedback at real-time frame-
rates. Using the system, a designer can easily adjust the look
of a translucent material, ranging from glassy, jade to porce-
lain, as well as lighting effects such as forward and backward
scattering.

Our work is inspired by Precomputed Radiance Trans-
fer (PRT), first introduced by Sloan et al. [SKS02]. PRT-
based methods reduce the costly integrals in lighting com-
putation to simple dot products by approximating environ-
ment light and light transport functions using weighted sum
of basis functions. In our work, we approximate the multiple
scattering diffuse reflectance function and the single scat-
tering exponential attenuation function in the analytic BSS-
RDF model using a non-uniform piecewise polynomial ba-
sis. Prior to each editing session, the transport functions due
to these basis functions can be precomputed and efficiently
stored. During each session as the user changes the para-
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meters to the analytic model, the outgoing radiance at each
vertex is obtained as a simple dot product between the trans-
port functions and the basis function coefficients, which can
be quickly obtained once at each rendering frame.

Contributions In the context of recent works on interactive
rendering of homogenous translucent materials [LGB∗03,
MKB∗03, HV04] and on using PRT for rendering acceler-
ation [SKS02,NRH03,WTL05,BAOR06], we see this work
make the following contributions:

• We extend the PRT techniques onto Jensen’s analytical
BSSRDF model, and show that the outgoing radiance un-
der fixed environment lighting and varying parameters
(e.g., the scattering coefficient, the absorption coefficient,
and the phase function) can be efficiently computed us-
ing basis function approximation of the multiple scatter-
ing diffuse reflectance function and the single scattering
exponential attenuation function. .

• We show that a well-designed non-uniform piecewise
polynomial basis better approximates both the multiple
and single scattering components in the analytical BSS-
RDF model than previously used bases in PRT methods,
such as spherical harmonic bases and wavelet bases.

• Based on the theoretical results, we present an interac-
tive system for editing homogenous translucent materi-
als. Through precomputation and hardware acceleration,
the system provides real-time, high-quality rendering of
both multiple and single scattering effects with dynami-
cally changing BSSRDF parameters.

2. Related Work

Translucent Materials: Subsurface scattering effects can
be simulated using a number of offline techniques [HK93,
Sta95, JC98, DEL∗99, PH00, LPT05]. While capable of pro-
ducing impressive renderings, these methods are slow and
typically require several hours to render one frame. To im-
prove speed, Jensen et al. [JMLH01] proposed an efficient
solution for homogenous materials. They formulated the
complete BSSRDF as the sum of a single scattering and a
multiple scattering component, and approximated the multi-
ple scattering using a dipole diffusion approximation (see
detailed discussion in Section 3). Although Jensen’s im-
provement performs 2 orders of magnitude faster than pre-
vious Monte Carlo path tracing techniques, it still takes
minutes to render a frame. Later, Jensen et al. [JB02] pro-
posed a two pass hierarchical method to accelerate the com-
putation of diffusion approximation, which further reduces
the rendering time to seconds per frame.

To achieve interactive or even real-time rendering of ho-
mogeneous materials, the work of Lensch et al. [LGB∗03]
and Hao et al. [HV04] approximated Jensen’s BSSRDF
model based on the observation that multiple scattering

falls off exponentially. However, these work do not per-
mit interactive editing of material parameters. Mertens et
al. [MKB∗03] proposed a hierarchical boundary element
method for interactively rendering deformable translucent
meshes. Their method allows the user to change light, view,
geometry as well as material parameters at interactive frame-
rates. However, their method is limited to handling only mul-
tiple scattering.

Precomputed Radiance Transfer: Precomputed radiance
transfer framework for static scenes was first introduced by
Sloan et al. [SKS02], and has been extended in a number
of works to accelerate rendering of low-frequency [SKS02,
SLS05] or all-frequency [NRH03, TS06] effects. In particu-
lar, Ben-Artzi et al. [BAOR06] proposed a real-time BRDF
editing method based on PRT, where the BRDF functions
are approximated by a linear combination of Daubechies
wavelet basis. To further address subsurface scattering ef-
fects, PRT has been extended to include Jensen’s analytic
BSSRDF model by Sloan et al. [SHHS03] and by Wang
et al. [WTL05]. While the former uses a non-physically
based approximation (a glossy BRDF) to the single scatter-
ing components in the BSSRDF model, the latter consid-
ers the complete model with both multiple and single scat-
tering components and decomposes the phase function into
view- and light- independent parts in order to achieve view-
dependent single scattering effects. In both methods, basis
functions (spherical harmonics basis [SKS02] or wavelet ba-
sis [WTL05]) are used to approximate the environment light-
ing, so that interactive or real-time rendering is achieved
under dynamically changing lighting. Unfortunately, these
works do not allow efficient change of the analytic BSSRDF
parameters.

3. Background

In this section, we review the necessary background
of the analytic BSSRDF model proposed by Jensen et
al. [JMLH01]. The analytic BSSRDF describes the outgoing
radiance at point xo in direction ωo as the sum of a multiple
scattering component (Ld) and a single scattering component
(L(1)
o ):

Lo(xo,ωo) = Ld(xo,ωo)+L(1)
o (xo,ωo) (1)

The multiple scattering component is approximated using
dipole source approximation as:

Ld(xo,ωo) =
1
π
Ft(η,ωo)

�
A
Rd(‖xo− xi‖)I(xi)dA(xi) (2)

where the incoming irradiance of point xi, I(xi), has the form

I(xi) =
�

2π
Ft(η,ωi)L(xi,ωi)(ni ·ωi)dωi, (3)
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Rd Diffuse reflectance function
E Exponential attenuation function
Ft Fresnel transmittance
η Relative index of refraction
σs Scattering coefficient
σa Absorption coefficient
g Mean cosine of the scattering angle
p Normalized phase function
σt = σa+σs extinction coefficient
σ′
s = (1− g)σs reduced scattering coefficient

σ′
t = σa+σ′

s reduced extinction coefficient
α′ = σ′

s/σ′
t reduced albedo

σtr =
√

3σaσ′
t effective extinction coefficient

Fdr = −1.440/η2 +0.710/η +0.668+0.0636η
A= (1+Fdr)/(1−Fdr)
zr = 1/σ′

t , zv = zr(1+4A/3)
r = ‖xi− xo‖
dr =

√
r2 + z2r ,dv =

√
r2 + z2v

Table 1: Selected Symbols

and the diffuse reflectance function Rd is computed as

Rd(r) =
α′

4π
[zr(σtr+

1
dr

)
e−σtrdr

d2r
+ zv(σtr+

1
dv

)
e−σtrdv

d2v
]

(4)
Here, L(xi,ωi) is the incident radiance of point xi in the di-
rection ωi, ni is the normal direction at xi, and the other sym-
bols are explained in Table 1.

The single scattering component is defined as

L(1)
o (xo,ωo) = σs

�
2π

� ∞

0
Fp(θ)E(s′i + s)L(xi,ωi)dsdωi

(5)
where θ = cos−1(ω′

i ·ω′
o) is the angle between ω′

i and ω′
o,

F = Ft(η,ωo)Ft(η,ωi) is the product of the two fresnel
transmittances, ω′

i and ω′
o are the refracted incoming and

outgoing directions, s′i and s are the scattering path along
ω′
i and ω′

o, and the exponential attenuation function E(r) is
computed by:

E(r) = e−σt r (6)

Assuming that the shadow ray does not refract at xi, we use
an approximation of the refracted distance s′i by

s′i = si
|ωi ·ni|√

1− ( 1
η )2(1−|ωi ·ni|2)

(7)

where si is the observed distance as if the incident ray is not
refracted.

In summary, the parameters for the analytic BSSRDF
model include the absorption coefficient σa, the scattering
coefficient σs, the phase function p, and the relative index
of refraction η. In the following sections (3,4,5), we assume

that both η and illumination L(xi,ωi) are fixed (so that the
incoming irradiance I(xi) is fixed), and we show that the out-
going radiance Lo in Equation 1 can be efficiently approxi-
mated when the other three parameters vary.

4. Approximating Analytic BSSRDF

Following the PRT rational, we approximate the analytic
BSSRDF model using basis functions. We will show that,
once the multiple scattering diffuse reflectance function Rd
and the single scattering exponential attenuation function E
are represented as linear combinations of basis functions, the
outgoing radiance Lo in Equation 1 reduces to dot products
between the coefficients of the basis functions and precom-
putable components known as transport functions.

Multiple Scattering: Let the diffuse reflectance function Rd
be approximated by specific basis functions BRj with coeffi-
cients cRj (the choice of such functions and the computation
of their coefficients will be discussed in Section 5):

Rd(r) ≈ ∑
j
cRj BRj (r) (8)

Substituting Equation 8 into Equation 2 yields:

Ld(xo,ωo) ≈ 1
π
Ft(η,ωo)∑

j
cRj Tj(xo) (9)

where

Tj(xo) =
�
A
BRj (‖xo− xi‖)I(xi)dA(xi) (10)

Note that Equation 9 only involves the dot product of the
coefficients cRj of the basis functions and the Tj. For conve-
nience, we refer to Tj as a transport function. The key obser-
vation is that Tj is independent of the three analytic BSSRDF
parameters (σa, σs, and p), and hence can be precomputed
prior to editing (see Section 6).

Single Scattering: As denoted in Wang et al. [WTL05], pre-
computing single scattering according to Equation 5 is dif-
ficult since both the integration path and the phase function
depend on the view direction, and enumerating each possible
view direction during precomputation is infeasible. To fix the
integration path, we adopt the approach in [WTL05] by us-
ing the negative normal direction of each vertex xo. To pre-
compute the phase function, Wang et al. [WTL05] decom-
posed the 4D phase function to several separated 2D light-
and view- maps using singular value decomposition (SVD).
However, a texture is required to store each map. Here we in-
troduce a novel, more compact decomposition of the phase
function where both the light- and view- maps are analytical
functions and no longer need to be stored as textures.

We observe that the cosθ in the typical Eddington phase
function p(θ) = (1 + 3gcosθ)/(4π) (g is the mean cosine
of scattering angle) is the dot product of the refracted light
direction ω′

i and the refracted view direction ω′
o. Hence p
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can be re-written as a dot product:

p(ω′
i ,ω′

o) = −→G (ω′
i) ·−→H (ω′

o) (11)

Let ω′
i = (a0,a1,a2), and ω′

o = (b0,b1,b2), then −→G (ω′
i) =

(1,a0,a1,a2) and −→H (ω′
o) = (1,3gb0,3gb1,3gb2)/(4π) are

4−tuples involving only ω′
i or ω′

o. Substituting Equation 11
into Equation 5, the outgoing radiance of point xo due to
single scattering L(1)

o becomes

L(1)
o (xo,ωo) = Ft(η,ωo)σs

−→H (ω′
o)·�

2π

� ∞

0

−→G (ω′
i)Ft(η,ωi)E(s′i + s)L(xi,ωi)dsdωi (12)

where the integral involves only the view-independent por-
tion of the phase function.

To approximate L(1)
o , we let the single scattering exponen-

tial attenuation function E in Equation 6 be approximated
by some basis functions BEj with coefficients cEj (to be dis-
cussed in Section 5):

E(r) ≈ ∑
j
cEj B

E
j (r) (13)

Substituting Equation 13 into Equation 12 yields a dot-
product approximation of single scattering:

L(1)
o (xo,ωo) ≈ Ft(η,ωo)σs−→H (ω′

o) ·∑
j
cEj

−→S j (xo) (14)

where
−→S j (xo) =

�
2π

� ∞

0

−→G (ω′
i)BEj (s′i + s)L(xi,ωi)Ft(η,ωi)dsdωi

(15)
As in multiple scattering, we refer to −→S j as a transport func-
tion. Thanks to the decomposition of the phase function, −→S j
is independent of viewing direction as well as the three an-
alytic BSSRDF parameters (σa, σs and the phase function),
and can be easily precomputed and stored (see Section 6).

5. Piecewise Polynomial Basis

A variety of basis functions, including spherical harmon-
ics and wavelets, have been used and shown effective in
PRT-based methods. Nonetheless, our task is to find an ap-
propriate basis that can approximate the diffuse reflectance
function Rd and the exponential attenuation function E ac-
curately and smoothly using only a small number of basis
functions. In particular, since both Rd and E are strong at-
tenuation functions, they cannot be accurately approximated
by a small number of low frequency basis such as spheri-
cal harmonics (in 1D, spherical harmonics is Fourier basis
function). For wavelet bases, [BAOR06] points out that the
standard non-linear wavelet bases are not suitable for ma-
terial editing, as they ignore small coefficients by definition
and would provide no feedback for small changes in the pa-
rameters. On the other hand, a full wavelet basis would re-
quire a large number of basis functions to capture the atten-
uated portions of Rd and E (see comparison in Section 7).

Here we propose a piecewise polynomial basis defined on
non-uniform intervals that are better adapted to approximate
strong attenuation functions.

Piecewise polynomial basis has been widely investigated
and used in numerical analysis and related applications.
In computer graphics, piecewise polynomial approximation
has been used in importance sampling techniques [LRR05].
Specifically, we consider a domain [a,b] and a sequence of
m+ 1 points r0, r1, ..., rm (called knots) satisfying a = r0 <
r1 < ... < rm = b, which partition the domain intom intervals
Ik = [rk, rk+1] for k ∈ [0,m− 1]. A degree-(n− 1) piecewise
polynomial approximation of a function F defined on [a,b]
has the form

F(r) ≈ P(r) =
j<n·m
∑
j=0

c jB j(r) (16)

where c j are m× n polynomial coefficients, and B j are the
piecewise polynomial basis defined as:

Bi+kn(r) =
{
ri, r ∈ Ik
0, r /∈ Ik (17)

for i ∈ [0,n− 1] and k ∈ [0,m− 1]. In addition, we require
that P is a polynomial of degree ≤ (n− 1) on each interval
Ik and isC(n−1)-continuous at each knot rk.

Projection: To determine the polynomial coefficients c j in
Equation 16 given a function F (in our case, Rd or E), its
domain [a,b], and intervals Ik, we formulate a constrained
discrete minimization problem

minimize ∑
τ∈[a,b]

(F(τ)−P(τ))2 (18)

where τ are samples on the domain [a,b] and P is constrained
to be C(n−1)-continuous at each knot rk+1, that is,

Pik(rk+1) = Pik+1(rk+1) (19)

for i∈ [0,n−1] and k∈ [0,m−2]. Here Pik(r) is the i-th order
derivative of the degree-(n−1) polynomial of P restricted to
interval Ik, i.e., ∑n−1

i=0 ci+knr
i. Since the minimization target

in Equation 18 is quadratic and the constraint is linear, the
problem could be efficiently solved by a least square solver.
In our implementation, we uniformly choose 10 samples (τ
in Equation 18) in each interval. With a small dimension of
the linear system (usually involving tens of variables), com-
puting the polynomial coefficients c j costs less than 1 mil-
lisecond.

Interval Partition: Ideally, to achieve best approximation
of F using piecewise polynomials, we would like to find
the knots rk and the coefficients c j that minimize Equation
18. However, such minimization is non-trivial due to the in-
volvement of two types of variables. To simplify the prob-
lem, we find knots by choosing a fixed set of coefficients.
In our method, we consider such coefficients that result in a
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Figure 1: Comparison of the diffuse reflectance function Rd(r) with parameters σs = 2.0, σa = 0.1 (a) and approximations
using Haar wavelet with 64 coefficients (b), Daubechies 4 wavelet with 64 coefficients (c) and 128 coefficients (d), piecewise
linear basis with 32 coefficients (e), and piecewise quadratic basis with 48 coefficients (f). Notice that piecewise linear basis
with 32 coefficients achieves similar approximation accuracy as Daubechies 4 wavelets with 128 coefficients.
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Figure 2: RMS error of approximating Rd (left) and E
(right) with linear or quadratic basis under different scat-
tering and absorption coefficients (σa,σs), plotted with the
increase of the number of coefficients.

piecewise linear polynomial interpolating F at each knot:

P(r) =
(rk+1 − r)F(rk)+ (r− rk)F(rk+1)

rk+1 − rk
where rk ≤ r < rk+1 and k ∈ [0,m− 1]. Given a user-
specified number of intervals m and the P defined above, the
knots rk can be found by solving the minimization problem
in Equation 18 using discrete dynamic programming. Fur-
thermore, to avoid performing this computation during real-
time rendering, we precompute the knots before the edit-
ing session using a representative F . In our implementa-
tion, the representative F is chosen as the average of three
Rd(r) with parameters σs = 0.2,σa = 0.001, σs = 2,σa =
0.02, and σs = 10,σa = 0.2 for multiple scattering, and as
1
3 (e−0.2 + e−2 + e−10) for single scattering.

6. Interactive Editing System

Using piecewise polynomial basis approximation of the ana-
lytic BSSRDF model, we have developed an interactive sys-
tem for editing homogeneous translucent materials. Here we
detail the implementation in the two stages of an editing ses-
sion: precomputation and real-time rendering.

6.1. Precomputation

Given a static scene under fixed environment lighting, we
precompute prior to each editing session the two transport

functions at each vertex, which are the Tj in Equation 10
for multiple scattering and the −→S j in Equation 15 for single
scattering.

For multiple scattering, we first evenly and densely dis-
tribute a set of sample points and use ray tracing to compute
the incoming irradiance at each sample point. Next, we com-
pute Tj(xo) for each vertex xo by an integration over all the
sample points using Equation 10. To make the computation
more efficient, we observe that the piecewise polynomial ba-
sis BRj is non-zero only within a small interval, which allows
pruning of zero portions in the integral by examining the dis-
tance between sample points and xo.

For single scattering, precomputing −→S j (xo) defined by
Equation 15 requires integration along the negative normal
direction of vertex xo. We use 32 deterministic samples with
importance sampling distribution function γ(s) = e−s along
the path. The integration upper limit is the distance along
the negative normal direction to the back side. Visibility is
included by testing whether or not the incoming ray is oc-
cluded before entering the object. The precomputation is ac-
celerated by applying the same pruning method in multiple
scattering to polynomial basis BEj .

6.2. Rendering

As the user modifies the value of analytic BSSRDF parame-
ters during an editing session, we first compute the polyno-
mial coefficients cRj ,cEj using a least-square solver, and up-
date the outgoing radiance at each vertex by multiplying the
coefficients with the precomputed transport functions Tj,

−→S j ,
as in Equations 9 and 14. Since human perceives glossy sur-
faces more translucent than surfaces without glossy, for in-
creased realism, we add a specular component to the final
rendering.

The system is further accelerated by exploiting GPU capa-
bilities. After precomputation, we package all the vertex at-
tributes, including positions and normals, as well as transport
functions Tj,

−→S j into a 2D texture. During editing, we uti-
lize the OpenGL render-to-vertex-array technique (includ-
ing OpenGL extensions: vertex buffer object, pixel buffer ob-
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ject and framebuffer object ) and perform rendering in three
steps. First, we compute polynomial basis coefficients cRj ,c

E
j

in CPU and bind the coefficients to the shader program as
uniform variables. Next, utilizing the uniform variables and
the 2D texture, we render a rectangle to the frame buffer ob-
ject, in which each pixel maintains the outgoing radiance of
one vertex on the object. Finally, we copy the color result
from frame buffer object to vertex arrays through pixel buffer
object, and render the object using vertex buffer object.

7. Comparison and Results

We now present comparison tests of our method and ex-
ample editing sessions in our system. The results are pro-
duced on a consumer-level PC with Intel Core2Duo 1.86G
Hz processor, 2G RAM and a Nvidia GeForce 7800 256M
graphics card. The rendering framerates, memory consump-
tion and precomputation time for the scenes are reported in
Table 2.

7.1. Comparison

In this section, we evaluate the approximation quality of
our polynomial basis function and the resulting radiance
computation in the context of alternative choices of basis
and the analytic BSSRDF model proposed by Jensen et
al. [JMLH01]. We will show that our approximation using
piecewise linear basis with a small number of coefficients
achieves satisfactory results.

In Figure 1, we compare approximations of Rd using
different basis functions, including Haar wavelet (used in
[NRH03]), Daubechies wavelet (used in [BAOR06]), and
our proposed piecewise linear and quadratic bases. Due to
our non-uniform partitioning of intervals, our piecewise lin-
ear basis is able to approximate the strongly attenuated func-
tion Rd using only 32 coefficients (16 intervals) with similar
error as that of the full Daubechies 4 wavelet basis using 128
coefficients.

In Figure 2, we further reveal the approximation error
of the piecewise polynomial basis to both Rd and E un-
der different scattering and absorption coefficients (σs and
σa). Note that, for larger σs values, a greater number of
polynomial coefficients (i.e., more intervals) is necessary to
achieve an accurate approximation (since Rd and E atten-
uate more quickly). Nonetheless, the approximation errors
decay rapidly with the growth of the number of coefficients.
In particular, piecewise linear and quadratic basis result in
extremely small error (< 0.005) when the number of coeffi-
cients exceeds 15.

Finally, we compare in Figure 3 and 4 the outgoing radi-
ance due to multiple scattering and single scattering approx-
imated using our method to that computed by the analytic
BSSRDF model, referred to as the ground truth. Observe
that piecewise linear basis with 32 coefficients for multi-
ple scattering and 16 coefficients for single scattering result
in almost identical images with the ground truth. A smaller

number of coefficients (e.g., 8 for multiple scattering, 6 for
single scattering), however, may yield noticeable difference
(e.g., the bottom of the bunny model and the face of the Cae-
sar model), since the fewer intervals used in the polynomial
basis approximation are incapable of accurately capturing
the exponentially attenuated functions.

7.2. Results

Here we show examples of editing sessions using our sys-
tem, where the user dynamically changes analytic BSSRDF
parameters including the scattering coefficient (Figure 5),
the absorption coefficient (Figure 6) and the phase func-
tion (Figure 7). Based on our observation in the comparison
tests, piecewise linear basis with 32 coefficients for multiple
scattering and 16 coefficients for single scattering are used
in these examples (more coefficients or piecewise quadratic
bases can be chosen in our system upon user requests).

Observe that the adjustment of analytic BSSRDF parame-
ters results in change in the amount of translucency (Fig-
ures 5 and 6) as well as in backward or forward scattering
effects (Figure 7). The ability to adjust these parameters dy-
namically with real-time rendering (see performance in Ta-
ble 2) offers the designer timely feedback crucial for interac-
tive applications, a convenience that has not been achieved
previously.

8. Conclusion and Future work

In this paper, we proposed a method for real-time render-
ing of homogenous translucent material using Jensen’s ana-
lytic BSSRDF model under fixed environment lighting and
dynamically changing material parameters. Our system con-
siders both multiple and single scattering components in the
analytic model, allowing the user to change the scattering
and absorption coefficients as well as the phase function
interactively. Following the PRT rationale, we approximate
the multiple scattering diffuse reflectance function and sin-
gle scattering exponential attenuation function using non-
uniform piecewise polynomial basis, which we have demon-
strated to be better adapted to strongly attenuating functions
than previously used bases.

While our method is currently restricted to Jensen’s ana-
lytic model, we next plan to allow freely editing the Rd and
E curves, and extend current method onto multi-layered and
heterogenous materials. In addition, we will investigate ways
to include dynamic lighting in our system. Last but not least,
as the non-uniform piecewise polynomial basis excels in ap-
proximating fast-decaying functions, we are also interested
in exploring applications in other areas of computer graphics
where such approximation is useful.
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(a) (b) (c) (d)

Figure 3: Comparison of subsurface scattering with only multiple scattering component: approximation by piecewise linear
basis with 8 (a), 16 (b) and 32 (c) coefficients, and the ground truth image (d). Parameters σs = [1.8,1.8,1.8] and σa =
[0.03,0.004,0.03] are used.

(a) (b) (c) (d) (e)

Figure 4: Comparison of subsurface scattering with only single scattering component: approximation by piecewise linear basis
with 6 (a), 8 (b) and 16 (c) coefficients, and the ground truth image (d). Parameters σs = [1.0,1.0,1.0], σa = [0.01,0.01,0.01],
and g= 0 are used. A BRDF rendering is shown in (e) for reference.
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