
Computational Visual Media

DOI 10.1007/s41095-015-0010-8 Vol. 1, No. 3, September 2015, 221–228

Research Article

Anisotropic density estimation for photon mapping

Fu-Jun Luan1, Li-Fan Wu1, and Kun Xu1 (�)

c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Photon mapping is a widely used technique

for global illumination rendering. In the density

estimation step of photon mapping, the indirect

radiance at a shading point is estimated through

a filtering process using nearby stored photons; an

isotropic filtering kernel is usually used. However,

using an isotropic kernel is not always the optimal

choice, especially for cases when eye paths intersect

with surfaces with anisotropic BRDFs. In this paper,

we propose an anisotropic filtering kernel for density

estimation to handle such anisotropic eye paths.

The anisotropic filtering kernel is derived from the

recently introduced anisotropic spherical Gaussian

representation of BRDFs. Compared to conventional

photon mapping, our method is able to reduce

rendering errors with negligible additional cost when

rendering scenes containing anisotropic BRDFs.

Keywords photon mapping; density estimation;

anisotropic; anisotropic spherical

Gaussian

1 Introduction

Global illumination is a long and important research

direction in computer graphics. Photon mapping [1,

2] has always been a widely used technique for global

illumination due to its high rendering quality and

good efficiency. It is a two-pass algorithm. In the

first pass, a large number of photons are emitted

from light sources, traced through the scene, and

stored in a photon map. In the second pass, each

eye ray is traced from the viewpoint into the scene

until it hits a diffuse surface; the indirect radiance
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at this intersection point can be approximated by

averaging contributions from nearby photons within

an encompassing disk of a fixed radius. This step is

usually referred to as density estimation.

Density estimation allows the same photons to

be reused in different eye paths, and hence makes

photon mapping to be more efficient than Monte

Carlo ray tracing [3, 4]. The radius of the disk

is an important parameter in density estimation,

which largely affects the bias and variance of the

results. Larger radius gives lower variance but higher

bias, while smaller radius gives higher variance but

lower bias. Instead of equally weighting all photons,

smooth filtering kernels can be applied in order to

further reduce bias, such as the cone filter [1] and

the Epanechnikov kernel [5, 6].

We focus on using photon mapping to render

scenes with anisotropic BRDFs. Since density

estimation can only be applied on diffuse surfaces,

eye rays towards surfaces with anisotropic BRDFs

need further tracing in the scene until hitting a

diffuse surface. We refer to these eye paths, from

viewpoint through reflections at anisotropic surfaces

to density estimation points at diffuse surfaces,

as anisotropic eye paths. Intuitively thinking,

density estimation through anisotropic eye paths

can be beneficial from anisotropic filtering kernels.

However, existing kernels are mainly isotropic. One

exception is photon differentials [7, 8]. They use

an anisotropic filtering kernel for density estimation

derived from ray differentials stored in photons,

and it is effective in reducing bias when rendering

caustics. However, they only take into consideration

of the information in light paths but not eye paths

in constructing filtering kernel, hence they will not

be beneficial to render anisotropic eye paths.

To improve efficiency in rendering anisotropic

eye paths, we propose a novel anisotropic filtering
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kernel for density estimation, which considers

the anisotropic BRDFs on the eye path. Our

method works as follows: first, we represent

anisotropic BRDFs using the recently proposed

anisotropic spherical Gaussians (ASGs) [9] of BRDFs

and obtain anisotropic eye paths by importance

sampling anisotropic BRDFs; next, we construct

the anisotropic filtering kernel in the direction space

according to the gradient of the ASG; after that,

the final anisotropic filtering kernel is obtained by

projecting it from the direction space to the tangent

plane of the density estimation point. Compared

to existing works, our experiments demonstrate

that our anisotropic kernel yields a better accuracy

in rendering anisotropic scenes without incurring

additional rendering costs.

2 Related works

Photon mapping. Photon mapping is a popular

technique of global illumination rendering, which

is based on photon density estimation [10].

Arvo [11] first combined density estimation with light

transport simulation by introducing particle tracing

algorithm. Jensen [1, 2] introduced photon mapping

which approximates the radiance by local photon

density estimation. Although photon mapping is

a biased algorithm, it is good at rendering various

lighting effects like caustics.

To improve efficiency and robustness of photon

mapping, Hachisuka et al. [12] proposed progressive

photon mapping (PPM), which breaks the memory

requirement bottleneck for storing a large number

of photons and eliminates bias gradually by

reducing the radius of the radiance estimate

kernel progressively. Stochastic progressive photon

mapping [13] is more robust to complex scenes

and is capable of producing more distributed ray

tracing effects, e.g., depth of field and motion blur.

Hachisuka et al. [14] introduced an error estimation

framework for progressive photon mapping, while

Knaus and Zwicker [15] presented an asymptotic

analysis of converging rates of variance and bias.

Knaus and Zwicker [15] introduced a probabilistic

framework of progressive photon mapping, which

does not need to maintain local photon statistics

and can be implemented easier. Kaplanyan and

Dachsbacher [16] proposed adaptive progressive

photon mapping by selecting local kernel bandwidth

adaptively and achieved a higher convergence rate.

Many works have been done in order to

further improve the robustness of photon mapping.

Schjøth et al. [7, 8] proposed photon differentials,

which shape an anisotropic filtering kernel for

density estimation derived from ray differentials

created in the photon tracing pass and can

produce better caustic quality with less photons.

Spencer and Jones [17] introduced photon relaxation

which redistributes the photons into a blue

noise distribution. By manipulating the underlying

points with feature detection and preservation,

photon relaxation achieves noise reduction without

increasing bias.

Recently, multiple importance sampling (MIS) [18]

has been used in photon density estimation.

Vorba [19] extended photon mapping into a

bidirectional way and used MIS to combine

light paths and eye paths of different lengths. A

unified algorithm [20, 21] combining bidirectional

path tracing (BPT) and progressive photon

mapping (PPM) is more robust to handle complex

illuminations and specular-diffuse-specular paths.

These MIS based algorithms are more efficient than

both BPT and PPM.

Anisotropic appearance. Many real world

materials are anisotropic, such as metal and

wood. Anisotropic appearance exhibits changes with

respect not only to the azimuthal difference between

incoming and viewing directions, but also to the

azimuthal angle of incoming direction.

Kajiya [22] introduced the first anisotropic

BRDF model. After that, a number of parametric

anisotropic BRDF models have been proposed, such

as Ward’s model [23] and Ashikhmin’s model [24].

Various models have also been proposed to handle

specific anisotropic materials, such as hair [25],

wood [26], and cloth [27, 28].

Recently, Xu et al. [9] introduced a representation

called anisotropic spherical gaussian (ASG), which

is efficient and effective in representing anisotropic

spherical functions, such as anisotropic BRDFs

and visibilities. Furthermore, ASGs have close-

form solutions for integral, multiplication, and

convolution operators. Due to its effectiveness at

approximating anisotropic BRDFs, in our work we

use it to represent anisotropic BRDFs.
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3 Background

Photon mapping [1, 2] is a two-pass global

illumination algorithm. It is good at producing

illumination effects like caustics and is efficient in

rendering low-variance images. In the first pass,

a large number of photons are emitted from light

sources, traced through the scene, and stored in a

photon map. In the second pass, each eye ray is

traced from the viewpoint into the scene until it hits

a diffuse surface. Then the indirect radiance at this

intersection point can be evaluated through density

estimation. Specifically, the indirect radiance is

evaluated as the average of fluxes of its N nearest

photons:

Lo(o) ≈ 1

πr2

N∑
k=1

ρ(ik,o)Φk (1)

where k iterates over the N nearest photons, Φk and

ik are the flux and incident direction of the k-th

photon respectively, o is the outgoing direction, ρ

denotes the BRDF, and r is the radius of the disk

that encompasses the N nearest photons. The above

equation equally weights all the nearest neighboring

photons. To reduce bias, we can weight each photon

according to the distance from the photon to the

density estimation point. Then, Eq. (1) can be

rewritten as

Lo(o) ≈ 1

πr2

N∑
k=1

w(dk/r)ρ(ik,o)Φk (2)

where dk is the distance from the k-th photon to

the density estimation point, and the kernel function

w(·) is a monotonic decreasing function. Different

kernels have been proposed, such as the cone filter [1]

and the Epanechnikov kernel [5, 6], both of which

have been demonstrated to be useful in reducing bias.

4 Our method

As shown in Fig. 1, considering a typical anisotropic

eye path, starting from viewpoint to a point P0

on an anisotropic surface, then reflected to the

density estimation point P1 on a diffuse surface, the

anisotropic filtering kernel is computed and applied

through 4 steps. First, based on the anisotropic

spherical Gaussian (ASG) representation [9] of

BRDFs, we obtain the 2D BRDF slice of reflected

direction r at point P0, and approximate it as an

ASG through ASG warping [9] (Section 4.1); next,

Fig. 1 Illustration of anisotropic eye paths.

we construct the anisotropic filtering kernel in the

direction space according to the gradient of the

warped ASG (Section 4.2); after that, we project the

kernel in the direction space to the local coordinate

system of the density estimation point P1 to obtain

the final anisotropic filtering kernel (Section 4.3);

finally, we will show how this anisotropic kernel can

be used in density estimation (Section 4.4).

4.1 Spherical warping

We use ASGs [9] to represent the anisotropic BRDF

at P0. We choose ASGs as our BRDF representation

since ASGs are simple to compute and have good

scalability in approximating anisotropic signals. As

shown in their work, commonly used parametric

anisotropic BRDFs, such as Ward’s model [23] and

Ashikhmin’s model [24], can be well approximated by

one ASG. ASG based BRDF representation is based

on the microfacet model [29, 30]. Specifically, the

normal distribution function (NDF) is approximated

using one ASG, and then the BRDF at a specific

view slice is obtained through an ASG spherical

warping operator. As shown in Fig. 1, denote the

view direction as o, the reflected direction from

P0 to P1 as r, the anisotropic BRDF ρ(r,o) is

approximated by a warped ASG:

ρ(r,o) ≈M(r,o)G(r; [x,y, z], [λ, µ]) (3)

where M is a smooth function that combines

the shadowing term and Fresnel term; G is an

ASG; x,y, z are the tangent, bi-tangent, lobe axes,

respectively; λ and µ are the bandwidths for x- and

y-axes, respectively. Those parameters of the ASG
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G are computed from the NDF function (which is

also an ASG) and the view direction o through the

ASG warping operator (please refer to their paper [9]

for more details of ASGs and the ASG warping

operator), hence it is also referred to as the warped

ASG. For simplicity, we denote the warped ASG

G(r; [x,y, z], [λ, µ]) as G(r) for short.

4.2 Kernel construction

As shown in Fig. 1, imagining an elliptical filtering

kernel is applied at a specific direction to the warped

ASG. By observation, it is easy to notice that the

optimal choice to preserve the structure in filtered

results is to set the minor axis of the ellipse as

the gradient direction and set the major axis as the

tangent direction (i.e., the direction perpendicular to

the gradient direction). Based on this observation,

we construct our elliptical filtering kernel in the

direction space according to the gradient of the

warped ASG.

We first compute the gradient g of the warped

ASG G(r) using the formula below:

g = ∇G− (∇G · r)r (4)

where ∇G is computed by directly applying gradient

operation to the warped ASG function in the 3D

vector space. Since r is a direction (i.e., constrained

on the unit sphere) and it is not an arbitrary 3D

vector, we need to minus (∇G · r)r to obtain the

true gradient to make it perpendicular to direction r.

After that, we simply set the direction of the minor

axis ud as the gradient direction ud = g/‖g‖, and

set the major axis direction as the tangent direction

vd = r× ud.

Now, we need to determine the lengths of the

minor/major axes. We obtain the axis lengths

by constraining relative value changes inside the

ellipse within a predefined threshold ε, and in our

implementation we set ε = 0.02. Along the minor

axis, we approximate the value change using first

order Taylor expansion at direction r, and the minor

axis length lu is obtained by

(∂G/∂ud) · lu = ε ·G⇒ lu =
ε ·G

∂G/∂ud
(5)

where ∂G/∂ud is the directional derivative of the

warped ASG function G along the minor axis

direction ud. Since ud is the gradient direction,

∂G/∂ud equals to the length of gradient ‖g‖. Along

the major axis, since the directional derivative along

it is zero, we use second order Taylor expansion to

obtain the major axis length lv:

1

2
· ∂

2G

∂v2d
· lv = ε ·G⇒ lv = 2

ε ·G
∂2G/∂v2d

(6)

where ∂2G/∂v2d is the second order derivative along

the major axis direction vd. We now obtain the

minor/major axes (i.e., u and v) by combining its

directions and lengths:

u = luud, v = lvvd (7)

4.3 Planar projection

We now have obtained the ellipse for filtering in the

direction space. We need to further project it to

the tangent plane of the density estimation point P1,

since the density estimation is finally performed on

this plane.

We denote the minor/major axes of the projected

ellipse as s and t. Note that these two projected

axes are not necessarily perpendicular to each other.

As shown in Fig. 2, take the minor axis as an

example, the projected minor axis s should satisfy

two conditions:

s = u + k · r, s · n = 0 (8)

where k is a scalar coefficient and n is the

normal direction of the density estimation center.

Combining the above two equations leads to

s = u−
(u · n
r · n

)
· r (9)

We can similarly obtain the projected major axis t

as

t = v−
(v · n
r · n

)
· r (10)

Fig. 2 Illustration of planar projection.

224



Anisotropic density estimation for photon mapping 225

4.4 Density estimation

After obtaining the ellipse on the tangent plane of

the density estimation point P1, we now explain how

to use it as a filtering kernel in density estimation.

Specifically, we explain how to compute the weight

for each photon in Eq. (2). First, we rescale the

ellipse to make it fit the encompassing disk of the N

nearest neighboring photons, i.e., rescale the ellipse

to make the length of the major axis equal to the

radius of the disk. The scaled minor/major axes

become:

s′ =
r

‖t‖
· s, t′ =

r

‖t‖
· t (11)

where r is the radius of the encompassing disk. After

that, for each photon, we denote the offset from

the density estimation center to the photon position

along the tangent plane as d. As shown in Fig. 3,

we can express the offset d as a linear combination

of the projected minor/major axes: d = as′ + bt′ =
m

‖s′‖
s′+

n

‖t′‖
t′. The coefficients a and b can be easily

obtained by equations below:

a =
m

‖s′‖
=

(s′ · d) · ‖t′‖2 − (s′ · t′) · (t′ · d)

‖s′‖2‖t′‖2 − (s′ · t′)2

b =
n

‖t′‖
=

(t′ · d) · ‖s′‖2 − (s′ · t′) · (s′ · d)

‖s′‖2‖t′‖2 − (s′ · t′)2


(12)

The weight used in density estimation is computed

as a Gaussian:

w(d) = exp(−a2 − b2) (13)

Note that we need to normalize the sum of the

weights of all photons into one when performing

density estimation in Eq. (2).

5 Results

Implementation. We implement our method

on a consumer level PC with an Intel Core i7-

Fig. 3 Illustration of linear combination.

3770 3.4 GHz CPU and 8 GB memory. In our

implementation, anisotropic filtering is only applied

to density estimation for anisotropic eye paths. For

other types of eye paths, e.g., eye ray starting

from the viewpoint directly hits a diffuse surface,

our method degenerates to use isotropic filtering in

density estimation instead. Note that our method

focuses on improving the effectiveness of density

estimation and hence is perpendicular to other

photon mapping improvements such as progressive

photon mapping [12, 15]. To obtain consistent

results, we use the progressive photon mapping

framework to produce final rendering results. In each

iteration, we reduce the radius of density estimation

with a reduction parameter α = 2/3.

Comparison. To demonstrate the efficiency of

our anisotropic filtering kernel, we compare the

rendering results of our anisotropic filtering kernel

to those of an isotropic kernel and a constant

kernel, using several scenes with anisotropic glossy

materials. In our comparison among different

methods, only the filtering kernels are different while

other parameters such as the image resolution, the

number of photons and the number of iterations keep

the same. We compare the results visually, as well

as measuring root mean square errors (RMSE) to

ground truth.

Figure 4 shows an anisotropic glossy buddha with

anisotropic ratio of 10 inside a diffuse textured

box. As shown in the enlarged images in Fig. 4,

our proposed anisotropic filtering kernel produces

less noise than an isotropic filtering kernel with

equal rendering time. Note that the time required

for constructing the anisotropic filter in our method

is negligible compared to other steps in photon

mapping, hence, our method won’t incur additional

costs. Figure 5 shows the RMSE of the rendering

results of a constant kernel, an isotropic Gaussian

kernel, and our anisotropic Gaussian kernel. Our

method consistently gives the smallest error.

Figure 6 shows a scene with a teapot, a fork, and

a spoon, and the anisotropic ratios are 10, 3.3, and

3.3, respectively. The surrounding objects are diffuse

textures. Figure 7 shows a scene with anisotropic

glossy pans and pots whose anisotropic ratios are

10. In both scenes, our method achieves better visual

quality and lower RMSE than using isotropic kernel

with equal rendering time.
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(a) Using isotropic Gaussian kernel (b) Using our anisotropic Gaussian kernel (c) Reference

Fig. 4 Anisotropic happy buddha. (a) and (b) Photon mapping results using isotropic and anisotropic density estimation kernels,

respectively; (c) reference.

Fig. 5 RMSE curve. We plot the RMSE of the rendered images

with respect to the number of iterations used in progressive

photon mapping in rendering the buddha scene. Notice that

our method consistently gives the smallest error.

6 Conclusions

In this work, we have presented an anisotropic

filtering kernel for density estimation. The kernel

takes into consideration of the anisotropic BRDFs

on the eye path. It is derived from the ASG

representation of anisotropic BRDFs. Through

experiments and comparisons, our proposed

anisotropic kernel is demonstrated to produce lower

rendering error without incurring additional costs in

rendering anisotropic scenes.
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