
Computational Visual Media
https://doi.org/10.1007/s41095-021-0229-5 Vol. 7, No. 2, June 2021, 187–199

Research Article

PCT: Point cloud transformer

Meng-Hao Guo1, Jun-Xiong Cai1, Zheng-Ning Liu1, Tai-Jiang Mu1, Ralph R. Martin2, and
Shi-Min Hu1 (�)

c© The Author(s) 2021.

Abstract The irregular domain and lack of ordering
make it challenging to design deep neural networks for
point cloud processing. This paper presents a novel
framework named Point Cloud Transformer (PCT) for
point cloud learning. PCT is based on Transformer,
which achieves huge success in natural language processing
and displays great potential in image processing. It
is inherently permutation invariant for processing a
sequence of points, making it well-suited for point cloud
learning. To better capture local context within the
point cloud, we enhance input embedding with the
support of farthest point sampling and nearest neighbor
search. Extensive experiments demonstrate that the
PCT achieves the state-of-the-art performance on shape
classification, part segmentation, semantic segmentation,
and normal estimation tasks.

Keywords 3D computer vision; deep learning; point
cloud processing; Transformer

1 Introduction

Extracting semantics directly from a point cloud is
an urgent requirement in some applications such as
robotics, autonomous driving, augmented reality, etc.
Unlike 2D images, point clouds are disordered and
unstructured, making it challenging to design neural
networks to process them. Charles et al. [1] pioneered
PointNet for feature learning on point clouds by
using multi-layer perceptrons (MLPs), max-pooling,

1 BNRist, Department of Computer Science and
Technology, Tsinghua University, Beiing 100084, China.
E-mail: M.-H. Guo, gmh20@mails.tsinghua.edu.cn;
J.-X. Cai, junxiong20@mails.tsinghua.edu.cn; Z.-N. Liu,
lzhengning@gmail.com; T.-J. Mu, taijiang@tsinghua.edu.cn;
S.-M. Hu, shimin@tsinghua.edu.cn (�).

2 Cardiff University, Cardiff CF243AA, UK. E-mail:
ralph@cs.cf.ac.uk.

Manuscript received: 2021-03-04; accepted: 2021-03-26

and rigid transformations to ensure invariance under
permutations and rotations. Inspired by strong
progress made by convolutional neural networks
(CNNs) in the field of image processing, many recent
works [2–5] have considered to define convolution
operators that can aggregate local features for point
clouds. These methods either reorder the input point
sequence or voxelize the point cloud to obtain a
canonical domain for convolutions.

Recently, Transformer [6], the dominant framework
in natural language processing, has been applied
to image vision tasks, giving better performance
than popular convolutional neural networks [7, 8].
Transformer is a decoder–encoder structure that
contains three main modules for input (word)
embedding, positional (order) encoding, and self-
attention. The self-attention module is the core
component, generating refined attention feature for
its input feature based on global context. First, self-
attention takes the sum of input embedding and
positional encoding as input, and computes three
vectors for each word: query, key, and value through
trained linear layers. Then, the attention weight
between any two words can be obtained by matching
(dot-producting) their query and key vectors. Finally,
the attention feature is defined as the weighted
sum of all value vectors with the attention weights.
Obviously, the output attention feature of each word
is related to all input features, making it capable
of learning the global context. All operations of
Transformer are parallelizable and order-independent.
In theory, it can replace the convolution operation
in a convolutional neural network and has better
versatility. For more detailed introduction of self-
attention, please refer to Section 3.2.

Inspired by the Transformer’s success in vision
and NLP tasks, we propose a novel framework PCT

187



188 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

for point cloud learning based on the principles of
traditional Transformer. The key idea of PCT is
using the inherent order invariance of Transformer to
avoid the need to define the order of point cloud data
and conduct feature learning through the attention
mechanism. As shown in Fig. 1, the distribution of
attention weights is highly related to part semantics,
and it does not seriously attenuate with spatial
distance.

Point clouds and natural language are rather
different kinds of data, so our PCT framework must
make several adjustments for this. These include:
• Coordinate-based input embedding module.

In Transformer, a positional encoding module is
applied to represent the word order in natural
language. This can distinguish the same word
in different positions and reflect the positional
relationships between words. However, point clouds
do not have a fixed order. In our PCT framework,
we merge the raw positional encoding and the
input embedding into a coordinate-based input
embedding module. It can generate distinguishable
features, since each point has a unique coordinate
which represents its spatial position.

• Optimized offset-attention module. The
offset-attention module approach we proposed
is an effective upgrade over the original self-
attention. It works by replacing the attention
feature with the offset between the input of self-
attention module and attention feature. This has
two advantages. Firstly, the absolute coordinates
of the same object can be completely different

Fig. 1 Attention map and part segmentation generated by PCT.
First three columns: point-wise attention map for different query
points (indicated by �), yellow to blue indicating increasing attention
weight. Last column: part segmentation results.

with rigid transformations. Therefore, relative
coordinates are generally more robust. Secondly,
the Laplacian matrix (the offset between degree
matrix and adjacency matrix) has been proven to
be very effective in graph convolution learning [9].
From this perspective, we regard the point cloud as
a graph with the “float” adjacency matrix as the
attention map. Also, the attention map in our work
will be scaled with all the sum of each rows to 1. So
the degree matrix can be understood as the identity
matrix. Therefore, the offset-attention optimization
process can be approximately understood as a
Laplace process, which will be discuss detailed
in Section 3.3. In addition, we have conducted
sufficient comparative experiments, introduced in
Section 4, on offset-attention and self-attention to
prove its effectiveness.

• Neighbor embedding module. Obviously,
every word in a sentence contains basic semantic
information. However, the independent input
coordinates of the points are only weakly related
to the semantic content. Attention mechanism is
effective in capturing global features, but it may
ignore local geometric information which is also
essential for point cloud learning. To address this
problem, we use a neighbor embedding strategy
to improve upon point embedding. It also assists
the attention module by considering attention
between local groups of points containing
semantic information instead of individual points.

With the above adjustments, the PCT becomes more
suitable for point cloud feature learning and achieves
the state-of-the-art performance on shape classification,
part segmentation, semantic segmentation, and normal
estimation tasks. All experiments are implemented
with Jittor [10] deep learning fremework. Codes are
available at https://github.com/MenghaoGuo/PCT.

The main contributions of this paper are summarized
as following:
1. We proposed a novel transformer based framework

named PCT for point cloud learning, which is
exactly suitable for unstructured, disordered point
cloud data with irregular domain.

2. We proposed offset-attention with implicit
Laplace operator and normalization refinement
which is inherently permutation-invariant and
more suitable for point cloud learning compared to
the original self-attention module in Transformer.



PCT: Point cloud transformer 189

3. Extensive experiments demonstrate that the
PCT with explicit local context enhancement
achieves state-of-the-art performance on shape
classification, part segmentation, and normal
estimation tasks.

2 Related work

2.1 Transformer in NLP

Bahdanau et al. [11] proposed a neural machine
translation method with an attention mechanism,
in which attention weight is computed through the
hidden state of an RNN. Self-attention was proposed
by Lin et al. [12] to visualize and interpret sentence
embeddings. Building on these, Vaswani et al. [6]
proposed Transformer for machine translation; it is
based solely on self-attention, without any recurrence
or convolution operators. Devlin et al. [13] proposed
bidirectional transformers (BERT) approach, which
is one of the most powerful models in the NLP
field. More lately, language learning networks such as
XLNet [14], Transformer-XL [15], and BioBERT [16]
have further extended the Transformer framework.

However, in natural language processing, the input
is in order, and word has basic semantic, whereas
point clouds are unordered, and individual points
have no semantic meaning in general.

2.2 Transformer for vision

Many frameworks have introduced attention into
vision tasks. Wang et al. [17] proposed a residual
attention approach with stacked attention modules
for image classification. Hu et al. [18] presented a
novel spatial encoding unit, the SE block, whose
idea was derived from the attention mechanism.
Zhang et al. [19] designed SAGAN, which uses self-
attention for image generation. There has also been
an increasing trend to employ Transformer as a
module to optimize neural networks. Wu et al. [8]
proposed visual transformers that apply Transformer
to token-based images from feature maps for vision
tasks. Recently, Dosovitskiy [7], proposed an image
recognition network, ViT, based on patch encoding
and Transformer, showing that with sufficient training
data, Transformer provides better performance than
a traditional convolutional neural network. Carion et
al. [20] presented an end-to-end detection transformer
that takes CNN features as input and generates
bounding boxes with a Transformer encoder–decoder.

Inspired by the local patch structures used in ViT
and basic semantic information in language word, we
present a neighbor embedding module that aggregates
features from a point’s local neighborhood, which can
capture the local information and obtain semantic
information.

2.3 Point-based deep learning

PointNet [1] pioneered point cloud learning. Sub-
sequently, Qi et al. [21] proposed PointNet++, which
uses query ball grouping and hierarchical PointNet
to capture local structures. Several subsequent works
considered how to define convolution operations on
point clouds. One main approach is to convert a point
cloud into a regular voxel array to allow convolution
operations. Tchapmi et al. [2] proposed SEGCloud
for pointwise segmentation. It maps convolution
features of 3D voxels to point clouds using trilinear
interpolation and keeps global consistency through
fully connected conditional random fields. Atzmon et
al. [4] presented the PCNN framework with extension
and restriction operators to map between point-
based representation and voxel-based representation.
Volumetric convolution is performed on voxels for
point feature extraction. MCCNN by Hermosilla et
al. [22] allows non-uniformly sampled point clouds;
convolution is treated as a Monte Carlo integration
problem. Similarly, in PointConv proposed by Wu et
al. [5], 3D convolution is performed through Monte
Carlo estimation and importance sampling.

A different approach redefines convolution to
operation on irregular point cloud data. Li et al. [3]
introduced a point cloud convolution network,
PointCNN, in which a χ-transformation is trained
to determine a 1D point order for convolution.
Tatarchenko et al. [23] proposed tangent convolution,
which can learn surface geometric features from
projected virtual tangent images. SPG proposed
by Landrieu and Simonovsky [24] divides the
scanned scene into similar elements, and establishes
a superpoint graph structure to learn contextual
relationships between object parts. Yang et al. [25]
used a parallel framework to extend CNN from the
conventional domain to a curved two-dimensional
manifold. However, it requires dense 3D gridded data
as input so is unsuitable for 3D point clouds. Wang et
al. [26] designed an EdgeConv operator for dynamic
graphs, allowing point cloud learning by recovering
local topology.



190 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

Various other methods also employ attention and
Transformer. Yan et al. [27] proposed PointASNL
to deal with noise in point cloud processing, using
a self-attention mechanism to update features for
local groups of points. Hertz et al. [28] proposed
PointGMM for shape interpolation with both multi-
layer perceptron (MLP) splits and attentional splits.

Unlike the above methods, our PCT is based on
Transformer rather than using self-attention as an
auxiliary module. While a framework by Wang and
Solomon [29] uses Transformer to optimize point cloud
registration, our PCT is a more general framework
which can be used for various point cloud tasks.

3 Transformer for point cloud
representation

In this section, we first show how the point cloud
representation learned by our PCT can be applied
to various tasks of point cloud processing, including
point cloud classification, part segmentation, and
normal estimation. Thereafter, we detail the design
of PCT. We first introduce a naive version of PCT by
directly applying the original Transformer [6] to point
clouds. We then explain full PCT with its special
attention mechanism, and neighbor aggregation to
provide enhanced local information.

3.1 Point cloud processing with PCT

Encoder. The overall architecture of PCT is
presented in Fig. 2. PCT aims to transform (encode)
the input points into a new higher dimensional feature
space, which can characterize the semantic affinities
between points as a basis for various point cloud
processing tasks. The encoder of PCT starts by
embedding the input coordinates into a new feature
space. The embedded features are later fed into
4 stacked attention module to learn a semantically
rich and discriminative representation for each point,
followed by a linear layer to generate the output
feature. Overall, the encoder of PCT shares almost
the same philosophy of design as the original
Transformer, except that the positional embedding is
discarded, since the point’s coordinates already
contain this information. We refer the reader to
Ref. [6] for details of the original NLP Transformer.

Formally, given an input point cloud P ∈ R
N×d

with N points each having a d-dimensional feature
description, a de-dimensional embedded feature Fe ∈

R
N×de is first learned via the Input Embedding

module. The point-wise do-dimensional feature
representation Fo ∈ R

N×do output by PCT is then
formed by concatenating the attention output of
each attention layer through the feature dimension,
followed by a linear transformation:

F1 = AT1(Fe)
Fi = ATi(Fi−1), i = 2, 3, 4 (1)
Fo = concat(F1, F2, F3, F4) · Wo

where ATi represents the ith attention layer, each
having the same output dimension as its input, and
Wo is the weights of the linear layer. Various
implementations of input embedding and attention
will be explained later.

To extract an effective global feature vector
Fg representing the point cloud, we choose to
concatenate the outputs from two pooling operators:
a max-pooling (MP) and an average-pooling (AP) on
the learned point-wise feature representation [26].

Classification. The details of classification
network using PCT is shown in Fig. 2. To classify
a point cloud P into Nc object categories (e.g.,
desk, table, chair), we feed the global feature
Fg to the classification decoder, which comprises
two cascaded feed-forward neural networks LBRs
(combining Linear, BatchNorm (BN), and ReLU
layers) each with a dropout probability of 0.5,
finalized by a Linear layer to predict the final
classification scores C ∈ R

Nc . The class label of the
point cloud is determined as the class with maximal
score.

Segmentation. For the task of segmenting the
point cloud into Ns parts (e.g., table top, table legs; a
part need not be contiguous), we must predict a part
label for each point, we first concatenate the global
feature Fg with the point-wise features in Fo. To
learn a common model for various kinds of objects,
we also encode the one-hot object category vector
as a 64-dimensional feature and concatenate it with
the global feature, following most other point cloud
segmentation networks [21]. As shown in Fig. 2, the
architecture of the segmentation network decoder
is almost the same as that for the classification
network, except that dropout is only performed on
the first LBR. We then predict the final point-wise
segmentation scores S ∈ R

N×Ns for the input point
cloud: Finally, the part label of a point is also
determined as the one with maximal score.



PCT: Point cloud transformer 191

Fig. 2 PCT architecture. The encoder mainly comprises an Input Embedding module and four stacked Attention module. The decoder mainly
comprises multiple Linear layers. Numbers above each module indicate its output channels. MA-Pool concatenates Max-Pool and Average-Pool.
LBR combines Linear, BatchNorm, and ReLU layers. LBRD means LBR followed by a Dropout layer.

Normal estimation. For the task of normal
estimation, we use the same architecture as in
segmentation by setting Ns = 3, without the object
category encoding, and regard the output point-wise
score as the predict normal.

3.2 Naive PCT

The simplest way to modify Transformer [6] for point
cloud use is to treat the entire point cloud as a
sentence and each point as a word, an approach
we now explain. This naive PCT is achieved by
implementing a coordinate-based point embedding
and instantiating the attention layer with the self-
attention introduced in Ref. [6].

First, we consider a naive point embedding, which
ignores interactions between points. Like word
embedding in NLP, point embedding aims to place
points closer in the embedding space if they are
more semantically similar. Specifically, we embed
a point cloud P into a de-dimensional space Fe ∈
R

N×de , using a shared neural network comprising two
cascaded LBRs, each with a de-dimensional output.

We empirically set de = 128, a relatively small value,
for computational efficiency. We simply use the
point’s 3D coordinates as its input feature description
(i.e., dp = 3) (as doing so still outperforms other
methods) but additional point-wise input information,
such as point normals, could also be used.

For the naive implementation of PCT, we adopt
self-attention (SA) as introduced in the original
Transformer [6]. Self-attention, also called intra-
attention, is a mechanism that calculates semantic
affinities between different items within a sequence
of data. The architecture of the SA layer is depicted
in Fig. 3 by switching to the dotted data flows.
Following the terminology in Ref. [6], let Q, K, V

be the query, key, and value matrices, respectively,
generated by linear transformations of the input
features Fin ∈ R

N×de as follows:
(Q, K, V ) = Fin · (Wq, Wk, Wv)

Q, K ∈ R
N×da , V ∈ R

N×de (2)
Wq, Wk ∈ R

de×da , Wv ∈ R
de×de

where Wq, Wk, and Wv are the shared learnable

Fig. 3 Architecture of Offset-Attention. Numbers above tensors are numbers of dimensions N and feature channels D/Da, with switches
showing alternatives of Self-Attention or Offset-Attention: dotted lines indicate Self-Attention branches.



192 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

linear transformation, and da is the dimension of the
query and key vectors. Note that da may not be
equal to de. In this work, we set da to be de/4 for
computational efficiency.

First, we can use the query and key matrices to
calculate the attention weights via the matrix dot-
product:

Ã = (α̃)i,j = Q · KT (3)

These weights are then normalized (denoted SS in
Fig. 3) to give A = (α)i,j :

ᾱi,j = α̃i,j√
da

αi,j = softmax(ᾱi,j) = exp (ᾱi,j)∑
k

exp (ᾱi,k)
(4)

The self-attention output features Fsa are the
weighted sums of the value vector using the
corresponding attention weights:

Fsa = A · V (5)
As the query, key, and value matrices are

determined by the shared corresponding linear
transformation matrices and the input feature Fin,
they are all order independent. Moreover, softmax
and weighted sum are both permutation-independent
operators. Therefore, the whole self-attention process
is permutation-invariant, making it well-suited to
the disordered, irregular domain presented by point
clouds.

Finally, the self-attention feature Fsa and the input
feature Fin, are further used to provide the output
feature Fout for the whole SA layer through an LBR
network:

Fout = SA(Fin) = LBR(Fsa) + Fin (6)

3.3 Offset-Attention

Graph convolution networks [9] show the benefits
of using a Laplacian matrix L = D − E to replace
the adjacency matrix E, where D is the diagonal
degree matrix. Similarly, we find that we can
obtain better network performance if, when applying
Transformer to point clouds, we replace the original
self-attention (SA) module with an offset-attention
(OA) module to enhance our PCT. As shown in
Fig. 3, the offset-attention layer calculates the offset
(difference) between the self-attention (SA) features
and the input features by element-wise subtraction.
This offset feeds the LBR network in place of the SA
feature used in the naive version. Specifically, Eq. (5)

is modified to
Fout = OA(Fin) =LBR(Fin − Fsa) + Fin (7)

Fin−Fsa is analogous to a discrete Laplacian operator,
as we now show. First, from Eqs. (2) and (5), the
following holds:

Fin − Fsa = Fin − AV

= Fin − AFinWv

≈ Fin − AFin

= (I − A)Fin ≈ LFin (8)
Here, Wv is ignored since it is a weight matrix of
the Linear layer. I is an identity matrix comparable
to the diagonal degree matrix D of the Laplacian
matrix and A is the attention matrix comparable to
the adjacency matrix E.

In our enhanced version of PCT, we also refine the
normalization by modifying Eq. (4) as follows:

ᾱi,j = softmax(α̃i,j) = exp (α̃i,j)∑
k

exp (α̃k,j)

αi,j = ᾱi,j∑
k

ᾱi,k

(9)

Here, we use the softmax operator on the first dimension
and an l1-norm for the second dimension to normalize
the attention map. The traditional Transformer scales
the first dimension by 1/

√
da and uses softmax

to normalize the second dimension. However, our
offset-attention sharpens the attention weights and
reduces the influence of noise, which is beneficial for
downstream tasks. Figure 1 shows example offset
attention maps. It can be seen that the attention
maps for different query points vary considerably, but
are generally semantically meaningful. We refer to
this refined PCT, i.e., with point embedding and OA
layer, as simple PCT (SPCT) in the experiments.

3.4 Neighbor embedding for augmented local
feature representation

PCT with point embedding is an effective network
for extracting global features. However, it ignores the
local neighborhood information which is also essential
in point cloud learning. We draw upon the ideas of
PointNet++ [21] and DGCNN [26] to design a local
neighbor aggregation strategy, neighbor embedding,
to optimize the point embedding to augment PCT’s
ability of local feature extraction. As shown in
Fig. 4, neighbor embedding module comprises two
LBR layers and two SG (sampling and grouping)
layers. The LBR layers act as the basis point
embedding in Section 3.2. We use two cascaded SG



PCT: Point cloud transformer 193

Fig. 4 Left: Neighbor Embedding architecture. Middle: SG module with Nin input points, din input channels, k neighbors, Nout output
sampled points, and dout output channels. Top-right: example of sampling (colored balls represent sampled points). Bottom-right: example of
grouping with k-NN neighbors. Number above LBR: number of output channels. Number above SG: number of sampled points and its output
channels.

layers to gradually enlarge the receptive field during
feature aggregation, as is done in CNNs. The SG
layer aggregates features from the local neighbors for
each point grouped by k-NN search using Euclidean
distance during point cloud sampling.

More specifically, assume that SG layer takes a
point cloud P with N points and corresponding
features F as input and outputs a sampled point cloud
Ps with Ns points and its corresponding aggregated
features Fs. First, We adopt the farthest point
sampling (FPS) algorithm [21] to downsample P
to Ps. Then, for each sampled point p ∈ Ps, let
knn(p, P) be its k-nearest neighbors in P. We then
compute the output feature Fs as follows:

ΔF (p) = concatq∈knn(p,P)(F (q) − F (p))

F̃(p) = concat(ΔF (p), RP(F (p), k)) (10)

Fs(p) = MP(LBR(LBR(F̃ (p))))
where F (p) is the input feature of point p, Fs(p) is
the output feature of sampled point p, MP is the
max-pooling operator, and RP(x, k) is the operator
for repeating a vector x k times to form a matrix.
The idea of concatenating the feature among sampled
point and its neighbors is drawn from EdgeConv [26].

We use different architectures for the tasks of
point cloud classification, segmentation, and normal
estimation. For the point cloud classification, we only
need to predict a global class for all points, so the
sizes of the point cloud are decreased to 512 and 256
points within the two SG layer.

For point cloud segmentation or normal estimation,
we need to determine point-wise part labels or normal,
so the process above is only used for local feature
extraction without reducing the point cloud size,

which can be achieved by setting the output at each
stage to still be of size N .

4 Experiments

We now evaluate the performance of naive PCT
(NPCT, with point embedding and self-attention),
simple PCT (SPCT, with point embedding and
offset-attention), and full PCT (with neighbor
embedding and offset-attention) on two public
datasets, ModelNet40 [30] and ShapeNet [31], giving a
comprehensive comparison with other methods. The
same soft cross-entropy loss function as Ref. [26] and
the stochastic gradient descent (SGD) optimizer with
momentum 0.9 were adopted for training in each case.
Other training parameters, including the learning
rate, batch size, and input format, were particular to
each specific dataset and are given later.

4.1 Classification on ModelNet40 dataset

ModelNet40 [30] contains 12,311 CAD models in 40
object categories; it is widely used in point cloud
shape classification and surface normal estimation
benchmarking. For a fair comparison, we used the
official split with 9843 objects for training and 2468
for evaluation. The same sampling strategy as used in
PointNet [1] was adopted to uniformly sample each
object to 1024 points. During training, a random
translation in [−0.2, 0.2], a random anisotropic scaling
in [0.67, 1.5], and a random input dropout were
applied to augment the input data. During testing, no
data augmentation or voting methods were used. For
all the three models, the mini-batch sizes were 32.250
training epochs were used and the initial learning



194 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

rates were 0.0001, with a cosine annealing schedule
to adjust the learning rate at every epoch.

Experimental results are shown in Table 1.
Compared to PointNet and NPCT, SPCT makes
a 2.8% and 1.0% improvement respectively. PCT
achieves the best result of 93.2% overall accuracy.
Note that our network currently does not consider
normals as inputs which could in principle further
improve network performance.

4.2 Normal estimation on ModelNet40
dataset

The surface normal estimation is to determine the
normal direction at each point. Estimating surface
normal has wide applications in, e.g., rendering. The
task is challenging because it requires the approach to
understand the shapes completely for dense regression.
We again used ModelNet40 as a benchmark, and used
average cosine distance to measure the difference
between ground truth and predicted normals. For
all the three models, a batch size of 32.200 training
epochs were used. The initial learning rates were also
set as 0.01, with a cosine annealing schedule used
to adjust learning rate every epoch. As indicated
in Table 2, both our NPCT and SPCT make a

Table 1 Comparison with state-of-the-art methods on the
ModelNet40 classification dataset. Accuracy means overall accuracy.
All results quoted are taken from the cited papers. P = points, N =
normals

Method Input #Points Accuracy

PointNet [1] P 1k 89.2%
A-SCN [32] P 1k 89.8%
SO-Net [33] P, N 2k 90.9%
Kd-Net [34] P 32k 91.8%
PointNet++ [21] P 1k 90.7%
PointNet++ [21] P, N 5k 91.9%
PointGrid [35] P 1k 92.0%
PCNN [4] P 1k 92.3%
PointWeb [36] P 1k 92.3%
PointCNN [3] P 1k 92.5%
PointConv [5] P, N 1k 92.5%
A-CNN [37] P, N 1k 92.6%
P2Sequence [38] P 1k 92.6%
KPConv [39] P 7k 92.9%
DGCNN [26] P 1k 92.9%
RS-CNN [40] P 1k 92.9%
PointASNL [27] P 1k 92.9%

NPCT P 1k 91.0%
SPCT P 1k 92.0%
PCT P 1k 93.2%

Table 2 Normal estimation average cosine-distance error on
ModelNet40 dataset

Method #Points Error

PointNet [1] 1k 0.47

PointNet++ [21] 1k 0.29

PCNN [4] 1k 0.19

RS-CNN [40] 1k 0.15

NPCT 1k 0.24

SPCT 1k 0.23

PCT 1k 0.13

significant improvement compared with PointNet and
PCT achieves the lowest average cosine distance.

4.3 Part segmentation task on ShapeNet
dataset

Point cloud part segmentation is a challenging task
which aims to divide a 3D model into multiple
meaningful parts. We performed an experimental
evaluation on the ShapeNet Parts dataset [31], which
contains 16,880 3D models with a training to testing
split of 14,006 to 2874. It has 16 object categories and
50 part labels; each instance contains no fewer than
two parts. Following PointNet [1], all models were
downsampled to 2048 points, retaining point-wise
part annotation. During training, random translation
in [−0.2, 0.2], and random anisotropic scaling in
[0.67, 1.5] were applied to augment the input data.
During testing, we used a multi-scale testing strategy,
where the scales are set in [0.7, 1.5] with a step of
0.1. For all the three models, the batch size, training
epochs, and the learning rates were set the same as
the training of normal estimation task.

Table 3 shows the class-wise segmentation
results. The evaluation metric used is part-average
Intersection-over-Union, and is given both overall
and for each object category. The results show that
our SPCT makes an improvement of 2.1% and 0.6%
over PointNet and NPCT respectively. PCT achieves
the best results with 86.4% part-average Intersection-
over-Union. Figure 5 shows further segmentation
examples provided by PointNet, NPCT, SPCT, and
PCT.

4.4 Semantic segmentation task on S3DIS
dataset

The S3DIS is a indoor scene dataset for point cloud
semantic segmentation. It contains 6 areas and 271
rooms. Each point in the dataset is divided into 13



PCT: Point cloud transformer 195

Table 3 Comparison on the ShaperNet part segmentation dataset. pIoU means part-average Intersection-over-Union. All results quoted are
taken from the cited papers

Method pIoU
air-

plane
bag cap car chair

ear-

phone
guitar knife lamp laptop

motor-

bike
mug pistol rocket

skate-

board
table

PointNet [1] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Kd-Net [34] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

SO-Net [33] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

PointNet++ [21] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PCNN [4] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

DGCNN [26] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

P2Sequence [38] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8

PointConv [5] 85.7 — — — — — — — — — — — — — — — —

PointCNN [3] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0

PointASNL [27] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

RS-CNN [40] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

NPCT 85.2 83.2 74.5 86.7 76.8 90.7 75.4 91.1 87.3 84.5 95.7 65.2 93.7 82.7 56.9 73.8 83.0

SPCT 85.8 84.5 83.5 85.9 78.7 90.9 75.1 92.1 87.0 85.0 95.9 69.6 94.5 82.2 61.4 76.0 83.0

PCT 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7

Fig. 5 Segmentations from PointNet, NPCT, SPCT, PCT, and ground truth (GT).

Table 4 Comparison on the S3DIS semantic segmentation dataset tested on Area5

Method mAcc mIoU
ceil-

ing
floor wall beam column window door chair table

book-

case
sofa board clutter

PointNet [1] 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

SEGCloud [2] 57.35 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

DGCNN [26] 84.10 56.10 — — — — — — — — — — — — —

PointCNN [3] 63.86 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

SPG [24] 66.50 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

PCNN [4] 67.01 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22

PointWeb [36] 66.64 60.28 91.95 98.48 79.39 0.00 21.11 59.72 34.81 76.33 88.27 46.89 69.30 64.91 52.46

PCT 67.65 61.33 92.54 98.42 80.62 0.00 19.37 61.64 48.00 76.58 85.20 46.22 67.71 67.93 52.29



196 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

categories. For fair comparison, we use the same data
processing method as Ref. [1]. Table 4 shows that
our PCT achieves superior performance compared to
the previous methods.

4.5 Computational requirements analysis

We now consider the computational requirements
of NPCT, SPCT, PCT, and several other methods
by comparing the floating point operations required
(FLOPs) and number of parameters (Params) in
Table 5. SPCT has the lowest memory requirements
with only 1.36M parameters and also puts a low load
on the processor of only 1.82G FLOPs, yet delivers
highly accurate results. These characteristics make it
suitable for deployment on a mobile device. PCT
has best performance, yet modest computational
and memory requirements. If we pursue higher
performance and ignore the amount of calculation
and parameters, we can add a neighbor embedding
layer in the input embedding module. The results
of 3-layer embedding PCT are shown in Tables 6
and 7.

Table 5 Computational resource requirements

Method #Params #FLOPs Accuracy

PointNet [1] 3.47M 0.45G 89.2%

PointNet++(SSG) [21] 1.48M 1.68G 90.7%

PointNet++(MSG) [21] 1.74M 4.09G 91.9%

DGCNN [26] 1.81M 2.43G 92.9%

NPCT 1.36M 1.80G 91.0%

SPCT 1.36M 1.82G 92.0%

PCT 2.88M 2.32G 93.2%

Table 6 Comparison on the ModelNet40 classification dataset. PCT-
2L means PCT with 2 layer neighbor embedding and PCT-3L means
PCT with 3 layer neighbor embedding. Accuracy means overall
accuracy. P = points

Method Input #Points Accuracy

PCT-2L P 1k 93.2%

PCT-3L P 1k 93.4%

5 Conclusions

In this paper, we propose a permutation-invariant
point cloud transformer, which is suitable for learning
on unstructured point clouds with irregular domain.
The proposed offset-attention and normalization
mechanisms help to make our PCT effective.
Experiments show that PCT has good semantic
feature learning capability, and achieves state-of-
the-art performance on several tasks, particularly
shape classification, part segmentation, and normal
estimation.

Transformer has already revealed powerful
capabilities given large amounts of training data.
At present, the available point cloud datasets are
very limited compared to image. In future, we will
train it on larger datasets and study its advantages
and disadvantages with respect to other popular
frameworks. The encoder–decoder structure of
Transformer supports more complex tasks, such as
point cloud generation and completion. We will
extend the PCT to further applications. Besides, we
will attempt more precise methods to approximate
Laplacian operation and complete offset-attention.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (Project Number
61521002) and the Joint NSFC–DFG Research
Program (Project Number 61761136018).

References

[1] Charles, R. Q.; Hao, S.; Mo, K. C.; Guibas, L.
J. PointNet: Deep learning on point sets for 3D
classification and segmentation. IN: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 77–85, 2017.

[2] Tchapmi, L. P.; Choy, C. B.; Armeni, I.; Gwak, J.;
Savarese, S. SEGCloud: Semantic segmentation of
3D point clouds. In: Proceedings of the International
Conference on 3D Vision, 537–547, 2017.

Table 7 Comparison on the ShaperNet part segmentation dataset. pIoU means part-average Intersection-over-Union. PCT-2L means PCT
with 2 layer neighbor embedding and PCT-3L means PCT with 3 layer neighbor embedding

Method pIoU
air-

plane
bag cap car chair

ear-

phone
guitar knife lamp laptop

motor-

bike
mug pistol rocket

skate-

board
table

PCT-2L 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7

PCT-3L 86.6 85.3 84.5 89.4 81.0 91.7 78.6 91.5 87.5 85.8 96.0 70.6 95.6 82.8 60.9 76.6 83.7



PCT: Point cloud transformer 197

[3] Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B.
PointCNN: Convolution on x-transformed points. In:
Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 828–838, 2018.

[4] Atzmon, M.; Maron, H.; Lipman, Y. Point
convolutional neural networks by extension operators.
ACM Transactions on Graphics Vol. 37, No. 4, Article
No. 71, 2018.

[5] Wu, W. X.; Qi, Z.; Fuxin, L. PointConv:
Deep convolutional networks on 3D point clouds.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9613–9622,
2019.

[6] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.;
Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I.
Attention is all you need. In: Proceedings of the
31st International Conference on Neural Information
Processing, 6000–6010, 2017.

[7] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Houlsby, N. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[8] Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Tomizuka,
M.; Keutzer, K.; Vajda, P. Visual transformers: Token-
based image representation and processing for computer
vision. arXiv preprint arXiv:2006.03677, 2020.

[9] Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral
networks and locally connected networks on graphs.
In: Proceedings of the International Conference on
Learning Representations, 2014.

[10] Hu, S.-M.; Liang, D.; Yang, G.-Y.; Yang, G.-W.; Zhou,
W.-Y. Jittor: A novel deep learning framework with
meta-operators and unified graph execution. Science
China Information Sciences Vol. 63, No. 12, Article No.
222103, 2020.

[11] Bahdanau, D.; Cho, K. H.; Bengio, Y. Neural machine
translation by jointly learning to align and translate.
In: Proceedings of the 3rd International Conference on
Learning Representations, 2015.

[12] Lin, Z.; Feng, M.; dos Santos, C. N.; Yu, M.;
Xiang, B.; Zhou, B.; Bengio, Y. A structured self-
attentive sentence embedding. In: Proceedings of the
International Conference on Learning Representations,
2017.

[13] Devlin, J.; Chang, M.; Lee, K.; Toutanova, K.
BERT: Pre-training of deep bidirectional transformers
for language understanding. In: Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Vol. 1, 4171–4186, 2019.

[14] Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J. G.;
Salakhutdinov, R.; Le, Q. V. XLNet: Generalized
autoregressive pretraining for language understanding.
In: Proceedings of the 33rd Conference on Neural
Information Processing Systems, 5754–5764, 2019.

[15] Dai, Z. H.; Yang, Z. L.; Yang, Y. M.; Carbonell, J.;
Le, Q.; Salakhutdinov, R. Transformer-XL: Attentive
language models beyond a fixed-length context. In:
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2978–2988,
2019.

[16] Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So,
C. H.; Kang, J. BioBERT: A pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics Vol. 36, No. 4, 1234–1240, 2020.

[17] Wang, F.; Jiang, M. Q.; Qian, C.; Yang, S.; Li, C.;
Zhang, H. G.; Wang, X.; Tang, X. Residual attention
network for image classification. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 6450–6458, 2017.

[18] Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation
networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 7132–7141, 2018.

[19] Zhang, H.; Goodfellow, I. J.; Metaxas, D. N.; Odena,
A. Self-attention generative adversarial networks. In:
Proceedings of the International Conference on Machine
Learning, 7354–7363, 2019.

[20] Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.;
Kirillov, A.; Zagoruyko, S. End-to-end object detection
with transformers. In: Computer Vision – ECCV
2020. Lecture Notes in Computer Science, Vol. 12346.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 213–229, 2020.

[21] Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. PointNet++:
Deep hierarchical feature learning on point sets in a
metric space. In: Proceedings of the 31st Conference
on Neural Information Processing Systems, 5099–5108,
2017.

[22] Hermosilla, P.; Ritschel, T.; Vázquez, P. P.; Vinacua,
À.; Ropinski, T. Monte Carlo convolution for
learning on non-uniformly sampled point clouds. ACM
Transactions on Graphics Vol. 37, No. 6, Article No.
235, 2018.

[23] Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.
Y. Tangent convolutions for dense prediction in 3D.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3887–3896,
2018.



198 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

[24] Landrieu, L.; Simonovsky, M. Large-scale point cloud
semantic segmentation with superpoint graphs. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 4558–4567, 2018.

[25] Yang, Y. Q.; Liu, S. L.; Pan, H.; Liu, Y.; Tong,
X. PFCNN: Convolutional neural networks on 3D
surfaces using parallel frames. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 13575–13584, 2020.

[26] Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M.
M.; Solomon, J. M. Dynamic graph CNN for learning
on point clouds. ACM Transactions on Graphics Vol.
38, No. 5, Article No. 146, 2019.

[27] Yan, X.; Zheng, C. D.; Li, Z.; Wang, S.; Cui, S.
G. PointASNL: Robust point clouds processing using
nonlocal neural networks with adaptive sampling. In:
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5588–5597, 2020.

[28] Hertz, A.; Hanocka, R.; Giryes, R.; Cohen-Or, D.
PointGMM: A neural GMM network for point clouds.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 12051–
12060, 2020.

[29] Wang, Y.; Solomon, J. Deep closest point:
Learning representations for point cloud registration.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 3522–3531, 2019.

[30] Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang,
L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep
representation for volumetric shapes. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 1912–1920, 2015.

[31] Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I. C.; Yan, M.
Y.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L.
A scalable active framework for region annotation in
3D shape collections. ACM Transactions on Graphics
Vol. 35, No. 6, Article No. 210, 2016.

[32] Xie, S. N.; Liu, S. N.; Chen, Z. Y.; Tu, Z. W.
Attentional ShapeContextNet for point cloud recognition.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4606–4615,
2018.

[33] Li, J. X.; Chen, B. M.; Lee, G. H. SO-net: Self-
organizing network for point cloud analysis. In:
Proceeding of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 9397–9406, 2018.

[34] Klokov, R.; Lempitsky, V. Escape from cells: Deep kd-
networks for the recognition of 3D point cloud models.
In: Proceeding of the IEEE International Conference
on Computer Vision, 863–872, 2017.

[35] Le, T.; Duan, Y. PointGrid: A deep network for
3D shape understanding. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 9204–9214, 2018.

[36] Zhao, H.; Jiang, L.; Fu, C.; Jia, J. PointWeb:
Enhancing local neighborhood features for point cloud
processing. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 5560–5568,
2019.

[37] Komarichev, A.; Zhong, Z. C.; Hua, J. A-CNN:
Annularly convolutional neural networks on point
clouds. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 7413–
7422, 2019.

[38] Liu, X. H.; Han, Z. Z.; Liu, Y. S.; Zwicker, M.
Point2Sequence: Learning the shape representation
of 3D point clouds with an attention-based sequence
to sequence network. In: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, 8778–
8785, 2019.

[39] Thomas, H.; Qi, C. R.; Deschaud, J. E.;
Marcotegui, B.; Goulette, F.; Guibas, L. KPConv:
Flexible and deformable convolution for point clouds.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 6410–6419, 2019.

[40] Liu, Y. C.; Fan, B.; Xiang, S. M.; Pan, C. H. Relation-
shape convolutional neural network for point cloud
analysis. In: Proceeding of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8887–
8896, 2019.

Meng-Hao Guo received his bachelor
degree in Xidian University. Now he is
a Ph.D. candidate in the Department
of Computer Science and Technology,
Tsinghua University. His research
interests include computer graphics,
computer vision, and machine learning.

Jun-Xiong Cai is currently a
postdoctoral researcher at Tsinghua
University, where he received Ph.D.
degree in computer science and
technology in 2020. His research
interests include computer graphics,
computer vision, and 3D geometry
processing.



PCT: Point cloud transformer 199

Zheng-Ning Liu received his bachelor
degree in computer science from
Tsinghua University in 2017. He is
currently a Ph.D. candidate in the
Department of Computer Science and
Technology, Tsinghua University. His
research interests include 3D computer
vision, 3D reconstruction, and computer

graphics.

Tai-Jiang Mu is currently an assistant
researcher at Tsinghua University, where
he received his B.S. and Ph.D. degrees
in computer science and technology
in 2011 and 2016, respectively. His
research interests include computer
vision, robotics, and computer graphics.

Ralph R. Martin received his Ph.D.
degree from Cambridge University in
1983. He is currently a emeritus
professor with Cardiff University. He
has authored over 250 papers and 14
books, covering such topics as solid and
surface modeling, intelligent sketch input,
geometric reasoning, reverse engineering,

and various aspects of computer graphics. He is a Fellow of
the Learned Society of Wales, the Institute of Mathematics
and its Applications, and the British Computer Society. He
is currently the Associate Editor-in-Chief of Computational
Visual Media.

Shi-Min Hu is current a professor in
the Department of Computer Science
and Technology, Tsinghua University,
Beijing, China. He received his Ph.D.
degree from Zhejiang University in 1996.
His research interests include digital
geometry processing, video processing,
rendering, computer animation, and

computer-aided geometric design. He has published more
than 100 papers in journals and refereed conferences. He
is the Editor-in-Chief of Computational Visual Media, and
on editorial boards of several journals, including Computer
Aided Design and Computer & Graphics. He is a senior
member of IEEE and ACM, and Fellow of CCF and SMA.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


