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Abstract  We consider the problem of learning
a representation of both spatial
dependencies between objects for indoor scene design.
We propose a novel knowledge graph framework based
on the entity-relation model for representation of facts
in indoor scene design, and further develop a weakly-
supervised algorithm for extracting the knowledge

relations and

graph representation from a small dataset using
both structure and parameter learning. The proposed
framework is flexible, transferable, and readable. We
present a variety of computer-aided indoor scene design
applications using this representation, to show the
usefulness and robustness of the proposed framework.
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1 Introduction

Indoor scene design is required for applications
built on virtual environments (e.g., large-scale video
games or virtual reality), and realistic interior
design. Modern commercial CAD tools [1-3], as well
as independently developed toolchains, have been
utilized to help professional designers or architects
to assemble indoor scenes with different levels of
detail. However, generating a useful and aesthetically
pleasing scene requires a relatively high level of
expertise, in terms of both insight into interior design,
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and proficiency in use of design tools; this forms a
high barrier for novice users. Even for expert users, a
considerable amount of laborious and time-consuming
interaction is needed.

To reduce the amount of interaction and expertise
needed when using these tools, context-based models
have been proposed, supporting semi-automatic [4]
and fully-automatic [5]
features for such systems include helping (i) to
retrieve from a library the objects to be placed in the

systems. Fundamental

scene and (ii) to decide where in the scene to place
various objects. These models usually embed a group
of quantitative criteria learned from a training dataset
for both features, e.g., co-occurrence frequencies
as a prior for object retrieval, and for placement,
e.g., Gaussian mixture models [4]. Such methods
have achieved a certain level of success; however,
they still have several shortcomings, including being
inflexible given a limited training dataset, having
limited transferability given a limited model library,
and having poor readability of the underlying model
for designers without a background in statistics or
computer science.

On the other hand, knowledge graphs, a
representation for facts in specific domains, have had
great success in information retrieval and question—
answer systems. Introducing knowledge graphs to
such systems allows issues caused by long-tail queries
or entities with few samples to be well addressed [6-8].
Moreover, knowledge graphs have good readability,
which helps domain experts further explain and
improve the model.

Two major challenges exist for utilizing knowledge
(i) designing a
proper schema for modeling the functional and
geometric relations between objects in the room
and (ii) extracting the structure of the knowledge

graphs in indoor scene design:

o) .
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graph from a few training samples of indoor layouts.
To overcome these challenges, we design an entity-
relation schema for modeling relations and properties
of different objects. Based on this representation, we
map the knowledge graph to a probabilistic graph
model, which allows us to learn the structure of
the knowledge graph from indoor scenes designed by
professional designers, using structure and parameter
learning. We show the usefulness of our knowledge
graph framework by integrating it into indoor scene
design algorithms and applying them to several
typical application scenarios with good performance.
Our work has the following technical contributions:

e introduction of the knowledge graph representation
to indoor scene design, with significant benefits
of flexibility,
compared to existing methods;

e an entity-relation knowledge graph schema that
models functional, geometric, and hierarchical
relations among objects in a library;

e a process that maps a knowledge graph to a

transferability, and readability,

probabilistic graph model, and an algorithm that
learns both the structure and parameters of the
knowledge graph.

The remainder of this paper is organized as
follows. In Section 2 we discuss related work. We
then introduce a general schema for knowledge
graph representation in Section 3. Based on it,
we present a corresponding underlying probabilistic
graph model and an algorithm for parameter and
structure inference in Section 4. We show several
typical applications of our representation in Section 5,
demonstrating the effectiveness of our approach.
Finally, we conclude and discuss our work in

Section 6.

2 Related work

2.1 Contextual modeling in indoor scene
design

To reduce the number of interactions in indoor scene
design, contextual modeling, which tries to evaluate
if a model and its placement fit its context, is widely
used [4] in practical applications. Different forms
of interaction for indoor scene design have been
proposed based on contextual modeling, including:
proper placement for a user-selected model [4],
retrieving a model and finding a proper orientation

ﬂj@;} E'N$VIE§SI('?YI-|!|¥§AS @ SPI'iﬂgeI'

with a user selected placement [9], suggesting objects
for adding greater levels of detail to scenes [10],
co-retrieval and co-placement with user-selected
samples [11], and scene synthesis from freehand sketch
drawings [12] or natural language descriptions [13].
Fully-automatic methods have also been proposed to
synthesize scenes in open world applications [5].

Frequently used methods for contextual modeling
include rule-based criteria [5] and data-driven
models [4]. Rule-based criteria apply a set of hand-
crafted rules, e.g., “always place a plate on a
table” or “the total area occupied by plates on a
table should not exceed 70% of the area of the
table”. As the number of rules required to generate
reasonable scenes increases rapidly with an increasing
number of object categories, such an approach is
generally restricted to synthesizing scenes of low
complexity. Data-driven models usually model binary
placement and co-occurrence relations between pairs
of objects using quantitative models such as Gaussian
mixtures [4], graphlet extraction [12], kernel density
estimation [13], etc. The idea of contextual modeling
has also been used for indoor scene modeling from
scanned data [14].

Although such data-driven models have achieved
success for certain categories of scenes, the usefulness
of these methods is limited by their lack of flexibility
given a limited set of training data, which usually
causes the generated layout to overfit the training
data. Also, these learned quantitative models are
difficult to transfer to new scenarios. For example,
they can perform poorly when placing a round table
in a scene using a model trained with square tables.
Furthermore, these data-driven models are hard
for designers to interpret, lacking a background in
statistics or computer science, making it difficult for
them to improve the model when failures occur.

2.2 Knowledge graph in information retrieval

Outside the domain of geometric contextual
modeling, knowledge graphs have been successfully
used to support a wide variety of artificial
intelligence  applications:
information retrieval [15],

conventionally  in
and more generally
in other applications such as question-answer
systems [16], reasoning systems [17], and image
classification [18]. They model a sophisticated
network of real-world entities, representing their
relations and supporting operations such as entity
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identification, disambiguation, and completion.

Despite such wide practical success, building
a structured knowledge graph from unstructured
training data is conventionally considered a
challenging problem for two reasons: (i) natural
languages are not fully structured, and (ii) it is hard
to fuse knowledge from different (or even conflicting)
data sources. As a result, widely-used knowledge
bases, such as DBpedia [19], use manually maintained
ontologies as well as filtered training data as input.

In this paper, we build a knowledge graph for indoor
scene design. As our training data is well-structured,
it is much easier to generate structured knowledge.
To solve the second challenge, we map our knowledge
graph to a probabilistic model, which allows us to
infer graph parameters as well as graph structure from
our training data. The training process implicitly
fuses different training data.

The spatial knowledge learning approach in
Ref. [20] is most similar to our work, and uses prior
probabilities directly as knowledge to support a text-
to-scene application which allows missing information
to be inferred. Our work differs in the following
ways. (1) We give a detailed definition and discussion
of relative position properties. (ii) Our representation
is more general. In addition to spatial relations, our
knowledge graph also addresses functional relations.
(iii) Instead of using prior probabilities, we use a
probabilistic graph model to learn a better joint
distribution of different types of rooms for indoor
design.

3 Knowledge graph schema

3.1 Preliminaries

In this section, we explain how we formulate facts in
indoor scene design, including facts about different
objects and guidelines for their typical placement.
In our knowledge graph, facts are formulated
using an entity-relation (ER) model, which is
conventionally applied in existing knowledge graphs
such as DBpedia [19], Freebase [21], and YAGO [22].
An ER model consists of entities with different
attributes and relations between pairs of entities. It
can easily be represented as a graph with attributes
associated with nodes and edges. Conventionally, the
graph is stored as a node (entity) list with attributes
of the entities, and an edge (relation) list, with triples

describing the type of the relation and the related
entities, such as (toad,is a kind of,amphibian).

The schema, a concept originating in relational
databases, is fundamental to an ER model. The
schema of our knowledge graph has the following
parts:

e The types of entities and the attributes that
describe each type of entity.

e The types of relations between entities, the
attributes that describe each type of relation, and
the types of entities that each type of relation can
connect.

In the remainder of this section, we discuss how we
designed our schema with the help from professional

BIM (building information management) designers.

3.2 Entities

We interviewed several designers to ascertain how
they select objects to be placed in a given room.
Typical pipelines used by these designers included
the following steps:

1. Consider the target functionality of the room, and
select types of objects needed to support that
functionality (e.g., a TV in a living room).

2. Add more types of objects which are used together
with the selected objects and place them according
to their usages.

3. Pick proper objects of the selected types to fit the
general design style of the room.

4. Fine-tune the layout, including adding necessary
lights, filling in empty space with decorative
objects, etc.

Such a pipeline appeals to common sense. Using
this generic pipeline, we designed a knowledge graph
with the following entities:

e Room type. This encodes the general functionality
of the room (e.g., living room, bedroom, gym, etc.)
to be synthesized. This type of entity does not
have attributes.

e Object type. As in ShapeNet [23], we use the
WordNet [24] ontology as our basic hierarchical
taxonomy. Initially we map each synset in ShapeNet
to an object type in our entities, which allows us
to organize facts at different levels of a hierarchy.
E.g., we often put “cabinets” in a “living room”,
and a “T'V” can only be put on a “base cabinet”,
which is a sub-synset of the synset “cabinet”. The
most important field of an object type’s attributes
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is its metadata, which indicates what fields are
required for object instances of this object type. We
extracted metadata from Autodesk Revit projects
provided by these designers. We also add an
attribute field “generative probability” to model
the probability of adding an instance of this object
type to the room even if it is unrelated to any
room type or other instances in the room. This

field is useful in handling decorative objects, e.g.,

paintings on a wall.

To make the taxonomy more specific to indoor
design, e.g., to distinguish between a “tall cabinet”
and a “base cabinet” in the synset “cabinet” in
ShapeNet, we retrieved BIM families from several
BIM websites and extracted their keywords. A
designer then helped us filter these keywords and
categorize them into existing synsets in ShapeNet.

e Object instance. Each object instance entity
encodes an object in our library. Its attribute
fields include its corresponding 3D mesh, and fields
dependent on its object type (e.g., the material
of the object, the width of a bed, the price of the
object, etc.). All fields except the mesh are nullable,
as some fields might be absent for models in the
library.

These types of entities define the general skeleton
of the knowledge graph, as they define the nodes in
the graph. Each type of entity is encoded as a type
of node in the knowledge graph.

3.3 Relations

By considering the design pipeline in Section 3.2,
we identified the following explicit relations as being
used:

e Functional requirements, e.g., a TV is required in

a living room.

e Functional dependencies, e.g., a seat is required for
watching TV.

e Placement dependencies, e.g., the seat should be
placed facing the TV.

We can also identify some implicit relations in the
pipeline. For example, when a seat is needed, either
a sofa or a chair can satisfy the requirement, because
both sofa and chair satisfy a kind of seat. Also, when
we select a certain instance of a sofa, this implicitly
encodes the relation “this object is an instance of
a sofa”.

A major challenge in modeling these relations is
transferability. Due to lack of training scenes, we can

(8) TRANGHYA @) Springer

only find a limited number of object instances of
a certain object type in the training dataset. As a
result, we often need to transfer our model trained
with our training dataset to new objects in practical
applications, e.g., predicting the placement of an
object instance that is absent from the training
scenes.

A typical relation for which transferability is a
problem is the relative placement relation of object
types. Other work, such as example-based scene
synthesis [11], uses a single Gaussian mixture model
(GMM) to model relative placements. However,
relations modeled in this way are hard to transfer. For
example, a model that characterizes the placement
of chairs around a given table is hard to transfer to a
table of different shape or size (see Fig. 1).

The analysis above leads to the relations we define,
including:

e Is needed in (R1). This encodes that some
object type is needed in some room type. We
add an attribute “necessity” to measure the
necessity (as a probability) of having this object
type in the given room type. For example, a
dining room needs a dining table, regardless of
how small the room is. Given a larger room, we
may place a TV in it. In this example, the object
type “dining table” has a higher necessity than the
type “TV”. It can be written as (Dining table,
is needed in, dining room).necessity > (TV,
R1,dining room).necessity. Relation names
(e.g., is needed in) and relation IDs (e.g., R1) are
used interchangeably in this paper. We quantify
the necessity with a probabilistic model, which we
introduce in Section 4.

(@) (b)

Fig. 1 Transferring a model for relative placement and orientation
between object types “table” and “chair”. (a) Training data with a
square table. (b) For a table of a different shape, the model needs to
be transferred.
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e Works with (R2). This encodes the dependency
between two object types. Similarly to R1, we
add an attribute field “dependency” to measure
the level of dependency.

e Relative placement (R3). Existing work [20]
also uses this type of relation, which maps the
relative placements to keywords in a natural
language. However, due to the ambiguity of natural
languages, such a representation is inadequate
for many applications. Although that paper
disambiguates “on” (as in, e.g., on the wall versus
on the desk), we can easily list several further
cases (see Fig. 2) that also need disambiguation.
We propose a multi-field representation, to more
precisely represent the relative placements between
objects, as follows:

— Primary direction. Instead of using keywords [20],
we use a quantitative representation to represent
the most important placement constraints. For
example, for plates placed on a table, the
primary direction is (0,0,1), where the z
coordinate is assumed to be vertical. It is defined
using the nearest pair of points Tpjate and Tiaple
belonging to the meshes of the plate and the
table; the constraint here is (Zplate — Ttable) -
(0,0,1) > 0. Specifically, when we calculate the
primary direction between two objects touching
each other, we use a primary direction that
is perpendicular to their contact faces. Such a
definition can help to overcome certain failures in
specific cases, e.g., a desk with an integrated tray.
With the help of this field, we can disambiguate
concepts such as “in front of the desk” (with
a primary direction of (0,—1,0)) and “on the
front of the desk” (with a primary direction of
(0,0,1)).

— Primary distance. With the defined primary
direction, we can also define (Zplate — Ttable) -
(0,0,1) as the primary distance between objects
“plate” and “table”; the primary distance is 0 for
a pair of objects in contact. With the help of this
field (along with the primary direction), we can
easily disambiguate concepts such as “hanging on”

(with a primary distance of 0) and “in front of”

(with a primary distance larger than 0), which

share the same primary direction.

— Projected placement. With the defined primary
direction, we can model more complex spatial

relations. For example, to model the detailed
placement of a plate on a table, we can further
project the placement of the plate onto the table,
(wplate - wtable) - (U : (mplate - mtable)) v, where
v is the primary direction. We normalize this
projected vector with the size of the object it
relates to. With this field, we can disambiguate
cases, e.g., as in Figs. 2(a) and 2(b), where the
projections from the monitor and the laptop to
the desk have different values, indicating where
they are placed on the desk.

— Relative orientation. Relative orientation is
defined by the placement orientation of an object,

relative to the primary direction.
Note that for some pairs of objects, several

alternative relative placements may exist between
them. For example, a chair can be placed beside
any of the four edges of a square table. Thus the
relative placement relation is defined as a mixture

of the above.
e Is an instance of (R4). This encodes the object

type to which a certain object instance belongs.

e Is a hypernym of (R5). This type of relation
is generated directly from the WordNet ontology.
It encodes the conceptual relations between
hypernyms and hyponyms, and also helps organize
these concepts of object types in a hierarchical
structure. It has an attribute “drilling probability”,
indicating the probability of picking an instance
of that type, e.g., picking a “base cabinet” when a
“cabinet” is needed.

3.4 Indoor scene design analysis based on
knowledge graphs

With the entities (nodes) and relations (edges) defined
above, we can organize facts in indoor scene design
in a knowledge graph.

Given an indoor scene, we can organize the hidden
facts with a graph-based representation which is a
subgraph of our knowledge graph. An example of
such a subgraph is shown in Fig. 3, which gives a
typical pattern for a living room. This graph gives
facts about how this scene is constructed. A non-wall-
mounted TV needs a base cabinet to support it (in
contrast, a wall-mounted TV does not). To watch TV,
we need a seat facing it, and a sofa is a kind of seat.
We also add a tea table and two side tables to make
better use of this seat. Although the representation
in Fig. 3(c) is a more complex representation than
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1L —
(a)
Fig. 2 Ambiguity and imperfection of natural language in describing relative placement. (a, b) Difference between “a monitor on a desk” and

“a laptop on a desk”. Although the preposition “on” means “supported by” in both cases, monitors are usually placed far from the user, while
laptops are usually placed near the user. (c, d) Difference between “a cabinet beside a bed” and “a window beside a bed”. The preposition

“beside” represents different spatial relations in these two scenarios.

d_ _t+ I I H ;d_ i j:I: ISide table ‘ IThree seater sofa l Side table
sf,eti y Jireeisestersoln S’j titjle "-3 | Side table }—' Three seater sofa H Side table |
bl ad :
AR |
|
| I
| |
Tea table Two sealebst‘E ] Two seater sofa
| ‘ ! ‘Tea tab“e I—{ Two seater sofa ‘
\ | |
e
| Base cabinet '—[ Non-wall-mounted TV
R2,3 Non-wall-mounted TV
[ Basecabinet | _
| e=——p——-x Non-wall-mounted ™,
Wall
(a) (b) (©)

Fig. 3 A typical indoor scene and its corresponding graph-based representation, which is a subgraph of our knowledge graph. (a) A corner of
a room provided by an indoor designer. (b) A scene graph from the work [25]. (c) Our graph-based representation. To simplify this graph for
drawing, we have removed nodes representing instances and corresponding is an instance of relations.

that in Fig. 3(b), it contains much more information
and can easily be transferred. For a simple example,
we can easily conclude from the representation in
Fig. 3(c) that if we change the non-wall-mounted TV
to a wall-mounted one, the base cabinet is no longer
a necessary piece of furniture in the room. However,
changing the three-seater sofa to a chair does not
change any dependencies in the scene.

Such a representation can support many indoor
scene design applications, with the help of sub-
graph searching or matching algorithms. Analyzers
and designers without a background in statistics
or computer science can also easily interpret this
representation, to analyze the results of these
algorithms, or manually correct mistakes in the graph.

4 Probabilistic mapping of the knowledge
graph

To learn the knowledge graph from indoor training
scenes, we propose use of a factorization model
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as an intermediate step. Based on our proposed
factorization model, we can evaluate how the learned
knowledge graph fits our training data by mapping
entities and relations in our knowledge graph to
the factorization model. Similar methodology has
shown success in semantic processing, e.g., in
topic models [26] in natural language processing.
By learning the parameters and structure of
the factorization model, we get an intermediate
representation of hidden knowledge in indoor scene
design. We may then map the factorization model
back to a knowledge graph, and hence a knowledge
graph representation is built.

Specifically, a factor graph [27] is utilized as
our factorization model, which is a bipartite graph
representing the factorization of a function. Hand-
crafted factor graphs have shown success in fully-
automatic synthesis of indoor scenes with limited
diversity of object types [5]. A factor graph has
two types of nodes: variable nodes that encode
random variables involved in the model, and factor
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nodes that define the relations between variables.
Given a factorization of function g(X) = H;n:l fi(S;),
where S; € 2%, 2% denotes the power set of X
and X = {X1,Xs,...,X,} is the set of random
variables, we can build a factor graph with n +m
nodes, including n variable nodes and m factor nodes.
If X; € S;, we connect the ith variable node and the
jth factor node, which represents that the jth factor
takes the ith variable as a dependent variable.

4.1 Mapping the knowledge base to a factor

graph

To build a proper objective function for indoor scene
design and derive a good mapping to our knowledge
graph representation, the factor graph should satisfy
the following design principles:

e Factor nodes. We should define factor nodes
which correspond to the relations defined in
Section 3.3, to map our defined factor graph to
relations in the knowledge graph.

e Variable nodes. We should define variables that
are closely related to objects placed in indoor
scene designs, to model the indoor design results.
The variables should also correspond to the
entities defined in Section 3.2, to support the
aforementioned factors.

e Objective function. The objective function to be
factorized should be easily optimizable, to support
structure and parameter learning.

We thus define the following variables in the factor
graph:

e Room type variables 77,75, .... Each variable
of this type encodes a room type entity. Given a
room of a single type, we represent it with a one-hot
representation, setting the variable corresponding
to the room type to 1, and those for other room
types to 0. Given a room of mixed type, e.g., a
dining room with an integrated kitchen, we set
[Ty, Ty, ...] as a weighted vector of length 1.

e Object type count variables C,C5,.... Each
variable of this type encodes the number of objects
of this type we plan to place in the room (which
is not the same as the actual number of objects
placed). We split this variable into the sum of 3
components C = CI + CD + CT, representing
the numbers of objects planned for supporting
inheritance relations (R5), dependency relations
(R2), and functionality relations (R1) respectively,
as explained later in the factor definitions.

.. BEach
variable of this type I = {instance, ¢, 0} encodes

e Instance placement variables I, I, ..

the selection, placement @, and orientation o of an

object instance in the room.

In this model, only the room type and the
placements of the instances (T,I) are observed.
We define our objective function in a probabilistic
form p(T, I |relations), which allows us to utilize
probabilistic optimization methods in the estimation
step.

The following factors are defined to represent the
objective function in a probabilistic form:

e Functionality factors. A functionality factor
corresponds to the relation R1 and measures
how the number CT of objects planned based
on the room type fits the desired room type and
the corresponding “necessity” property in the R1
relation. We define a generative process for the
C'T variables using the following pipeline:

1. For each room type i in the room type vector,
sample the total number of all types of objects
planned in the process n; = Poisson(ST;)
featuring the room’s functionality, where S
is proportional to the area of the room.
Such sampling with a Poisson distribution is
conventional in topic models [28].

2. Plan the number of objects to be placed in the
room corresponding to each function:

CT=>Y CT" te

where
CcTY ~ Multinomial(n;; pt; 1, pti2, . . .)
€; ~ Poisson(g,)

Here pt; ; is the value of the field “necessity” of
the relation (jth object type, R1, ith room type),
or 0 in the
knowledge graph. g; is the field “generative
probability” defined in the
each object type. Hence we get a factor
p(CT|T,room) = [[,p(CTi|n)p(n|T,room) =
f(CT,n)g(n,T,room) , as a factorized probability
in the factor graph.

e Selection factors. A selection factor corresponds
to relation R5, and models how we choose types of
hyponym objects, e.g., whether to choose a chair

if the relation does not exist

attributes of

or a sofa when a seat is needed. It measures
how the number CI of objects planned from

room types fits the knowledge graph and the
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property “drilling probability” in R5. We define
the generative process of variables C'I as follows:

cr=>» cr®?

where

CI® ~ Multinomial(Cj; pi; 1, pii 2, - . )
Here pi;; is defined as the value of the field
“drilling probability” of the relation (jth object
type, R5,ith object type), or 0 if the relation does
not exist in the knowledge graph. We thus get
a factor p(CI|C) =[], p(CL;|C) = f(CI,C) =
f(C) as a factor node in the factor graph.

e Dependency factors. A dependency factor
corresponds to the relation R2 and models how
we choose some types of objects to work with
other objects, e.g., to choose a seat to work with a
TV. It measures how the number CD of objects
planned from the relation in the knowledge graph
fits the property “dependency” in R5. We define
the generative process of variables C'D as follows:

CD = Z cDY

CD;Z) ~ Poisson(C; - dep; ;)
Here dep;; is defined as the

the field “dependency” of the relation
(jth object type, R2,ith object type), or 0 if

value of

the relation does not exist in the knowledge graph.

By modeling dependencies among object types in
our knowledge base in this way, we get a factor
p(CD|C) = [[; p(CD;|C) = f(CD,C) = f(C)
as a factor node in the factor graph.

factor
corresponds to the relation R3 and models how we
place object instances, including determining the
location & and orientation o, e.g., placing a seat in

e Placement factors. A placement

front of a TV, so that it faces the screen of the TV.

It measures how the layout in the room fits the

facts and the parameters in the knowledge graph.

From the defined properties of R3 in Section 3.3,
we can get a group of extracted properties:

(tiJ’ Wi, j5,Vi,j5, 'wi,j) = extract(a:i, Zj, 04, Oj)
Here u, v, w, and t denote the primary direction,
projected placement, relative orientation, and
primary distance of object instance ¢ relative to
object instance j.

Given an object instance pair (4, j), we only add
a factor node when the hypernyms of their object
types have relations of type R3. We denote this

ﬂj@;} E'N$VIE§SI('?YI-|!|¥§AS @ SPI'iﬂgeI'

hypernym pair as (i, j'). We define the generative
process for u, v, w, t as follows:

z; j ~ Categorical(¢; ;)

tij~ ki/aj/:zi,j Beta(ﬁi@j',zi,j) + bi/yj/72i,j

w; j ~ Normal(fia,ir jo 2, ;s Owit jr 2 ;)

Vg5~ Norma’l(/’l’v7i,7j/,zi,j7O"U,i’,j,,zl',j)

wiJ ~ Normal(uwﬂz,jgzi’j 5 O'w,i’,jﬂzi,j)
Here z; ; is the identifier variable of this mixture
model. All parameters are generated with a normal
distribution, except for primary distance, as a
beta distribution can better model the asymmetric
impact of distance than a normal distribution. E.g.,
watching TV from 1.5 m away is the best distance,
and while 2.5 m is also a good distance, 0.5 m is
too close.

The values of k, b, i, o are learnable parameters
in the attributes of R3 relation. We write our
factorized probability as p(l;|1;) = f(I;,1;) =
p(ti 1 1;)p(wi 1 1;)p(vi | 1;)p(wi |15)/ Zi j, where
Z; ; is a normalizing constant. Here, ki j/, By j/,
birjrs Huir j's Ho,ir g Haw,it g’y Ouit,j’s Ov,ir,j7s and
Ow,i,j» by 0; j are the parameters in this factor.

e Instance selection factors. An instance selection
factor corresponds to relation R4. We define it as
1 when for each leaf object type ¢ in the hierarchy,
the number of instances of that object type placed
in the room is exactly C;, and 0 otherwise. This
gives the factorized probability p(I|C) = f(I,C).

e Eligibility factor. This corresponds to con-
straints in indoor scene layouts. We set it to 0
when there are collisions among the objects, or an
object is floating in the air or placed outside the
room, and 1 otherwise. The factorized probability
is p(T,C,I) = f(T,C,I).

We thus get the final factorized objective function
as follows:

f(T, I|relations)

x mcaxp(C, I|T,relations)

R max (p(CT|n)p(n|T,room)p(CI|C)p(CD|C)
pI1C)) [I »plL)

(1,R3,5)
= max (p(n|T, room)p(CT |, pt)p(CI|C, pi)

pI1C) I p(LilL;0i)
(i,R3,5)
This gives a factor graph representation of our
knowledge in indoor scene design, as shown in Fig. 4.
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Fig. 4 Mapped factor graph of knowledge in indoor scene design.
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4.2 Learning parameters and structure from
training data

We learn the knowledge graph from a given training
dataset with indoor scenes designed by professional
designers. Such a learning problem includes 3 coupled
tasks: learning the structure of the knowledge graph,
estimating the parameters of relations, and inferring
the hidden variables in the factor graph.

Existing work [29] on structure learning of factor
graphs has shown that both structure learning and
parameter inference can be completed in polynomial
time. However the algorithm given there does not fit
our work for the following reasons. (i) It assumes that
all the variables in the factor graph are observable.
However in our work, only the variables I and T,
which represent the objects in the room and the type
of the room, are observed. (ii) It assumes discrete
probability distributions over finite sets for each
variable. In our case, although n, C are discrete
variables, each of their components ranges from 0 to
~+00, which is not a finite set. To make matters worse,
the variables I, are not discrete variables. Thus we
propose our own solver for this problem.

As all parameters in the factors are independent of
each other, optimization of the factorized objective
function can also be performed separately:

max f(T, I|relations)
(p(CT|n)p(n|T,room)p(CI|C)

= max
pt.pi,dep,C.n

p(CD|C)p(I|C)) x [] max p(1i| 1, 0i5)
(i,R3,5) "’

As shown in the equation above and Fig. 4, we
split the multi-task optimization problem into the
following parts:

e Instance selection. This corresponds to the
factor nodes in red (factors without parameters)
or blue (factors with parameters) in Fig. 4, and
focuses on the first term in the equation above. The
optimization problem includes discrete variables
and is a parameter inference problem. The number
of factors in this part is fixed. As the structure of
the knowledge graph is mapped implicitly to non-
zero elements in pt, pt, and dep, this optimization
part only needs to carry out (i) the inference of
hidden variables C and n, and (ii) the estimation
of parameters pt, pi, and dep. By solving
for them jointly, we can recover both structure
and parameters in our knowledge graph from the
learned parameters.

e Instance placement. This corresponds to the
green factor nodes in Fig. 4 and focuses on
the second term in the equation above. The
optimization problem involves continuous variables
but no hidden variables. These factors are
associated with R3 relation in the knowledge graph
explicitly, and the number of such factors needs to
be learned. As a result, this part needs to (i) learn
the structure related to this part and (ii) estimate
parameters 0; ;.

Although the original learning problem has complex
coupled tasks, the sub-problems we obtain above are
much simpler. We can adapt existing solvers for both
sub-problems independently:

e Instance selection. This includes coupled tasks
of hidden variable inference and parameter
estimation, which is a common problem in
semantic modeling algorithms used with, e.g., topic
models [28].
hidden variables in this part, we can quickly

Given a group of parameters and

evaluate the resulting objective function value for
this part. However taking the derivative of the
objective function with respect to each separate
variable or parameter is difficult.  Following
work in semantic modeling, the Gibbs sampling
method [30] is utilized to solve the coupled
problem of hidden variable inference and parameter
estimation. However, the total number of relations
learned by the sampling algorithm, or the number
of non-zero elements in the parameters, might be
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huge. This could cause a severe overfitting issue
given a limited number of training samples. Thus
the Bayesian information criterion [31] (BIC) is
employed in our objective function, to extract only
the most salient [32] relations from our training
samples. The BIC is defined as klog(nsample) —
2log ﬁ, where ngample, k, and L denote the number
of training samples, the number of free parameters
in the model, and the maximized value of the
likelihood function, respectively. Accordingly, the
objective function for the Gibbs sampling solver is
set to —BIC:

21log(p(CT|n)p(n|T', room)p(CI|C)p(CD|C)

: p(I|C)) —k 1Og(nsample)
where k is the number of non-zero elements in
all parameters. With Gibbs sampling, we can get
sparse parameters, and map each non-zero element
to a relation in our knowledge graph.

e Instance placement. This includes coupled tasks
of structure and parameter estimation, which
is a traditional problem in probabilistic graph
models. Using our factorized objective function,
each parameter ¢; ; can be estimated independently
from other parameters and structure, as I is
observable in the model, which is a simple

parameter estimation problem with maximum a

posteriori (MAP) estimation. The only difficulty

in this problem is estimating the normalizing
factor Z; ;, as it requires integration over a joint
distribution of all parameters in 0, ;. In our

implementation, this is done with the VEGAS [33]

Monte Carlo method.

As each factor p(l;|I;,0;;) corresponds to a
relation (i, R3,7) in our knowledge graph, we can
also apply BIC to estimate the set of relations R3:

arg max (2 <_§ i log (p(Zil1;,0;;)) — |R3| log(nsample))
2 5]

which can be solved with greedy search.

5 Applications

5.1 Data sources

We have trained different versions of our knowledge

base with a mixture of data sources, to support

different indoor design tasks:

e Dataset A, built with 50 Autodesk Revit [1]
projects collected from professional designers,

ﬂj@;} E'N$VIE§SI('?YI-|!|¥§AS @ SPI'iﬂgeI'

including 460 rooms.

e Dataset B, built with 1194 rooms designed by
players of a video game [34], with both usability
and aesthetics considered.

e Dataset C, built with 233 rooms from the
Stanford Scene Dataset [11] by non-professional
users.

The library of objects was constructed from man-

made objects from ShapeNet [23], and we also added

objects from Datasets A, B, and C to it.

For object types and objects in the library, R4
relation was obtained by classification, learned with
MVCNN [35]. The resulting knowledge graph learned
from each dataset consisted of more than 200,000
entities and 200,000 relations, most of which were
object instance entities and R4 relations.

We now show the effectiveness of our knowledge
graph representation with several applications.

5.2 Alternative indoor scene design

One typical requirement for indoor scene design is
to generate alternative designs. Given a design of
a room, a user may have certain preferences for
the room, and thus may like to generate alternative
designs by changing the type of an object, changing
a selected instance of a certain type, or moving some
instances in the room. Thus it is desirable to generate
alternative designs efficiently with these preferences
addressed automatically. This application is similar
to scene evolution [36], which aims to evolve layouts
given a sequence of human activities. The major
difference between alternative indoor scene design
and scene evolution is with their desired outputs:
alternative indoor scene design tries to generate a
tidy layout to assist scene designers, whereas scene
evolution aims to generate realistic and messy layouts
that correspond to human activities.

One major challenge in generating alternative
indoor scenes is to find the lead—lag relations in the
scene. For example, when a user moves a table, it
is highly possible that their intention is to move the
chairs around it together with it. However when a
user moves a chair, it is likely that they just want
to move the chair elsewhere. Such challenges can be
addressed with a simple graph-based algorithm by
analyzing the lead—lag relations.

We address the problem with the following algorithm:

When the placement of an instance in the scene
is changed, or when we replace an instance by
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another instance of the same object type, we simply
check for a connected component from the changed
instance in our knowledge-graph-based representation
with only R3, R4, and R5 edges considered, and
the placements of those instances in the connected
components are to be influenced. Thus when the
placement of a chair is changed, it does not influence
the placement of the table, as there is no path
representing dependency in the graph representation.
In contrast, when a table is moved, we will move any
chairs around it.

When an instance is replaced by another instance
of a different object type, we check in our knowledge
graph and compare the contexts of these object
types in the knowledge graph. We then modify the
scene accordingly. For example, a non-wall-mounted
TV needs a base cabinet to support it, and a wall-
mounted TV does not. When we replace a non-wall-
mounted TV to a wall-mounted one, we should try
to remove the base cabinet if the base cabinet is not
a dependency of any other instance in the scene.

We show a typical example in Fig. 5. Figure 5(a)
shows the original design of a living room, which can
also be used for dining. As the room is nearly empty,
the user first moves the table to the left half of the
room (see Fig. 5(b)) and the chairs are also moved
by our algorithm. The TV is not moved with our
lead—lag analysis based on the knowledge graph, and
our algorithm adds an armchair in front of the TV
after re-analyzing the dependency relations of the
TV. When the TV is changed to a wall-mounted TV
(see Fig. 5(c)), our algorithm automatically removes
the TV cabinet that originally supported the non-
wall-mounted TV. In Fig. 5(d), the square table is
replaced by a long table not included in the training
dataset. Our algorithm automatically transfers the
R3 relation learned from other tables, and places
some chairs around it. The right half of the room is
still quite empty, so the user decides to add a coffee
table (see Fig. 5(e)), and our algorithm changes the
seat originally placed there to a sofa, places it next
to the wall, and automatically adds another seat. It
also adds two side tables beside the sofa. In Fig. 5(f),
we move a chair around the dining table, to simulate
a scenario of a family sitting around the coffee table,
watching TV. In this case, the dining table in the
chair’s context is not moved, by the lead—lag analysis.

For the example in Fig. 5(e), we further compare

(a) (b)

(© (d)

(e)
Two se: f: I
wo seater sofa HRZ,J Side table

23 Ter e |

Twu sedIEr sula

Cha\r
Dining table TV Tea table | | Side table

(2 (h)

Fig. 5 An example of alternative room design showing several steps.
(a) Original room design. (b) The user moves the table to the left half
of the room. (c) The user changes the TV to a wall-mounted one. (d)
The user changes the square table to a long table. (e) The user adds a
coffee table in front of the TV. (f) We move a chair around the dining
table. (g) Underlying knowledge graph for (e), with various entities
and relations removed for clearer illustration. (h) Co-occurrence-based
representation for (e) as commonly used in previous work.

our knowledge graph representation with the pairwise
co-occurrence modeling used by Refs. [10, 25], as
shown in Figs. 5(g) and 5(h), respectively. The
major differences between these two representations
are: (i) ours uses directed relations between entities,
and (ii) ours introduces several levels of hypernyms
for each object. In the alternative scene design
application, such differences have significant benefits.
By using directed relations, we can find lead—lag
relations for those objects, and analyze dependencies
between the objects. Figures 5(b), 5(d), and 5(e)
show some successful modifications according to the
dependency analysis, while Fig. 5(f) demonstrates the
necessity of such analysis. By introducing different
levels of hypernyms, the relations among the entities
are easier to transfer, as shown in Fig. 5(d). A
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graphical representation of such transfer is presented
in Figs. 5(g) and 5(h), where we add a single-seater
sofa not included in the training dataset. As shown
in Fig. 5(g), the relations of its hypernym “sofa” and
“seat” can be implicitly transferred to the hyponym
“single seat sofa” with a single R5 relation, whereas
in co-occurrence models lacking a lexical hierarchy,
the user has to go through all similar concepts and
manually decide which co-occurrence relations to
transfer. Such transferability can be very helpful in
reducing the required scale and coverage of training
data.

5.3 Inference tasks

Some interactions supported by existing works can be
formulated as a simple MAP hidden variable inference
problem based on our factor graph representation.
The most typical interactions include finding a proper
location for a user-selected instance [4], retrieving an
instance for a user-selected placement [9], etc.

We present a typical example of inference tasks in
Fig. 6. Figure 6(a) shows the result of finding a proper
location for a chair in the room. The red chairs show
six local maxima of posterior probability for placing
the chair, indicating their R2 and R3 relations to
the tea table and dining table, where the R2 relation
encodes the table that the chair depends on, and
its position and rotation are further determined by
the parameters of the R3 relation. Figures 6(b) and
6(c) show the result of retrieving instances with user-
selected locations with the relations of small objects
learned from Dataset B. By retrieving R2, R4, R5
relations in the knowledge graph for the hyponym
concept and corresponding instances to be placed
in the room filtered by R3, our algorithm identifies
a plant, a tablet, a cabinet, and a plate for those
locations. However, due to the limitation of our
knowledge graph representation, without function
labels for objects, our algorithm may select instances
with duplicated function (see Fig. 6(d)).

5.4 Fully-automatic indoor design generation

Another challenging problem is the fully-automatic
indoor design generation problem. Existing work [5]
in open world synthesis can only synthesize a room
with a certain room type with manually designed
factor-based criteria for specific room types. Here we
replace their objective function with our factorized
formulation based on our knowledge graph, to adapt

@ EN$V1E§SEY%I}‘E]§AS @ Springer

(c) (d)

Fig. 6 Typical inference tasks. (a) Finding a proper placement
for a user-selected instance. (b, ¢) Retrieving instances for selected
placements. (d) A typical failure in retrieving instances for selected
placements: both knife & fork and chopsticks are added.

the model to different room types. Instead of
designing criteria for each specific type, we include
some general aesthetic measures [37] to avoid strange
results. Figure 7 shows some results.

(a) (b)

(©) (d

Fig. 7 Some rooms generated by automatic indoor design. Each
case takes a different room type vector T as input, to generate (a)
a bedroom, (b) a living room, (c) a dining room integrated with a
kitchen, and (d) a toilet.
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6 Discussion and conclusions

This work has proposed a knowledge-graph-based
framework which addresses many practical problems
in computer-aided indoor scene design. The relations
can be learned with small-scale training datasets of
indoor scenes, and can be easily transferred and
adapted to suit practical needs. Various practical
examples show that our framework is effective and
can be easily embedded into existing applications.
However, we can still point out several limitations
and possible improvements of our work.

Firstly, to overcome sparsity and lack of training
data, we employ an ontology based on ShapeNet [23]
to assist our knowledge graph construction, which
partially solves the issue. However, given a limited
number of training scenes, we cannot claim that our
knowledge graph trained with this dataset contains
every fact about indoor scene design, since for some
rare object types, we can find few if any instances
in the training scenes, which makes it difficult to
learn their relations. Possible improvements for such
problems may include employing knowledge graph
embedding techniques [38], which have shown success
in relation prediction for long-tail entities.

Secondly, some placements of objects are not based
on the contextual relations between them, but on
their context in human interaction. For example, we
may learn to “place a knife to the right side of a plate”
and “place a fork to the left side of a plate”. When we
do not place a plate in the scene, the algorithms based
on our framework do not know how to place knife and
fork, even if a napkin has been placed. However with
the underlying fact “it is conventional for a person
to use a knife with their right hand and a fork with
their left hand”, a person can easily know how to
place them. Modeling the human context makes it
possible to handle cases like this. Therefore, a possible
direction for further improvement is to include human
activity information [36, 39] to our knowledge graph,
an approach which has shown success in both realistic
scene synthesis and in using evolutionary instructions.
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